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Abstract: This paper presents a novel scheme coined AIR (Agent for Image Recognition), acting as an agent, to oversee the image matching 

and retrieval processes. Firstly, neighboring keypoints within close spatial proximity are examined and used to hypothesize true keypoint 

matches. While this approach is robust to noise (e.g. a tree) since spatial relation is considered, missing (undetected) keypoints in one 

image can also be recovered resulting in more keypoint matches. Secondly, the agent is able to recognize instability of projective 

transformations in certain cases (e.g. non-planar scenes). The geometric approach is substituted with LIS (Longest Increasing 

Subsequence) approach which does not require any complex geometric transformations. The effectiveness of AIR is substantiated by an 

image retrieval experiment which demonstrates that it achieves a twofold increase in true matches and higher matching accuracy when 

compared to RANSAC homography approach. 
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1. Introduction 

The brute force method of comparing every pixel in two images is 

computationally prohibitive. Intuitively, one can relate the two 

images by matching only regions in the images that are in some 

way interesting. They are local as they are related to small regions 

on objects instead of the whole object itself. This property makes 

them distinctive as well as robust to occlusion and clutter. These 

regions are referred to as local features, and sometimes known as 

interest points or keypoints. Today, the use of keypoints to find 

correspondences across multiple images is a key step in many 

image processing and computer vision applications. Some of the 

most notable examples are panorama stitching [1-3], wide baseline 

matching [4-7], image retrieval [8, 9], object recognition [10-12], 

and object class recognition [13-15]. Differences between the 

images can be a substantial range of affine distortion, noise level, 

change in illumination, scaling, rotation, and viewpoint. The 

keypoints should be invariant to these differences in order to 

robustly match two images of the same object or scene. A good 

keypoint should be highly distinctive in the way that a single 

keypoint can be correctly matched with high probability against a 

large database of keypoints from many images. Nevertheless, the 

more invariant it is, the less distinctive it will be, which the trade-

off between invariance and distinctiveness is. Typically, there are 

one or more follow-up verification steps to verify the keypoint 

matches. Without prior knowledge what types of images we are 

receiving, we often assume that the scenes are composed entirely 

of planes; and that all planes can be detected whereby planar 

homographies can be derived. When this assumption is invalid, the 

matching fails. 

In this paper, we propose an intelligent scheme coined AIR (Agent 

for Image Recognition), acting as an agent, to hypothesize  

true keypoint matches, or in fact overseeing the keypoint 

 

 

matching process. Neighboring keypoints within close spatial 

proximity are examined and used to hypothesize true keypoint 

matches. The fundamental idea behind this approach is that if two 

keypoints are true corresponding keypoints in the two images, at 

least some of their neighboring keypoints should be corresponded. 

By building a relationship between each keypoint and its 

neighboring keypoints, our approach can robustly deal with two 

common problems. 

1) Asymmetric numbers of keypoints detected in the two images, 

since a keypoint detected in one image may not appear in the other 

image and therefore results in a lesser number of keypoint matches. 

These missing (undetected) keypoints can never be recovered. 

2) False corresponding keypoints found in the two images after 

projectivity due to noise, e.g., a tree in one of the images will 

comprise a massive number of keypoints which can be easily 

mismatched after projectivity. 

AIR is also able to recognize instability of the approach in some 

cases (e.g. non-planar scenes) after projectivity from the low 

number of keypoint matches. It substitutes with LIS (Longest 

Increasing Subsequence) approach which allows less rigid 

correspondence between the matched image pairs. This approach 

finds a subsequence (of keypoints in the first image) of a sorted 

sequence (of corresponding keypoints in the second image), in 

which the subsequence elements are in sorted order and is as long 

as possible. The subsequence is not necessarily contiguous, or 

unique. The concept is that an image pair is geometrically 

consistent if the geometric order of their corresponding keypoints 

is consistent. The rest of the paper is organized as follows. Section 

2 discusses related work. In Section 3, our image recognition 

methodology is presented whereby AIR is described. Section 4 

provides the experimental results. Section 5 concludes the paper. 
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Mikolajczyk and Schmid [16] evaluated a variety of object 

recognition algorithms and identified that the SIFT [12] (Scale-

Invariant Feature Transform) and SIFT-based algorithms such as 

SURF [17] (Speeded Up Robust Features) are the most resistant to 

common image deformations and have achieved the best 

performance. SIFT-based features are invariant to image scale, 

translation, rotation, and partially invariant to illumination and 

viewpoint changes. Details on application of these features can be 

found in [3, 18, 19]. In its original matching scheme, a pair of 

keypoints is considered a match if the distance ratio between the 

closest match and the second closest match is below a certain 

threshold. While the distance ratio can eliminate some of the false 

keypoint matches, we often still need to identify correct subsets of 

keypoints containing less than 1% inliers. 

To solve the outlier problem, the RANSAC [20] (Random Sample 

Consensus) algorithm and other similar hypothesize-and-verify 

methods have been proposed in the literature. The RANSAC 

algorithm is a robust method based on random sampling and rejects 

all keypoint matches not conforming to the found homography 

model [21] or epipolar geometry [21]. Although this method works 

fine in many applications, they perform poorly when the number 

of false keypoint matches outnumbers the number of true keypoint 

matches; or when the number of keypoint matches is modest 

(limited). The RANSAC idea was modified by Nister and 

Stewenius [22] to include competitive verification of models. The 

algorithm named “Preemptive RANSAC” was demonstrated to 

perform well in a real-time structure-from-motion system. The 

limitation is that only a fixed number of models are evaluated, 

which is equivalent to a priori assumption that a lower bound on 

the fraction of inliers is known. This limits the applicability of 

preemptive RANSAC in wide baseline stereo where the fraction of 

inliers varies widely. 

Another popular method is the Hough Transform [23-25], which 

clusters keypoints in pose space. The Hough Transform identifies 

clusters of keypoints with a consistent interpretation by using each 

keypoint to vote for all object poses that are consistent with the 

keypoint. However, in [12], it was shown that follow-ups are 

required after Hough Transform is performed in order to eliminate 

more false keypoint matches, e.g., least-squares pose 

determination, followed by a probabilistic model given in [18]. 

Moreover, Hough Transform requires a huge computation load in 

pixel transformation and a large storage (or memory) is also 

required for the voted Hough space. Without proper 

parallelization, it will be very difficult for Hough Transform to 

achieve real-time performance. 

3. Image Recognition Methodology 

This section describes our image recognition technique used to 

identify objects in different images. Keypoints between two 

images of the same scene or object must be robustly detected, 

described, matched and verified. We exploit Fast-Hessian detector 

and SURF descriptor proposed by Bay et al. [17] due to its speed 

and accuracy. We find the best match between a query image and 

the database images by Euclidean distance, using the k-d data 

structure and search algorithm [25]. The algorithm generalizes 

classical binary trees to higher dimensional spaces so that one can 

locate nearest neighbors to a descriptor vector in O (log N) time 

instead of the brute-force O (N) time, with N being the size of the 

images in the image database. 

The Agent (AIR) as illustrated in Fig. 1 inspects the keypoint 

matches based on spatial relations. Once the keypoints passed the 

inspection, the agent examines the reliability of the matched image. 

If the match is not satisfactory (unreliable), it will automatically 

switch to the LIS approach. The two tasks will be discussed in 

details in the following sections. 

 
Figure 1. Agent (AIR) is responsible for two main tasks 

3.1. Spatial Relations 

For each image, we save each detected keypoint and its nearest 12 

neighboring points. Let us consider a 3D coordinate frame and two 

planar surfaces of the same scene but with different camera angles. 

Let’s call the two planar surfaces R1 and R2 as shown in Fig. 2. 

R2 is defined by the point 𝑏0
⃗⃗⃗⃗  and two linearly independent vectors 

𝑏1
⃗⃗  ⃗  and 𝑏2

⃗⃗⃗⃗  contained in the region. Let us consider a keypoint 𝑃2
⃗⃗⃗⃗  

in R2. Since the vectors 𝑏1
⃗⃗  ⃗ and 𝑏2

⃗⃗⃗⃗  form a basis in R2, we can 

express 𝑃2
⃗⃗⃗⃗  as 

𝑞1𝑏1
⃗⃗  ⃗ + 𝑞2𝑏2

⃗⃗⃗⃗ + 𝑏0
⃗⃗⃗⃗ = (𝑏1

⃗⃗  ⃗, 𝑏2
⃗⃗⃗⃗ , 𝑏0

⃗⃗⃗⃗ ) (
𝑞1
𝑞2
1

) = 𝐵𝑞 ,        (1) 

where 𝐵 = (b1
⃗⃗⃗⃗ , b2

⃗⃗⃗⃗ , b0
⃗⃗⃗⃗ ) ∈  ℜ3×3  defines the planar surface R2, 

and q⃗ =  (𝑞1, 𝑞2,1)𝑇 defines the 2D coordinates of 𝑃2
⃗⃗⃗⃗  with respect 

to the basis (𝑏1
⃗⃗  ⃗, 𝑏2

⃗⃗⃗⃗ ). We can compute a similar identity for planar 

surface R1 as  

𝑃1
⃗⃗  ⃗ = 𝐴𝑠,⃗⃗            (2) 

where 𝐴 = (a1⃗⃗  ⃗, a2⃗⃗⃗⃗ , a0⃗⃗⃗⃗ ) ∈  ℜ3×3 defines R1, and 𝑠 = (𝑠1, 𝑠2,1)𝑇 

defines the 2D coordinates of 𝑃1
⃗⃗  ⃗ with respect to the basis (a1⃗⃗  ⃗, a2⃗⃗⃗⃗ ) 

We impose the constraint that point 𝑃1
⃗⃗  ⃗ maps to point 𝑃2

⃗⃗⃗⃗   under 

perspective projection centered at the origin: 

P1⃗⃗  ⃗ =∝ (q⃗ )P2
⃗⃗  ⃗ ,         (3) 

where ∝ (q⃗ ) is a scalar that depends on P2
⃗⃗  ⃗, and consequently on q⃗ . 

By combining the equation above with the constraint that P1⃗⃗  ⃗,  and 

P2
⃗⃗  ⃗,  must be situated in its corresponding planar region, we obtain 

the relationship between the 2D coordinates of these points: 

 s =∝ (q⃗ )A−1Bq⃗  ,         (4) 

where the role of ∝ (q⃗ )  is to simply scale the term ∝ (q⃗ )A−1Bq⃗  

such that its third coordinate is 1. We can represent ∝ (q⃗ )A−1 B as 

a homography matrix Hm and compute the above equation as 

s = Hmq⃗  ,         (5) 

If R1 and R2 are true corresponding planars, the keypoint P2
⃗⃗  ⃗ and 

its 6 nearest neighboring points (shaded in different colors in Fig. 

2) in R2 should fit the homography matrix Hm to correctly locate 

the 7 corresponding keypoints in R1. There are more than 6 nearest 

neighbors (total of 12) stored in a descriptor vector although only 

6 are used. 

This is to solve the asymmetric problem where a point can be 

detected in one quadrilateral region but not in the other, and thus 

the nearest 6 neighbors may be slightly different in this case. E.g., 

the 6th nearest neighbor for P2
⃗⃗  ⃗ in R2 may be the 7th nearest 

neighbor for P1⃗⃗  ⃗ in R1. Therefore, we stored slightly more than 6 

nearest neighbors to overcome this problem. 
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Figure 2. Point projectivity between two planar surfaces R1 and R2 of the 

same scene but different camera angles 

Observations after various experiments summarized the point-to-

point homography matching results into different cases. Given two 

planar surfaces (may be true or false corresponding pair) R3. and 

R4., a keypoint (let’s call it P3
⃗⃗  ⃗), its 6 nearest neighboring points 

{P3a
⃗⃗ ⃗⃗  ⃗, P3b,⃗⃗ ⃗⃗ ⃗⃗  … , P3f

⃗⃗ ⃗⃗  ⃗}, and their corresponding points in R4 (may be 

true or false corresponding points) denoted as P4
⃗⃗  ⃗), 

{P4a
⃗⃗ ⃗⃗  ⃗, P4b,⃗⃗ ⃗⃗ ⃗⃗  … , P4f

⃗⃗⃗⃗  ⃗}, the 7 frequent cases after projectivity of the 7 

points by Hm from R3 to R4 can be categorized as: 

All 7 points P4
⃗⃗  ⃗, P4a

⃗⃗ ⃗⃗  ⃗ to P4f
⃗⃗⃗⃗  ⃗ found. 

P4
⃗⃗  ⃗,  found, and most neighboring points (≥ 4) found. 

P4
⃗⃗  ⃗,  not found, but most neighboring points (≥ 5) found. 

P4
⃗⃗  ⃗,  found, and few neighboring points (< 4) found. 

P4
⃗⃗  ⃗,  not found, and few neighboring points (< 5) found. 

P4
⃗⃗  ⃗,  found, but no neighboring points (< 1) found. 

All 7 points P4
⃗⃗  ⃗, P4a

⃗⃗ ⃗⃗  ⃗ to P4f
⃗⃗⃗⃗  ⃗ not found. 

We determine from experiments that candidate points falling 

within cases 1-3 give very high accuracy of correct matches. As a 

result, we only consider a candidate point as valid if it falls within 

these three cases. This approach is very robust since it does not 

evaluate the pair of candidate points in the two planar surfaces 

individually, but as a whole with the neighbors in order to 

adjudicate if the pair is a correct match. Consequently, keypoints 

coming from other objects or structures, e.g., the dense keypoints 

detected on a tree, will have very low chances of being matched. 

We are also the first to recover keypoints that are not detected in 

one image but in the other. This can be easily understood from case 

3 where P4
⃗⃗  ⃗, is not found but most of the neighboring points (at least 

5) are found. We can recover such missing (undetected) keypoint 

in an image if the point exists in the other image and most of their 

neighboring points are corresponded. This solves the common 

problem in keypoint detection where the numbers of detected 

keypoints in two images are asymmetric. Given that the numbers 

of keypoints are asymmetric in the pair of planar surfaces, in this 

case R3 and R4, we apply an inverse homography matrix Hm
−1  to 

the unmatched keypoints in R4 to locate any corresponding 

keypoints in R3 in the same manner as before. Eventually, the best 

pair of corresponding planar surfaces in the two images will obtain 

the largest list of corresponding keypoints. 

However, homography based method only works well on images 

comprising planar rectangular structures or quadrilateral regions as 

described above. When it comes to non-planar scenes, the 

approach is unstable. AIR recognizes this failure by examining the 

number of keypoint matches, e.g. low number of matches indicates 

unreliability of matched image. Alternate approach (LIS) is 

substituted, which will be discussed next. 

3.2. Longest Increasing Subsequence (LIS) 

In this method, we find true keypoint matches by imposing a 

geometrical constraint on the matches. This constraint applies to a 

set of matched keypoint-pairs. Our assumption is that true keypoint 

matches are the elements of the largest subset of corresponding 

keypoints which are consistent. The set of matched keypoint-pairs 

are consistent if the keypoints order is the same in both images. We 

can find the largest subset by calculating the longest increasing 

subsequence [26]. The pseudo-code for the algorithm is provided 

in Algorithm 1. First we sort the keypoints according to their x 

coordinate in the first image. Then we create a sequence from the 

x coordinates of the keypoints in the second image (keeping the 

order after sorting). The longest increasing subsequence of this 

sequence will give us the indexes of the keypoints we want. They 

will be geometrically consistent and they will be the largest subset 

of such. Fig. 3 illustrates this. 

 
Figure 3. An illustration of Longest Increasing Subsequence (LIS) on two 

images with detected keypoints as shown. The LIS output in this case is 0, 

2, 3, 4, 6, 7 

This geometrical constraint is invariant to translation and scaling. 

Those transformations do not have effect on the geometrical orders 

of the keypoints. It also allows a little elasticity. However, it is not 

invariant to rotation, affine transformation, and homographic 

transformations. Those can change the relative order of the 

keypoints. We can address this problem by calculating the LIS on 

rotated images. We only have to apply the rotation on the keypoint 

coordinates, so we do not rotate the whole image and extract the 

keypoints again. Assuming we have found the “right” angles of 

rotation, we can prove that LIS is invariant to affine 

transformations. 
  

Algorithm 1 Find LIS in Array A 

n := A.length 

m-idx : = newArray(n) 

m-val := newArray(n) 

previous : = newArray(n) 

maxJength : = 0 

for i from 0 to n-1: do 

//Binary search in the m-val array 

idx := lowerJbound(m-val[0 : max-length], A[i]) 

mJdx[idx] := i 

mval[idx] : = A[i] 

if idx > 0 then 

previous[i] : = mJdx[idx - 1] end if 

if idx = maxJength then 

maxJength : = maxJength + 1 

end if  

end for 
LIS := newArray(maxJength) idx := mJdx[maxJength - 1] 

for i from maxJength-i to 0 do 

LIS [i] := idx  

idx := previous[idx]  

end for  
return LIS 
 

The proof of affine invariance is as follows: Let Affine ∶  ℜ2 →

ℜ2 be an affine transformation. A f fine (p⃗ ) = Αp⃗ + t  where  

𝛢 =  (
𝑎 𝑏
𝑐 𝑑

) is the affine transformation matrix, and  



t = (
e
f
) is the translation vector. Let Rotate ∶  ℜ2 → ℜ2be a 

rotation. Rotate(p⃗ ) =  Rp⃗  where  

R =  (
cos θ − sin θ
sin θ cos θ

) 

and θ is the angle of the rotation. If we apply an affine 

transformation on a set of points P =  {pi⃗⃗  ⃗  ∈  ℜ2}, and also apply 

the rotation, we will get P′ =  {pi
′⃗⃗  ⃗  ∈  ℜ2} where pi

′⃗⃗  ⃗ =

Rotate(A f fine(pi⃗⃗  ⃗)). The detailed equation is as follows: 

(
xi
′ 

yi
′) =  (

cos θ − sin θ
sin θ cos θ

) ((
a b
c d

) (
xi

yi
) + (

e
f
))       (6) 

where  

(
xi

yi
) = pi⃗⃗  ⃗ and (

xi
′ 

yi
′ ) = pi

′⃗⃗  ⃗. 

Our only concern is the difference between the x coordinates of 

two points (P_0 )    and (P_1 )   (the original points) and the 

difference between the x coordinates of (P_1^' )   and -(P_0^' )   

(the transformed points). From eq. 6 we can derive the following: 

𝑥1
′ − 𝑥0

′ = (𝑎 cos 𝜃 − 𝑐 sin 𝜃)(𝑥1 − 𝑥0) + (𝑏 sin 𝜃 −
                      𝑑 cos 𝜃)(𝑦1 − 𝑦0)                                                    

(7)

 

 

 

 

 

 (7) 

We can choose 𝜃 (and also r) from the equations b = r sin 𝜃 and d 

= r cos 𝜃, where 𝜃, 𝑟 ∈ ℜ and r det(A) > 0 assuming 𝑑𝑒𝑡(𝐴)  ≠  0. 

This is always true in practice. The 𝜃 will be the “right” angle we 

should choose so that 𝑥1
′ − 𝑥0

′  will not be dependent on the y 

coordinates y1 and y0. After substitution, eq. 7 can be rewritten as: 

𝑥1
′ − 𝑥0

′ = (
𝑎𝑑−𝑏𝑐

𝑟
) (𝑥1 − 𝑥0) .        (8) 

𝐴𝑠 (
𝑎𝑑−𝑏𝑐

𝑟
) =

det (𝐴)

𝑟
> 0, we showed that we can preserve the 

relative order of points by applying a carefully chosen rotation. 

In practice we do not know 𝜃, because we do not know the 

parameters of the affine transformation. But computing LIS is very 

fast, so we can afford to do it multiple times. We randomly choose 

several angles for the first and for the second image. We compute 

the LIS for all possible angle-pairs (KxL times if the numbers of 

angles are K and L for the images respectively). We keep the true 

matches from the largest subset we obtained. We create the angles 

for the first image by the following steps. First we choose a random 

angle 𝜃 = 𝑟𝑎𝑛𝑑(0,2𝜋). Then the set of angles becomes  

𝜃𝑘 = {𝜃 +
𝑘.2𝜋

𝐾
},  

where k=0,1,….,K-1. We choose the 𝜃𝐿 angles for the second 

images similarly. K = 3 and L=7 are good choices based on our 

experiments. 

4. Experiment 

We validate the AIR approach in an image retrieval experiment. 

We compare it with three other schemes. Thus, the four schemes 

in our evaluations are as follows: (1) SURF + RANSAC 

Homography [21, 27], (2) SURF + LIS standalone, (3) SURF + 

Spatial Relations standalone, and (4) SURF + AIR. We include 

SURF + LIS standalone and SURF + Spatial Relations standalone 

in our evaluation although AIR is comprising both LIS and Spatial 

Relations. The reason is because we want to determine from the 

results whether the agent (AIR) is intelligent enough to switch 

between the two approaches for different images. The results 

should be improved with AIR. 

 

4.1. Data set and Evaluation measures 

We use the Stanford Mobile Visual Search data set proposed in 

[28] for our evaluation. This data set has several key characteristics 

that are lacking in existing data sets: rigid objects, widely varying 

lighting conditions, perspective distortion, typical foreground and 

background clutter, realistic ground-truth reference data, and query 

data collected from heterogeneous low and high- end camera 

phones. The data are in several different categories: CDs, DVDs, 

books, business cards, text documents, video clips, and museum 

paintings. Some sample query and database images are shown in 

Fig. 4. The number of database and query images for different 

categories is shown in Table 1. There are a total of 2800 query 

images for 700 distinct classes across 7 image categories used in 

the evaluation. The original resolution of the images varies for all 

categories, and we deliberately reduce the size of the images to 320 

x 240 to make them more compact for efficient transmission and 

storage, well-suited for mobile visual search applications. This also 

makes the evaluation more challenging (dealing with low 

resolution images). 

The evaluation measures are straightforward. We report the 

percentage of correct images retrieved and the average number of 

matched keypoints for each category. These measurements are 

similar to the ones used in [28]. 

Table 1. Number of query and database images for different categories 

used in the evaluation. 

Category Database Query 

CDs 100 400 

DVDs 100 400 

Books 100 400 

Video Clips 100 400 

Business Cards 100 400 

Text Documents 100 400 

Paintings 100 400 
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Figure 4. Stanford Mobile Visual Search data set (Chandrasekhar et al., 

2011)used for our evaluation. We used a total of 7 categories as shown. 

The images are captured with a variety of camera-phones, and under 

widely varying lighting conditions 

 

(a) 

 

(b) 

Figure 5. Results of the four approaches for each data set’s category 

(total of 7). (a) shows the image matching accuracy (correct retrieval) in 

percentage. (b) shows the average number of matched keypoints 

4.2. Results 

In Fig. 5, we report results for the four schemes as described above. 

Firstly, we observe that SURF + Spatial Relations standalone and 

SURF + LIS standalone do not give the best results. However, 

when they are combined into the AIR approach, it translates into 

better retrieval results. Out of the 7 categories in the data set, SURF 

+ AIR dominates 6 categories as shown in Fig. 5(a), with 1 

category (videos) having the same matching accuracy with SURF 

+ RANSAC homography. LIS achieves highest matching accuracy 

among all in the video clips. 

Secondly, we note that SURF + AIR and SURF + Spatial Relations 

both give very high average number of matched keypoints as 

shown in Fig. 5(b). The average number of matched keypoints in 

each category is about twofold and more of SURF + RANSAC 

homography. This is predictable as the spatial relations approach 

can recover missing (undetected) keypoints based on neighboring 

relations as explained in Section 3.1. 

5. Conclusions 

In this paper, we have proposed a novel design of an image 

recognition agent called AIR (Agent for Image Recognition) 

showing high potential in image matching and image retrieval 

applications. AIR is able to verify true keypoint matches while 

recovering missing (undetected) keypoints in one image by 

exploiting the spatial relations approach as described in Section 

3.1. It is more robust to false keypoint matches or noise as it does 

not only evaluate each pair of candidate keypoints in the two 

images, but also on each of their neighboring keypoints based on 

spatial proximity. 

AIR is also able to recognize instability of the homography-based 

approach in certain images, and automatically switches to the LIS 

(Longest Increasing Subsequence) approach as proposed in 

Section 3.2. The LIS approach allows less rigid correspondence 

between the matched image pairs. 

We have demonstrated AIR in an image retrieval experiment on 

the Stanford Mobile Visual Search data set, where the results 

favored AIR for its increased accuracy and larger number of 

matched keypoints. It achieved a twofold more matched keypoints 

when compared to the state- of-the-art approach (SURF + 

RANSAC homography). 
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