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Abstract: This paper presents a linear quadratic optimal controller design for a nonlinear inverted pendulum. Linear Quadratic Regulator 

(LQR), an optimal control method, is usually used for control of the dynamical systems. Main design parameters in LQR are the weighting 

matrices; however there is no relevant systematic techniques presented to choose these matrices. Generally, selecting weighting matrices 

is performed by trial and error method since there is no direct relation between weighting matrices and time domain specifications like 

overshoot percentage, settling time, and steady state error. Also it is time consuming and highly depends on designer’s experience. In this 

paper LQR is used to control an inverted pendulum as a nonlinear dynamical system and the Artificial Bee Colony (ABC) algorithm is 

used for selecting weighting matrices to overcome LQR design difficulties. The ABC algorithm is a swarm intelligence based optimization 

algorithm and it can be used for multivariable function optimization efficiently.  The simulation results justify that the ABC algorithm is a 

very efficient way to determine LQR weighting matrices in comparison with trial and error method. 
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1. Introduction 

The inverted pendulum is an unstable and under-actuated system 

with highly nonlinear dynamics [1]. The control of inverted 

pendulum is a classic example   for design, testing, and comparing 

of different control techniques as a consequence the control of 

inverted pendulum has been a research interest in the field of 

control engineering and the inverted pendulum has been a standard 

tool in control laboratories for years.  Another reason behind the 

extensive studies of the inverted pendulum is that several important 

control systems can be modelled with the help of inverted 

pendulum [2]. Inverted pendulum reveals many interesting system-

theoretic properties and its dynamics are fundamental to 

maintenance balance, such as walking and two-wheeled robots [3], 

[4]. 

Optimal control theory is a mathematical optimization method as 

an extension of the calculus variation and it has numerous 

applications in control engineering. Determination of the control 

signals that will cause a process to meet the physical constraints 

and also maximization or minimization of some performance 

criteria are the main objectives of optimal control theory [5].  A 

special case of the general nonlinear optimal control problem 

where the cost function is a quadratic function and the system 

dynamics are described by a set of linear differential equations is a 

linear quadratic optimal control problem. Linear quadratic optimal 

control can be implemented in numerous control engineering 

problems, also it provides a basis for many other control techniques 

and hence it is very important for modern control theory [6]. Linear 

Quadratic Regulator (LQR) is one of the main solutions for linear 

quadratic optimal control problem. LQR has a simple process that 

can achieve the closed loop linear quadratic optimal control with 

linear state or output feedback [7], [8]. 

The most challenging part of LQR is selection of suitable 

weighting matrices which affects the control input [9]. In general, 

selecting weighting matrices is performed by trial and error 

method, however, there does not exist a direct connection between 

weighting matrices and time domain specifications such as 

overshoot percentage, settling time, and steady state error. There 

are no relevant systematic techniques for selecting weighting 

matrices, however; recently a few researchers have proposed 

artificial intelligence algorithms such as genetic algorithms and 

particle swarm optimization algorithm for this goal [10], [11]. In 

addition, the Artificial Bee Colony algorithm, another swarm 

intelligence optimization algorithm based on the intelligent 

behaviour of honey bee swarm, can be used to determine LQR 

weighting matrices. 

The control problem is defined as selecting appropriate LQR 

weighting matrices to stabilize cart position and pole angle of 

nonlinear inverted pendulum while minimizing settling time, 

steady state error, and overshoot percentage. In this case study, the 

ABC algorithm is proposed to determine LQR weighting matrices 

and simulation results illustrate that proposed method achieves 

desired control system characteristics and also has a satisfactory 

control performance. 

The rest of this paper is organized as follows. Section II contains 

the nonlinear mathematical model of the inverted pendulum that is 

used in this study. In section III, the linear quadratic optimal 

control problem based on linearized pendulum model is described. 

Section IV contains an overview of the ABC algorithm. 

Determination of LQR weighting matrices and simulation results 

are illustrated in section V followed by conclusion in section VI. 

2. The Inverted Pendulum 
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The inverted pendulum system used in this study consists of a 

motor driven cart and a pendulum hinged to it, as shown in (Figure 

1). The inverted pendulum system model used in this paper has 

been suggested by Ogata [12]. The main aim of the controller is to 

stabilize the pendulum as to keep pendulum upright position in 

response to a change in cart position. Designed block diagram of 

control system is shown in (Figure 2). Linear quadratic optimal 

control where weighting matrices are selected by the ABC 

algorithm can be used to determine design variables; integral gain 

constant 𝐾𝑙 and feedback gain matrix 𝐾. 

Assume that the rod is massless and the pendulum mass is 

concentrated at the end of the rod. 𝜃 is the angel of the rod from 

vertical line and the control force 𝑢 is applied to the cart. Also 

assume that the sampling period 𝑇 is 0.1 𝑠, 𝑔  is  9.81 𝑚/𝑠2 and 

the following numerical values for 𝑀, 𝑚 and 𝑙: 

  

2 ,   0.1 ,   0.5M kg m kg l m    

 

In solving this design problem, we shall define state variables 

𝑥1,  𝑥2,  𝑥3 and 𝑥4 as follows: 

 

1 2 3 4,   ,   ,  x x x x x x      
 

for nonlinear inverted pendulum model these variables can be 

written as differential equations as follows:
1 2x x 1 2x x  
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which are solved using fourth-order Runge-Kutta method in this 

case study. 

If displacement of the car is considered as the output of the system 

then the output equation 𝑦 becomes  

 

 
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x
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                                                (5) 

 

After linearizing the nonlinear differential (Equation 1) through 

(Equation 4) by taking 𝑠𝑖𝑛𝜃 ≑ 𝜃, 𝑐𝑜𝑠𝜃 ≑ 1, and 𝜃�̇�2 ≑ 0, the 

discretized state and output equations of the system for linear 

quadratic optimal control can be derived as follows: 

 

( 1) ( ) ( )x k Gx k Hu k     (6) 

 

( ) ( ) ( )y k Cx k Du k    (7) 

 

Figure 1. Inverted pendulum system [12] 

 

 
Figure 2. Block diagram of control system 

where 
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3. Linear Quadratic Optimal Control 

The state space representation of a linear time-invariant (LTI) 

control system can be written as follows [12]: 

 

( 1) ( ) ( )x k Gx k Hu k     (8) 

 

( ) ( )y k Cx k   (9) 

 

( ) ( 1) ( ) ( )v k v k r k y k      (10) 

 

 
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where 𝑥(𝑘) is state vector (𝑛 vector) and 𝑢(𝑘) is control vector (𝑟 
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vector), respectively. 𝐺 and 𝐻 are 𝑛 × 𝑛 and 𝑛 × 𝑟 matrices, 

indicate the constant system. 𝐾 is state feedback matrix.  

At steady-state, the overall system dynamics with constant gain 

and integral feedback is described by the state equation which is a 

combination of  (Equation 8) through ( Equation 11): 

 

   
   

(k 1) (k)0 0

1 1 1

x xG H
u k r k

v k v kCG CH

        
                    

     (12)    

     
In (Equation 12), it is assumed that the reference is a step change 

hence 𝑟(𝑘) = 𝑟(𝑘 + 1). 

Let us define 
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Therefore, the last equation can be written as follows: 

 

       ˆ ˆ ˆ ˆˆ ˆ1x k G HK x k Dr k     (13) 

 

The (Equation 13) is the state equation of the closed-loop control 

system. Its output equation is 

 
ˆ ˆ( ) ( ) [0] ( )y k Cx k r k    (14) 

 

where �̂� = [𝐶     0]. 

Linear quadratic optimal control problem may be stated to find the 

optimal input 𝑢 sequence that minimizes the quadratic 

performance index which is defined as: 

 

* *1
( ) ( ) ( ) ( )

2 k o

J x k Qx k u k Ru k




                                (15) 

 

where Q is positive definite 𝑛 × 𝑛 matrix and 𝑅 is positive definite 

𝑟 × 𝑟 matrix. The notation ( ∗) indicates complex-conjugate 

transpose of a matrix. Matrices 𝑄 and 𝑅 are selected to weight the 

relative importance of the performance measures caused by the 

state vector and control vector, respectively. 

The state feedback gain matrix is defined as follows: 

 
* 1 * ˆˆ ˆ ˆ ˆ( )K R H PH H PG                                          (16) 

 

which is obtained by solving the following Ricatti equation:  

 
* * * 1 *ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( )P Q G PG G PH R H PH H PG                    (17) 

 

By the sense of Liapunov, for a stable matrix (�̂� − �̂��̂�), the matrix 

𝑃 must be a positive definite, or for asymptotic stability a positive 

semi-definite. 

According to main design parameters of the linear quadratic 

optimal control problem which are weighting matrices 𝑄 and 𝑅, 

the quality of the controller design depends on the choice of these 

matrices. However, there are no relevant systematic techniques to 

select weighting matrices. This goal is performed by trial and error 

method in general.  Although it depends on the designer’s 

experience, it is highly time consuming and selected values for 

weighting matrices cannot establish a direct effect on the desired 

particular control system specifications. 

According to the importance of selecting weighting matrices 𝑄 and 

𝑅, selection of these matrices is performed by the ABC algorithm 

in this paper. 

4.  The Artificial Bee Colony Algorithm 

The Artificial Bee Colony (ABC) algorithm was introduced by 

Karaboga in 2005 as a new method which is based on the 

intelligent behavior of honey bee swarms finding nectar and 

sharing the information of food resources with each other in the 

field Swarm Intelligence to solve to optimize numeric benchmark 

functions [13]. Then it was extended by Karaboga and Basturk and 

presented to exceed other recognized heuristic methods like 

Genetic Algorithm as well as Differential Evolution algorithm and 

Particle Swarm Optimization [14], [15]. The ABC algorithm has 

the advantages of strong robustness, fast convergence and high 

flexibility, fewer control parameters and also it can be used for 

solving multidimensional and multimodal optimization problems 

[16], [17]. 

In the ABC algorithm, the colony of artificial bees contains three 

groups of bees: employed bees, onlooker bees and scout bees. An 

employed bee memorizes the quality of the food source and finds 

a food source by modifying this information. Employed bees share 

the food source information with other bees on the dance area. 

Onlooker bees watch the dance of employed bees within the hive 

and find the food sources using the information provided by 

employed bees. Scout bees search new food sources around the 

hive randomly. Both onlookers and scouts are also called 

unemployed bees. The number of employed bees is equal to the 

number of food sources since each employed bee is associated with 

one and only one food source. The position of a food source means 

a possible solution to the problem and the nectar amount of a food 

source corresponds to the fitness of the associated solution.  

The general scheme of the ABC algorithm contains four phase; 

initialization phase, employed bees phase, onlooker bees phase, 

and scout bees phase.  Detailed pseudo code of the ABC algorithm 

is as follows [18]: 

1. Initialize the population of solutions 

2. Evaluate the population 

3. cycle=1 

4. repeat 

5. Produce new solutions (food source positions)  vij in the 

neighborhood of  𝑥𝑖𝑗 for the employed bees using the 

formula 𝑣𝑖𝑗 = 𝑥𝑖𝑗 + Φ𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗)(k is a solution in the 

neighborhood of  𝑖 ,Φ  is a random number in the range  

[-1,1] ) and evaluate them 

6. Apply the greedy selection process between  xi  and  𝑣𝑖 

7. Calculate the probability values 𝑃𝑖 for the solutions 𝑥𝑖 by 

means of their fitness values using the following 

equation 

1

i
i SN

i

i

fit
P

fit





                                              (18) 
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In order to calculate the fitness values of solutions we 

employed the following equation 

 

 

1
                        0

1

1               0

i

ii

i i

if f
ffit

abs f if f




 
  

                (19) 

 

Normalize 𝑃𝑖 values into [0, 1] 

8. Produce the new solutions (new positions) vi for the 

onlookers from the solutions xi, selected depending on 

𝑃𝑖, and evaluate them 

9. Apply the greedy selection process for the onlookers 

between xi and𝑣𝑖 

10. Determine the abandoned solution (source), if exists, and 

replace it with a new randomly produced solution xi  for 

the scout using the following  equation  

 

   j j0,1 maxij jx min rand min                  (20) 

 

11. Memorize the best food source position (solution) 

achieved so far 

12. cycle=cycle+1 

13. until cycle= Maximum Cycle Number (MCN) 

5. Simulation Results 

The importance and difficulty of selecting weighting matrices was 

mentioned above. The matrices Q  and R  were chosen by trial and 

error method as follows in [12]: 

 

 

 

10 0 0 0 0

0 1 0 0 0

                          ,   10 0 100 0 0

0 0 0 1 0

0 0 0 0 1

Q R

 
 
 
  
 
 
 
    

    

Based on these matrices, feedback gain matrix K  and integral gain 

constant 
lK   are determined as follows: 

 

 64.9346    14.4819    10.8475    9.2871K         

-0.5189lK     

    

The goal of this simulation is to reduce the settling time  st   of 

unit-step response (k)y  (the cart position) without an overshoot 

 os  or with a minimum overshoot also minimize steady-state 

error ( )sse . The objective weighting method where multiple 

objective functions are combined into one objective function 
sumf    

can be used for multi-objective optimization [19]. The objective 

function   defined as:  

 

1 2 3sum s ssf K t K os K e                    (21) 

 

 
Figure 3. Average fitness during the ABC convergence 

 

where 
1 2,  K K   and 

3K  are weight coefficients of the fitness 

functions and their values were chosen as 1.0. 

The ABC algorithm was employed to select best Q  and R   

 matrices that minimize
sumf  . The results of applying the ABC 

algorithm to the problem are summarized as follows:  

The parameters of the ABC algorithm are set in the range [0.1 100], 

colony size=20 and max cycle=100. The average fitness values 

during the ABC algorithm running is shown in (Figure 3). The 

weighting matrices obtained by ABC algorithm are: 

 
82.4186 34.8695 50.4278 17.4539 66.1159

34.8695 24.7816 13.6630 3.5719 25.2813

50.4278 13.6630 51.4173 10.8109 39.9392

17.4539 3.5719 10.8109 11.4281 18.6369

66.1159 25.2813 39.9392 18.6369 60.7356

Q

 
 
 
 
 
 
 
 

 

 

 0.1000R     

 

Using the Q  and R  matrices obtained by the ABC algorithm the 

matrix P   is calculated by (Equation 17) as follows: 

 

17385 3737.4 15220 6395.5 2403.4

3737.4 823.83 3315 1381.7 507.19

15220 3315 15439 5924.9 2660.2

6395.5 1381.7 5924.9 2436.7 952.22

2403.4 507.19 2660.2 952.22 644.42

P

 
 


 
  
 

 
        

 

Moreover, based on these matrices, feedback gain matrix 𝐾and 

integral gain constant 𝐾𝑙 are determined as follows: 

 

 -137.7804  -31.1832  -68.8161  -35.4986K   

   

-6.9144lK     

 

Table 1. Performance Results 

 Trial and Error [12] The Proposed 

 st s    4.8987   1.4963   

 %os   0   0.1038   

sse   0042.3938 10   
009  5.3479 10   

sumf   4.8989   1.6002 

 

 



This journal is © Advanced Technology & Science 2013 IJISAE, 2015, 3(1), 1–6  |  5 

 
Figure 4. Cart Position and Pendulum Angle for Trial and Error Method 

 

 
Figure 5. Cart Position and Pendulum Angle for Proposed Method 

 

Since the matrix P  is positive definite, the closed-loop control 

system is stable. That is, all eigenvalues of  ˆ ˆ ˆG HK   lie inside 

of the unit circle in the following: 

 

1 0.2077z     

2 0.77628 + 0.28782iz     

3 0.77628 - 0.28782iz     

4 0.75904z     

5 0.72792z     

 

The performance results are presented in (Table 1). Also plots of 

position of the cart and pendulum angels as unit-step response of 

designed system has been is in (Figure 4) and (Figure 5) for both 

control systems. Cart position is indicated by solid line and 

pendulum angle is indicated by dotted line in these figures. Both 

simulations are performed on the nonlinear pendulum model given 

by (Equation 1) through (Equation 5). 

6. Conclusion 

In this paper, the ABC algorithm based linear optimal controller 

design for nonlinear inverted pendulum has been presented. The 

ABC algorithm has been employed to determine linear quadratic 

optimal controller weighting matrices. Using the ABC algorithm 

has been proved to be effective and feasible to select weighting 

matrices for nonlinear pendulum controller design more than trial 

and error method. Also it has been shown that it can optimize 

multiple time domain control system specifications such as settling 

time, overshot and steady state error. 
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