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Abstract

In this paper, we attempt to study spatially homogeneous Bianchi types-III, V, VI0 & VIh
cosmological models in f (R,T ) theory of gravity. Here the models are obtained by assuming
forms of the function f (R,T ) as f (R,T ) = R+2 f (T ) and f (R,T ) = f1(R)+ f2(T ). The
exact solutions of Einstein’s field equations (EFEs) have been obtained for two different
types of physically viable cosmologies using a special form of Hubble parameter (HP). The
physical and geometrical properties of these models have been discussed and expressions
for the Ricci scalar R in each case are obtained.

1. Introduction

General relativity (GR) or Einstein’s theory of gravitation is the most successful theory in application to cosmology. Until recently, our mental
picture of the universe was based more on our philosophical prejudices (or religious beliefs) than on observational data [1]. Cosmology
is a study of the origin, structure evolution, and fate of the universe as a whole based on interpretations of astronomical observations at
different wave-lengths through laws of physics. Relativistic cosmological models are described as the exact solutions of the EFEs that help
in understanding the important features of our universe. Many generalizations of EFEs have been proposed in last few decades. Einstein’s
general theory of relativity (GR) is one of the most beautiful structures of theoretical physics. Among several theories of gravitation, GR has
been designated as the most successful one. In fact, GR is regarded as a geometric theory of gravitation.
Einstein’s theory of gravitation is characterized by mathematical elegance and outstanding formal beauty using tools of Riemannian geometry.
It is also realized that it leads to gravitational action. In 1917, Einstein introduced the cosmological constant Λ as the universal repulsion to
make the universe static in accordance with a generally accepted picture of that time.
Einstein’s theory is modified in several ways for better understanding. The bimetric theory, scalar-tensor theory, etc to name a few. A
modification was given in f (R,T ) theory [2, 3]. The f (R,T ) theory of gravitation is one of the most popular alternatives to Einstein’s theory
of gravitation. Harko et al. (2011) [4] proposed another extension of standard GR, called the f (R,T ) theory of gravity, by introducing
an arbitrary function of the Ricci scalar R and the trace T of the energy-momentum tensor. The field equations are derived from the
Hilbert-Einstein type variational principle [5, 6]. In f (R,T ) theory we assume that the gravitational part of the action still depends on a
generic function of the Ricci scalar R, but also presents a generic dependence on T [7]. Such a dependence on T would come from the
consideration of quantum effects [8]. In reality, f (R,T ) theory provides an alternative way to explain the current cosmic acceleration with
no need of introducing either the existence of extra spatial dimension or an exotic component like dark energy [9, 10]. In this theory, the
gravitational Lagrangian Sm is given by an arbitrary function of the Ricci scalar R and trace T . This theory can be applied to explore various
issues of current interests and may lead to some good inferences [11].
Bianchi types models have a vital role in the description and understanding of the early stages of evolution of the universe. In view of the
observation of microwave background radiation, it is found that the universe is not isotropic [3, 12, 13]. Thus, the study of Bianchi types-III,
V, VI0 & VIh cosmological models is important in the sense that these models are homogeneous and anisotropic, from which the process of
isotropization of the universe is studied through the passage of time.
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In this paper, an attempt has been made to investigate the exact solutions for Bianchi types-III, V, VI0 & VIh cosmological models in the
framework of two cases of f (R,T ) theory of gravity. The physical and geometrical behaviors of such models have also been discussed.

2. f(R, T) theory of gravity

The f (R,T ) theory is a modification of GR. The field equations of f (R,T ) theory are derived from a Hilbert-Einstein type variational
principle.
The action for modified f (R,T ) theory of gravity is given by

S =
1

16π

∫
f (R,T )

√
−gd4x+

∫
Sm
√
−gd4x, (2.1)

where f (R,T ) is an arbitrary smooth function of Ricci scalar R and the trace T of energy-momentum tensor. Sm is the matter Lagrangian
density. The matter energy-momentum tensor Ti j from the Lagrangian Sm is defined as [14],

Ti j =
−2√
−g

∂ (
√
−gSm)

∂gi j . (2.2)

Let us assume that the dependence of matter Lagrangian density Sm is merely on the metric tensor gi j instead of its derivatives. In this case,
Equation (2.2) becomes

Ti j = gi jSm−2
∂Sm

∂gi j . (2.3)

The variations of the metric determinant and Ricci scalar R are

∂ (
√
−g) = −1

2
√
−g gi j∂gi j, (2.4)

∂ (R) = ∂ (gi jRi j) = Ri j∂gi j +gi j∇
k
∇k∂gi j−∇i∇ j∂gi j. (2.5)

The field equations of f (R,T ) theory are obtained by varying the action S in Equation (2.1) and using the properties given in Equations (2.4)
and (2.5)

∂ f (R,T )
∂R

Ri j− 1
2

f (R,T )gi j +(gi j∇
k
∇k−∇i∇ j)

∂ f (R,T )
∂R

= 8πTi j−
∂ f (R,T )

∂T

(
Ti j +Θi j

)
, i, j,k = 1,2,3,4, (2.6)

where ∇i denotes the covariant derivative. We define the variation of T with respect to the metric tensor as

∂ (gklTkl)

∂gi j = Ti j +Θi j, (2.7)

where

Θi j = gkl ∂Tkl

∂gi j . (2.8)

It is clear from Equations (2.3) and (2.7), the tensor Θi j give in Equation (2.8) lead to

Θi j =−2Ti j +gi jSm−2gkl ∂ 2Sm

∂gi j∂gkl . (2.9)

Note that when f (R,T ) = f (R), then Equations (2.6) reduces to the field equations of f (R) gravity. Contraction of Equation (2.6) gives the
following relation between the Ricci scalar R and the trace T of the stress-energy tensor

∂ f (R,T )
∂R

R+3∇
k
∇k

∂ f (R,T )
∂R

−2 f (R,T ) = 8πT − ∂ f (R,T )
∂T

T − ∂ f (R,T )
∂T

Θ, (2.10)

with Θ = gi jΘi j, Equation (2.10) gives a relation between Ricci scalar R and the trace T of energy-momentum tensor Ti j. In the other way
the matter Lagrangian Sm, can be taken as Sm =−p. Then with the use of Equation (2.9), we obtain Θi j as

Θi j =−2Ti j− pgi j. (2.11)

Using Equation (2.11) in Equation (2.6) the field equations become

∂ f (R,T )
∂R

Ri j− 1
2

f (R,T )gi j +(gi j∇
k
∇k−∇i∇ j)

∂ f (R,T )
∂R

=

(
8π +

∂ f (R,T )
∂T

)
Ti j +

∂ f (R,T )
∂T

pgi j. (2.12)

Following, Harko et al. (2011) [4] to obtain some particular classes of f (R,T ) modified gravity models by specifying functional forms of
f (R,T ) as

f (R,T ) =


R+2 f (T ),
f1(R)+ f2(T ),
f1(R)+ f2(R) f3(T ).

(2.13)

In this paper, the attempt is to explore the first and the second cases of Equation (2.13) to study the exact solutions for Bianchi-III, V, VI0 &
VIh in f (R,T ) theory of gravity.
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3. The metric and the field equations

The spatially homogeneous (SH) and anisotropic Bianchi types space-times are given by,

ds2 = dt2−A2
1dx2− e−2xA2

2dy2− e−2mxA2
3dz2, (3.1)

where A1,A2 and A3 are called cosmic scale factors which are functions of time t, so the equation (3.1) represents different Bianchi types as,

1. Bianchi type-III if m = 0,
2. Bianchi type-V if m = 1,
3. Bianchi type-VI0 if m = -1,
4. Bianchi type-VIh for all other m = h = -1.

The computation of Ricci tensor Ri j and its spur was done using Mathematica [15] and [16]; the non-vanishing independent components are,

R11 = 1+m2 +A1

[
Ȧ1

(
− Ȧ2

A2
− Ȧ3

A3

)
− Ä1

]
, (3.2)

R14 =
(m+1)Ȧ1

A1
− Ȧ2

A2
− mȦ3

A3
, (3.3)

R22 =
e−2xA2

[
−(m+1)A2A3−A1

(
Ȧ2(A3Ȧ1 +A1Ȧ3)+A1A3Ä2

)]
A2

1A3
, (3.4)

R33 =
e−2mxA3

[
−A2

1Ȧ2Ȧ3 +A2
(
m(m+1)A3−A1(Ȧ1Ȧ3 +A1Ä3)

)]
A2

1A2
, (3.5)

R44 =
Ä1

A1
+

Ä2

A2
+

Ä3

A3
, (3.6)

and

R = 2

[
Ä1

A1
+

Ä2

A2
+

Ä3

A3
+

Ȧ1Ȧ2

A1A2
+

Ȧ1Ȧ3

A1A2A3
+

Ȧ2Ȧ3

A2A3
− m2 +m+1

A2
1

]
, (3.7)

where an overhead dot denotes derivative with respect to time t. The energy-momentum tensor for a perfect fluid is given by

Ti j = (ρ + p)uiu j− pgi j, (3.8)

where ρ is the proper energy density, p is the isotropic pressure and ui = (0,0,0,1) is 4-velocity of the fluid particles which satisfies the
condition uiui = 1. The EFEs are given by

Ri j−
1
2

Rgi j =−8πTi j +Λgi j, (3.9)

where Λ is the cosmological constant. The average scale factor a(t) and spatial volume V are defined by

V = a3 =
3

∏
i=1

Ai. (3.10)

Mean HP is given by

H =
1
3

V̇
V

=
ȧ
a
=

1
3

3

∑
i=1

Hi =
1
3

(
Ȧ1

A1
+

Ȧ2

A2
+

Ȧ3

A3

)
, (3.11)

in which HPs in the directions of x,y and z-axes are obtained as

Hi =
Ȧi

Ai
, i = 1,2,3 (no sum). (3.12)

The scalar expansion θ is given by

θ =

(
Ȧ1

A1
+

Ȧ2

A2
+

Ȧ3

A3

)
= 3H.

Moreover, the shear σ2 is given by

σ
2 =

1
2

σi jσ
i j =

1
2

[
3

∑
i=1

H2
i −3H2

]
,

the shear parameter is given by

Σ
2 = Σ

2
++Σ

2
− =

σ2

3H2 =
1
6

Σi jΣ
i j, with Σi j =

σi j

H
.
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The density parameter Ω is given by

Ω = 1−Σ
2−K ≥ 0,

where the curvature parameter K is given by

K =
3R

6H2 =
1

12

(
∑

i
N2

i −2 ∑
i< j

NiN j

)
, i, j = 1,2,3, (3.13)

i.e.,

Group class Bianchi type N1 N2 N3

Class A, (a = 0) V I0 0 + -
V 0 0 0

Class B, (a 6= 0) V Ih 0 - +
III 0 + -

Table 1: Canonical Structure Constants for Different Bianchi Types

The three structure constants N1,N2 and N3 are the eigenvalue of the symmetric matrix, Ni j = diag(N1,N2,N3). In another way, we can get
the form

Ω+K +Σ
2 = 1.

An important observable quantity in cosmology is deceleration parameter (DP) defined as

q =−1− Ḣ
H2 =− äa

ȧ2 . (3.14)

The evolution of H is describe by

Ḣ =−(1+q)H2.

It is worth mentioning here that “the name DP and the negative sign are historical. Initially, q was supposed to be positive but recent
observations from the supernova experiments suggest that it is negative”. To solve an integral part in the aforementioned equation, we may
refer to the power-law assumption. Many kinds of researchers have used the power-law relation. For instance, Johri and Desikan [17] in the
context of Robertson-Walker Brans-Dicke models, have already used the power-law relation between scale factor and scalar field. We use a
well-known relation [18] between the mean HP and average scale factor a, given as

H = la−n,∀n, (3.15)

where l > 0. This is an important relation because it gives the constant value of the DP. Using Equations (3.11) and (3.15), we get

ȧ = la1−n, (3.16)

and consequently, from Equation (3.14) the DP turns out to be

q = n−1,

which is obviously a constant. Integrating Equation (3.16), it follows that

a =

{
k1 elt , for n = 0,
(nlt + k2)

1
n , for n 6= 0,

(3.17)

where k1 and k2 are constants of integration, thus we obtain two values of the average scale factor a, that correspond to two different models
of the universe. In this paper, we consider the average scale factor a when n = 0 in the first case of f (R,T ) theory and n 6= 0 in the second
case of f (R,T ) theory.

4. Exact solutions for some Bianchi types

Here we first develop some important cosmological parameters and EFEs for Bianchi types III, V, VI0 & VIh space-times and then find the
exact solutions of EFEs for constant and non-constant curvature case.
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4.1. Solution for f (R,T ) = R+2λT

We consider the case in which the function f (R,T ) is given by f (R,T ) = R+2λT , where λ is a constant. Thus the field Equation (2.12)
take the form

Gi j = Ri j−
1
2

Rgi j = (8π +2λ )Ti j +λ (2p+T )gi j. (4.1)

This form looks like EFEs in GR, the term λ (2p+T ) may play the role of cosmological parameter Λ of the GR field equations, that is

Λ = Λ(T ) = λ (2p+T ),

which supports the suggestion by Poplawski [19] where the dependence of the cosmological parameter Λ on T . The researchers like Magnano
[20] have suggested that the Λ(T ) gravity is more general than the gravity in Palatini f (R) theory and could be reduced to it if the pressure
of the matter is neglected. Considering the perfect fluid case, the trace T = ρ−3p, hence Equation (4.8) becomes

Λ = λ (ρ− p).

Thus we rewrite Equation (4.1) as

Ri j−
1
2

Rgi j = (8π +2λ )Ti j +Λgi j. (4.2)

Now using Equations (4.2), and ( 3.2) to ( 3.9) we obtain a set of differential equations for Bianchi types-III, V, VI0 & VIh space-times

Ä2

A2
+

Ä3

A3
+

Ȧ2Ȧ3

A2A3
− m

A2
1

= (8π +2λ ) p−Λ,

Ä1

A1
+

Ä2

A2
+

Ȧ1Ȧ2

A1A2
− 1

A2
1

= (8π +2λ ) p−Λ,

Ä1

A1
+

Ä3

A3
+

Ȧ1Ȧ3

A1A3
− m2

A2
1

= (8π +2λ ) p−Λ,

Ȧ1Ȧ2

A1A2
+

Ȧ2Ȧ3

A2A3
+

Ȧ1Ȧ3

A1A3
− m2 +m+1

A2
1

= −Λ− (8π +2λ )ρ,

(m+1)
Ȧ1

A1
− Ȧ2

A2
− mȦ3

A3
= 0. (4.3)

Integrating Equation (4.3) and absorbing the integrating constant into A2 or A3, we get

Am+1
1 = A2Am

3 . (4.4)

Using Equation (3.10) in Equation (4.4) we get

Am+2
1 = a3Am−1

3 . (4.5)

4.1.1. Cosmological solutions

We now obtain physically factual cosmological models to describe the decelerating and accelerating phases of the universe. Setting A3 =V d ,
where d is any constant, then from Equation (4.5), we get

Am+2
1 = a3V d(m−1),

= a3(1+md−d). (4.6)

Here we will consider the value of average scale factor a for n = 0 only (see (3.17)). Using Equations (3.10), (3.17), (4.3) and (4.6) the
metric coefficients Ai(i = 1,2,3) turn out to be

Ai(t) =
(

k1 elt
)ξi

, i = 1,2,3 (no sum), (4.7)

where

ξ1 =
3(1+md−d)

m+2
, ξ2 =

3(1+m−d−2md)
m+2

, ξ3 = 3d.

Using these in (3.1), we get the following form of the metric (3.1) as

ds2 = dt2−
(

k1 elt
)ξ1

dx2− e−2x(
(

k1 elt
)ξ2

dy2− e−2mx
(

k1 elt
)ξ3

dz2.
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4.1.2. Physical and geometrical properties of the solution

In this subsection, we will compute the relevant physical and geometrical properties of the space-time. The necessary computations were
done using Mathematica, necessary programming was done by us. The spatial volume and the average scale factor a(t) are

V =
(

k1 elt
)3

= a3.

Mean HP and DP are

H = l, q =
−ä
aH2 =−1,

from Equation (3.12), the HPs in the directions of x,y and z-axes are

Hi =
Ȧi

Ai
= l ξi, i = 1,2,3 (no sum).

The scalar expansion is

θ = 3l = 3H.

The shear scalar is

σ
2 =

l2

2

[
ξ

2
1 +ξ

2
2 +ξ

2
3 −3

]
,

=
l2

(m+2)2

[
3(1−3d)2(m2 +m+1)

]
.

The shear parameter is given by

Σ
2 =

1
6

[
ξ

2
1 +ξ

2
2 +ξ

2
3 −3

]
,

=
1

3(m+2)2

[
3(1−3d)2(m2 +m+1)

]
.

In this subsection, we take λ = 0.1, l = 5, m = 0,±1, n = 0.5, d = 0.1 and k1 = 1, for all graphs . The energy density ρ in the model is
obtained as

ρ =
1

8(8π2 +6λπ +λ 2)

[9l2λ

(
−3dm(1+m)+(1+m)2 +3d2(1+m+m2)

)
(m+2)2

−
9l2(8π +3λ )

(
1+m−d(−2+3d)(1+m+m2)

)
(m+2)2 − λm− (8π +3λ )(m2 +m+1)(

k1 elt
) 6(1+md−d)

(m+2)

]
.

Figure 4.1: The Evolution of Energy Density ρ Versus Cosmic Time t

Figure 4.1, shows ρ as a decreasing function for 0≤ t < 1 and constant for t ≥ 1. The expressions for isotropic pressure p in the model is
given by

p =
1

8(8π2 +6λπ +λ 2)

[9l2(8π +3λ )

(
−3dm(1+m)+(1+m)2 +3d2(1+m+m2)

)
(m+2)2

−
9l2λ

(
1+m−d(−2+3d)(1+m+m2)

)
(m+2)2 − m(8π +3λ )− (m2 +1)λ(

k1 elt
) 6(1+md−d)

(m+2)

]
.
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Figure 4.2: The Evolution of Pressure p Versus Cosmic Time t

From Figure 4.2, we observe that the pressure is an increasing function for 0≤ t < 1 and constant for t ≥ 1. The cosmological parameter Λ is

Λ =
λ

8(8π2 +6λπ +λ 2)

[−9l2(8π +2λ )

(
6d2 +6md2 +6m2d2 +m+m2−5m2d−5md−2d

)
(m+2)2

− (8π +3λ )(m2 +2m+1)−λ (m2 +m+1)(
k1 elt

) 6(1+md−d)
(m+2)

]
.

Figure 4.3: The Evolution of Cosmological Constant Λ Versus Cosmic Time t

From Figure 4.3, we observe that the cosmological term Λ is an increasing function for 0 ≤ t < 1 and constant for t ≥ 1. The density
parameter Ω is given by

Ω = 1− 1
3(m+2)2

[
3(1−3d)2(m2 +m+1)

]
−K ≥ 0,

where K is the curvature parameter, as defined in Equation (3.13). The Ricci scalar R for Bianchi types-III, V, VI0 & VIh cosmological
models are given by Equations (3.7) and (4.7), it follows that

R =
2l2

(m+2)2

[
(27−18d−18md +27m+27d2 +27md2)+m2(9−18d +27d2)

]
−2(m2 +m+1)

(
k1 elt

) −6(1+md−d)
(m+2)

.
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Figure 4.4: The Evolution of Ricci Scalar R Versus Cosmic Time t

From Figure 4.4, we observe that the Ricci scalar R is an increasing function for 0≤ t < 1 and constant for t ≥ 1. The function f (R,T ) of
Ricci scalar R and the trace T , can be found as

f (R,T ) = R+2λ (ρ−3p).

Figure 4.5: The Evolution of f (R,T ) Versus Cosmic Time t

Figure 4.5, shows that the f (R,T ) is an increasing function for 0≤ t < 1 and constant for t ≥ 1.

4.2. Solution for f (R,T ) = λ (R+T )

We consider the case in which the function f (R,T ) is given by f (R,T ) = λ (R+T ), where λ is an arbitrary parameter. Thus the field
equation (2.12) take the form

λRi j− 1
2

λ (R+T )gi j +(gi j∇
k
∇k−∇i∇ j)λ = (8π +λ )Ti j +

(
p+

1
2

T
)

λgi j,

setting (gi j∇
k∇k−∇i∇ j)λ = 0, we get

λRi j− 1
2

λRgi j = (8π +λ )Ti j +

(
p+

1
2

T
)

λgi j. (4.8)

The Einstein tensor Gi j is defined by

Gi j = Ri j− 1
2

Rgi j.
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Equation (4.8) becomes

λGi j = (8π +λ )Ti j +

(
p+

1
2

T
)

λgi j. (4.9)

This form looks like EFEs in GR, we choose a negative small value for the arbitrary λ so that we have the same sign of the RHS of Equation
(4.9) we keep this choice of λ throughout the discussion. The term

(
p+ 1

2 T
)

can now be regarded as a cosmological parameter Λ. Hence

Λ = p+
1
2

T,

so Equation (4.9) becomes

Gi j = Ri j− 1
2

Rgi j =
(8π +λ )

λ
Ti j +Λgi j, (4.10)

which supports the suggestion by Poplawski [19] where the dependence of the cosmological parameter Λ on T . The researchers like Magnano
[20] have suggested that the Λ gravity is more general than the gravity in Palatini f (R) theory and could be reduced to it if the pressure of
matter is neglected. Considering the perfect fluid case, the trace T = ρ−3p, hence

Λ =
1
2
(ρ− p).

The field equations, in this case, are similar to those written earlier (4.3) to (4.3) with only change due to rights side of (4.10), thus the
coefficient (8π +2λ ) is replaced by ( 8π+2λ

λ
). The field equation for G14 is same as Equation (4.3). Also following same procedure we get

relations (4.4) and (4.5).

4.2.1. Cosmological solutions

We now obtain physically factual cosmological models to describe the decelerating and accelerating phases of the universe. Setting A3 =V d ,
where d is any constant, then from Equation (4.5), we get

Am+2
1 = a3V d(m−1)

= a3(1+md−d). (4.11)

Here we will consider the value of average scale factor a for n 6= 0 only. Using Equations (3.10), (3.17), (4.3) and (4.11) the metric
coefficients Ai (i = 1,2,3) turn out to be

Ai(t) = (nlt + k2)
ξi
n , i = 1,2,3 (no sum), (4.12)

where

ξ1 =
3(1+md−d)

m+2
, ξ2 =

3(1+m−d−2md)
m+2

, ξ3 = 3d.

Using these in (3.1), we get the following form of the metric (3.1)

ds2 = dt2− (nlt + k2)
ξ1
n dx2− e−2x(nlt + k2)

ξ2
n dy2− e−2mx(nlt + k2)

ξ3
n dz2.

4.2.2. Physical and geometrical properties of the solution

In this subsection, we will compute the relevant physical and geometrical properties of the space-time. The necessary computations were
done using Mathematica, necessary programming was done by us. The spatial volume and the average scale factor a(t) are

V = (nlt + k2)
3
n = a3.

In this subsection, we take λ = 0.1, l = 5, m = 0,±1, n = 0.5, d = 0.1 and k2 = 1 for all graphs.

Figure 4.6: The Evolution of Volume V Versus Cosmic Time t
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Figure 4.6, shows that volume V is an increasing function of time t. Mean HP and DP are

H =
l

nlt + k2
, q =

−ä
aH2 = n−1,

in which HPs in the directions of x,y and z-axes are

Hi =
Ȧi

Ai
=

ξil
nlt + k2

, i = 1,2,3 (no sum).

The scalar expansion becomes

θ =
3l

nlt + k1
.

The shear scalar is

σ
2 =

l2

2(nlt + k2)2

[
ξ

2
1 +ξ

2
2 +ξ

2
3 −3

]
=

l2

(m+2)2(nlt + k2)2

[
3(1−3d)2(m2 +m+1)

]
.

Figure 4.7: The Evolution of Shear Scalar σ2 Versus Cosmic Time t

Figure 4.7, shows σ2 as a decreasing function of time t. The shear parameter is given by

Σ
2 =

1
6

[
ξ

2
1 +ξ

2
2 +ξ

2
3 −3

]
,

=
1

3(m+2)2

[
3(1−3d)2(m2 +m+1)

]
.

The energy density ρ in the model is obtained as

ρ =−9λ l2(1+m−d(−2+3d)(1+m+m2))

2(4π +λ )(m+2)2(nlt + k2)2 − λ 2

6(4π +λ )2

 3l2(3−n)
(nlt + k2)2 −

2(m2 +m+1)

(nlt + k2)
6(1+md−d)

n(m+2)

+ λ (m2 +m+1)

2(4π +λ )(nlt + k2)
6(1+md−d)

n(m+2)

.

Figure 4.8: The Evolution of Energy Density ρ Versus Cosmic Time t
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Figure 4.8, shows that energy density ρ is a decreasing function of time t. The expressions for isotropic pressure p in the model is given by

p =−9λ l2(1+m−d(−2+3d)(1+m+m2))

2(4π +λ )(m+2)2(nlt + k2)2 +
λ (16π +3λ )

6(4π +λ )2

 3l2(3−n)
(nlt + k2)2 −

2(m2 +m+1)

(nlt + k2)
6(1+md−d)

n(m+2)

+ λ (m2 +m+1)

2(4π +λ )(nlt + k2)
6(1+md−d)

n(m+2)

.

Figure 4.9: The Evolution of Pressure p Versus Cosmic Time t

Figure 4.9, shows that the pressure is a decreasing function of time. The cosmological parameter Λ is

Λ =
1
2
(ρ− p) =

λ

6(4π +λ )

 3l2(3−n)
(nlt + k2)2 −

2(m2 +m+1)

(nlt + k2)
6(1+md−d)

n(m+2)

 .

Figure 4.10: The Evolution of Cosmological Constant Λ Versus Cosmic Time t

Figure 4.10, shows that the cosmological term Λ is a decreasing function of time t. The density parameter Ω, is given by

Ω = 1− 1
3(m+2)2

[
3(1−3d)2(m2 +m+1)

]
−K ≥ 0,

where K is the curvature parameter, as defined in Equation (3.13). The Ricci scalar R for Bianchi types-III, V, VI0 & VIh cosmological
models are given by Equations (3.7) and (4.12) it follows that

R = − 2l2

(nlt + k2)2

[
ξ

2
1 +ξ

2
2 +ξ

2
3 −n(ξ1 +ξ2 +ξ3)+(ξ1ξ2 +ξ1ξ3 +ξ2ξ3)

]
−2(m2 +m+1)(nlt + k2)

−2ξ1
n ,

=
2l2

(m+2)2(nlt + k2)2

[
(m+1)(27−18d +27d2−12n)+m2(9−18d +27d2−3n)

]
−2(m2 +m+1)(nlt + k2)

− 6(1+md−d)
n(m+2) .
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Figure 4.11: The Evolution of Ricci Scalar R Versus Cosmic Time t

Figure 4.11, shows that the curvature is positive through the whole evolution of the universe. The function f (R,T ) of Ricci scalar R and the
trace T can be found as

f (R,T ) = λ1R+λ2(ρ−3p).

Figure 4.12: The Evolution of f (R,T ) Versus Cosmic Time t

Figure 4.12, shows that the f (R,T ) is an increasing function when m = 0,1 and decreasing function when m =−1 of time t.

5. Conclusion

In this paper, we have extended the study of exact solutions of EFEs for Bianchi types-III, V, VI0 & VIh space-times in f (R,T ) theory and
obtained the exact solutions corresponding to singularity point n 6= 0, and regular point n = 0. The exact solutions to the corresponding
field equations are obtained in quadrature form. The behaviors of the cosmological parameter Λ have been discussed in each case. We have
also examined the well-known physical and geometrical properties of our models in two different viable cosmologies. It is shown that our
models represent expanding, shearing, non-rotating and accelerating universe in each case. In the first case of f (R,T ) theory, when n = 0
with a = k1 elt , the model has no singularity point. The volume V is finite and blows to infinite at t→ ∞. The generalized HP H is constant
and accordingly, expansion scalar θ is constant. The HPs Hi, i = 1,2,3 are finite for all finite values of t. The shear scalar σ2 and shear
parameter Σ2 are constant as t→ ∞. The energy density ρ (Figure 4.1) is constant as t→ ∞ and the Figure 4.1, shows that ρ is negative, its
physical interpretation may be debatable however this is mathematically consistent. The isotropic pressure p (Figure 4.2), density parameter
Ω and Ricci scalar R (Figure 4.4) are constant as t → ∞. The function f (R,T ) of the Ricci scalar R and trace T is finite (Figure 4.5) at
non-singularity.
In the second case of f (R,T ) theory, when n 6= 0 with a = (nlt + k2)

1
n , the model has singularity point taken as, t = −k2

nl , it is observed that
the spatial volume V → ∞ as t→ ∞ (Figure 4.6), and the volume scaler factor vanishes at the singularity point. The generalized HP is zero
at the singularity. The expansion scalar θ → 0 as t→ ∞, as well as it is observed that θ starts with infinite value at t = 0 and then rapidly
becomes constant after some finite time. The direction HPs Hi, i = 1,2,3 are zero at the singularity point. The shear scalar σ2 (Figure 4.7)
and shear parameter Σ2 are zero as t→ ∞. The isotropic pressure p (Figure 4.9), energy density ρ (Figure 4.8) are constant at t→ ∞. The
Ricci scalar R is infinite t→ ∞ (Figure 4.11). The density parameter Ω is constant as t→ ∞. The function f (R,T ) of the Ricci scalar R and
trace T is infinite (Figure 4.12) at the singularity.
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