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C2Xp—3
Xpr] =ClXy3—————, n=0,1,...,
C3Xp—3 — C4Xp—7
where the coefficients ¢;, for all i =1,...,4, are assumed to be positive real numbers and
the initial conditions x; for all i = —7,—6,...,0, are arbitrary non-zero real numbers.

1. Introduction

Nowadays, a huge number of researchers put a lot of effort to investigate the qualitative behaviours of some fractional recursive equations.
Researchers examine some properties such as local stability, global stability, boundedness, periodicity and theoretical and numerical solutions
to predict the future pattern of these equations. This development can be obviously seen in most recent studies. Take, for instance the
following ones. Almatrafi et al. [1] discovered the stability, periodicity, boundedness and solutions of the following fourth order fractional
difference equations

OlXpXp—3
iﬁxn73 £ Y2

Cinar [2] obtained the solution of the second order recursive equation

Xn+1 =

aXp—|

Int1 = 14+ bxux,—1
Elabbasy et al. [3] examined the qualitative behaviours of the recursive equation

bxy,
B
n n—

Gari¢-Demirovié et al. [4] investigated the periodicity of the solution and the stability of the equilibrium point of the difference equation

Ax2 + Bxyxy—1 +Cx2_,

axz + bxpx, 1 + cx%_l '

Xn+1 =
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In [5], the authors concerned with presenting the qualitative behaviour of the sixth order difference equation

Cxp—s

X, e U — .
e A+ Bxp_2Xp—5

Khyat et al. [6] analysed the properties of the following second order recursive equation

Xn

Xpi]l=—5— .
ntl Cx,%q +Dx, + F

The investigation in [7] concentrates on showing the periodic character, semi-cycle character and global stability of the difference equation

o+ Bxy + Yxp_k

Xptl1 =
nt Bxp, 4+ Cx,_y,

Simsek et al [8] obtained the expressions of the solutions of the fourth order difference equation

Xn—3

X =—.
n+1 1+x,

More results on the qualitative behaviours of some fractional difference equations can be obtained on refs. [9]-[19].
Our principal aim in this work is to discuss some mathematical properties such as local stability, global attractivity, periodic character and
solutions of the eighth order difference equation

C2Xp—3
Xpt1 =C1Xp3————— n=0,1,..., (1.1)
C3Xp—3 — C4Xp—7

where the coefficients ¢;, for all i =1, ...,4, are assumed to be positive real numbers and the initial conditions are required to be arbitrarily

real numbers. Moreover, theoretical and numerical solutions to a special case of Eq.(1.1) will be shown in this paper.

2. Local stability of the equilibrium point

The main duty in this section is to analyse the behaviour of the solutions in the neighbourhood of the equilibrium point. The equilibrium
point of Eq.(1.1) is given by

- - X
X=CX——=.
C3X — C4X

Hence,

_ e
X=————— c1#1,c3#c4.
(1—=c1)(ca—c3)

Next, we assume that a function / : (0,00)> — (0,e0) is defined by the form

%)
h(y,2)=cry— — 2. (2.1)
C3Y —C42
Then,
dh(y, c(c3y —c4z) — caC cac
2 _ - 2(e3y — caz) 2 3 g g S22 . 22)
dy (c3y —c42) (c3y—c42)
oh o
z)  _ _ ccay . 2.3)
Jz (c3y —ca2)
We now calculate Eq.(2.2) and Eq.(2.3) at ¥ as follows:
dh(x,x CrCaX cs(l—c
(5,%) = Cl+4-24—2201+74( 1)12*1717
dy (3% — c4%) c4—C3
dh(x,%) . CrC4X . ca(l—cy) .
dz N (c3x—cy®)?  cp—c3 p2-

Thus, the linearised equation of Eq. (1.1) around ¥ is given by the form:
Up1+ Piitn—3+ pautp—7 =0.
Theorem 2.1. Let
lea —cre3|+eq|l —ci| <eqg—cs3].

Then, the equilibrium point of Eq.(1.1) is locally asymptotically stable.
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Proof. Theorem A in [12] guarantees that the equilibrium point of Eq.(1.1) is locally asymptotically stable if

Ip1]+Ip2| <1,

which leads to

’_<61+C4(101)>‘+ al-—c)|_,
4 —c3 4 —c3
Therefore,
ler1(ca—c3)+eca(l—cy)|+eall —ci| <leg—c3.
Or,
cy—crezl+eq|l—cq] < leqg—csl.
The proof is complete. O

3. Global stability of the equilibrium point
In this section, we will present a specific condition under which the equilibrium point is a global stable.
Theorem 3.1. The equilibrium point of Eq.(1.1) is a global attractor if c1 < 1.

Proof. Assume that a, b € R and let h : [a,b]> —> [a,b] be a function defined by Eq.(2.1). Then, the function A is increasing in y and
decreasing in z. Next, we suppose that (¢, W) is a solution to the following system:

o =h(9,v), ¥="n(y,9).

Thus,
— — 0
0 =h(9.y)=c10- 522,
v =h(y,9)=cy- 6'3‘4(/21'4(15’
Simplifying this gives us
c30® —cady = crc30 —craadpy—crd 3.1
Y -y = v —cudy—oy (3.2)

Subtracting Eq.(3.2) from Eq.(3.1) yields
3(0* —v?) =cre3(9° —yP) +ea(y —9).
Therefore,
(@=¥)|es(1 =)0 +w)+es| =0.
Hence, if ¢; < 1, then ¢ = y. As aresult, Theorem B in [20] assures that the equilibrium point is a global attractor. O
4. Periodicity of the solutions

This section is devoted to study the periodicity of the solution of Eq.(1.1).

Theorem 4.1. Eq.(1.1) has no prime period two solutions.

Proof. Suppose that Eq.(1.1) has prime period two solutions on the form:

i b Ty Ty ey
where ¢ # 7. Then, Eq.(1.1) leads to
cot
o= e —2—,
c3t —cyt
T
T = clrf;.
C3T—C4T
Therefore,
c
(l—e)t = ——2—,
c3—c4
C
(I—Cl)T = - 2 .
C3 —C4

This exactly implies that # = 7, which contradicts our assumption.
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5. Special case of Eq.(1.1)

We now turn to solve the following difference equation theoretically.

Xn—3
Xn—3 —Xp-7

Xn+1 = Xp-3 —

, n=0,1,... 5.1)

Theorem 5.1. Let {x,},,__- be a solution to Eq.(5.1) and assume that x_7 =0, x_¢ =B, Xx_5 =Y, Xx_4 =6, x_3 =K, x_p = A, x_| =
W, xo =p. Then, forn=0,1,2,..., the solution of Eq.(5.1) is given by the following formulas:

[(n—1)o—nk] [ — K +n]

[(n=1)B—nAl[B -2 +n]

X8n—7

a—x roren B—A
N (=1 y—nu]ly—u+n] o 4:7[('1—1)5—"/)][5—/)%]
n— y_'LL k) n— 6—p k)
B B _[naf(nJrl)K][ochan] __[nﬁf(nJrl))u][ﬁ—/lJrn]
8n—-3 — 00— K ) n—2 — ﬁ*l 3
N [ny—(+Dplly—u+n _ [ —(n+1)p][d—p+n]
" YU ’ 5—p
Proof. It can be easily seen that the solution is true at n = 0. Now, we suppose that n > 0 and assume that the relations are satisfied at n — 1
as follows:
. B 7[(n—2)a—(n—1)K][0¢—K+n—1} . _7[(n—2)[3—(n—I)M[ﬁ—l—krz—l]
8n—15 - o—K s A8n—14 = B_}’ )
PR (2 01 e RO (R o UV R
n— 'y—lJ, k) n— 6_p I
B _[(nfl)a—nK][ochanfl] __[(nfl)ﬁfnl][ﬁfl+n71]
Xgn—11 = o— K y X8n—10 = B—1 )
Yo = m=1)y—np][y—p+n—1] s 8:_[(n71)57np][57p+n71].
n— Y*[J, k) n— 67’)
Next, it can be obviously observed from Eq.(5.1) that
Xgn—11
Xgn—7 = Xgn—11—
X8n—11 — Xgn—15
= —nk][a—Kk+n—1] —n=Vanijarin]
- o—K _Ajmfnwmﬂmfmmfu+Km%a%mﬂﬂmfnmfﬂ
a—K a—kK
_ _[m-Da-nklla—k+n—1] [(n—1)o—nk]
N a—K K—o
__[n-Na—nk]la—k+n]
N a—x i
X8n—10
Xgn—6 = Xgn—10 —

X8n—10 — *8n—14

[(n—1)B—nA)[B—A-+n—1]
[

(1B —nA][B-A+tn—1]

B—2 _ [(n=1)B—nA][B-A+n—1] + [(n=2)B—(n—1)A][B—A+n—1]
B—% )
_ - DB-nd)[B-24n-1] [(n=1)f-nA]
[ 2B
_ (=1 —nA][B—2A+n]
[ '

Other formulas can be proved in a similar way. Thus, the remaining proofs will be omitted.

6. Numerical examples

In order to confirm our theoretical work, we will illustrate some figures that show the behaviour of the solutions according to the previous
conditions.
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Example 6.1. The local stability of the equilibrium point is depicted in this example under the values ci = 0.3, c; = 0.1, c3 =8, ¢4 =
1, x_7=0.001, x_¢=—0.02, x_s = —0.03. x_1 =0.02. x_2 = —0.04. x_» = 0.021. x_1 = —0.01. x9 = —0.02. See Figure 6.1.
Local stability of the equlibrium point
0.03 w w w

0.02} 1

0.01f i

x(n)

-0.01y i

-0.02

-0.03r 1

-0.04 I I I I I I
0

Figure 6.1: Local Stability of The Equilibrium Point.

Example 6.2. The global stability of the equilibrium point is given in Figure 6.2 according to the following data. c; = 0.4, ¢ =0.2, c3 =
8, cu=1,x7=01,x=—-02,x_5=6,xg4=-5x3=3x2=—1,x_1=1,x=-0.2.

Global stability of the equilibrium point
6 ‘ ‘ ‘

x(n)
o

0 10 20 30 40 50 60 70

Figure 6.2: Global Stability of The Equilibrium Point.
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Example 6.3. In Figure 6.3, we plot another behaviour of the solutions of Eq.(1.1). Here, we assume that ¢1 = 0.6, ¢y =0.2, c3 =4, ¢4 =
0.2, X_7= 71, X_6= 70.2, X_5= 0.27 X_4 = 1, X_3 = 0.17 X_p = 70.5, X_1 = 0.25, X0 = —0.3.

The behaviour of the solution

0.61 i

x(n)
o

0 10 20 30 40 50 60 70

Figure 6.3: Solution of Eq.(1.1).

Example 6.4. Figure 6.4 shows the solution of the special case equation when we take x_7 = —0.8, x_¢=0.2,x_5=0.7, x_4=15,x_3=
—0.1, X2 = 0.5, X_1= 0.127 X0 = —1.

The behaviour of the solution of the special case equation
10 ‘

10 20 30 40 50 60 70

Figure 6.4: Solution of the Special Case Equation.

7. Conclusion

In this work, we have explored the stability and periodicity of Eq.(1.1) and analysed the solutions of Eq.(5.1). Section 2 highlighted a
condition under which the equilibrium point of Eq.(1.1) is locally asymptotically stable. Following this, we have shown that the equilibrium
point is a global stable if ¢; < 1, as pictured in Figure 6.2. In Section 4, it has been proved that Eq.(1.1) has no prime period two solutions.
Finally, the analytical and numerical solutions of Eq.(5.1) has been provided in Theorem 5.1 and Section 6, respectively.
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