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Abstract

The exact solutions of most difference equations cannot be obtained sometimes. This can
be attributed to the fact that there is no a specific approach from which one can find the
exact solution. Therefore, many researchers tend to study the qualitative behaviours of
these equations. In this paper, we will investigate some qualitative properties such as local
stability, global stability, periodicity and solutions of the following eighth order recursive
equation

xn+1 = c1xn−3−
c2xn−3

c3xn−3− c4xn−7
, n = 0,1, ...,

where the coefficients ci, for all i = 1, ...,4, are assumed to be positive real numbers and
the initial conditions xi for all i =−7,−6, ...,0, are arbitrary non-zero real numbers.

1. Introduction

Nowadays, a huge number of researchers put a lot of effort to investigate the qualitative behaviours of some fractional recursive equations.
Researchers examine some properties such as local stability, global stability, boundedness, periodicity and theoretical and numerical solutions
to predict the future pattern of these equations. This development can be obviously seen in most recent studies. Take, for instance the
following ones. Almatrafi et al. [1] discovered the stability, periodicity, boundedness and solutions of the following fourth order fractional
difference equations

xn+1 =
αxnxn−3

±βxn−3± γxn−2
.

Cinar [2] obtained the solution of the second order recursive equation

xn+1 =
axn−1

1+bxnxn−1
.

Elabbasy et al. [3] examined the qualitative behaviours of the recursive equation

xn+1 = axn−
bxn

cxn−dxn−1
.

Garić-Demirović et al. [4] investigated the periodicity of the solution and the stability of the equilibrium point of the difference equation

xn+1 =
Ax2

n +Bxnxn−1 +Cx2
n−1

ax2
n +bxnxn−1 + cx2

n−1
.
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In [5], the authors concerned with presenting the qualitative behaviour of the sixth order difference equation

xn+1 =
Cxn−5

A+Bxn−2xn−5
.

Khyat et al. [6] analysed the properties of the following second order recursive equation

xn+1 =
xn

Cx2
n−1 +Dxn +F

.

The investigation in [7] concentrates on showing the periodic character, semi-cycle character and global stability of the difference equation

xn+1 =
α +βxn + γxn−k

Bxn +Cxn−k
.

Simsek et al [8] obtained the expressions of the solutions of the fourth order difference equation

xn+1 =
xn−3

1+ xn−1
.

More results on the qualitative behaviours of some fractional difference equations can be obtained on refs. [9]-[19].
Our principal aim in this work is to discuss some mathematical properties such as local stability, global attractivity, periodic character and
solutions of the eighth order difference equation

xn+1 = c1xn−3−
c2xn−3

c3xn−3− c4xn−7
, n = 0,1, ..., (1.1)

where the coefficients ci, for all i = 1, ...,4, are assumed to be positive real numbers and the initial conditions are required to be arbitrarily
real numbers. Moreover, theoretical and numerical solutions to a special case of Eq.(1.1) will be shown in this paper.

2. Local stability of the equilibrium point

The main duty in this section is to analyse the behaviour of the solutions in the neighbourhood of the equilibrium point. The equilibrium
point of Eq.(1.1) is given by

x = c1x− c2x
c3x− c4x

.

Hence,

x =
c2

(1− c1)(c4− c3)
, c1 6= 1,c3 6= c4.

Next, we assume that a function h : (0,∞)2 −→ (0,∞) is defined by the form

h(y,z) = c1y− c2y
c3y− c4z

. (2.1)

Then,

∂h(y,z)
∂y

= c1−
c2(c3y− c4z)− c2c3y

(c3y− c4z)2 = c1 +
c2c4z

(c3y− c4z)2 , (2.2)

∂h(y,z)
∂ z

= − c2c4y
(c3y− c4z)2 . (2.3)

We now calculate Eq.(2.2) and Eq.(2.3) at x̄ as follows:

∂h(x̄, x̄)
∂y

= c1 +
c2c4x̄

(c3x̄− c4x̄)2 = c1 +
c4(1− c1)

c4− c3
:=−p1,

∂h(x̄, x̄)
∂ z

= − c2c4x̄
(c3x̄− c4x̄)2 =−c4(1− c1)

c4− c3
:=−p2.

Thus, the linearised equation of Eq. (1.1) around x̄ is given by the form:

un+1 + p1un−3 + p2un−7 = 0.

Theorem 2.1. Let

|c4− c1c3|+ c4 |1− c1|< |c4− c3| .

Then, the equilibrium point of Eq.(1.1) is locally asymptotically stable.
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Proof. Theorem A in [12] guarantees that the equilibrium point of Eq.(1.1) is locally asymptotically stable if

|p1|+ |p2|< 1,

which leads to ∣∣∣∣∣−
(

c1 +
c4(1− c1)

c4− c3

)∣∣∣∣∣+
∣∣∣∣c4(1− c1)

c4− c3

∣∣∣∣< 1.

Therefore,

|c1(c4− c3)+ c4(1− c1)|+ c4 |1− c1|< |c4− c3| .

Or,

|c4− c1c3|+ c4 |1− c1|< |c4− c3| .

The proof is complete.

3. Global stability of the equilibrium point

In this section, we will present a specific condition under which the equilibrium point is a global stable.

Theorem 3.1. The equilibrium point of Eq.(1.1) is a global attractor if c1 < 1.

Proof. Assume that a, b ∈ R and let h : [a,b]2 −→ [a,b] be a function defined by Eq.(2.1). Then, the function h is increasing in y and
decreasing in z. Next, we suppose that (φ ,ψ) is a solution to the following system:

φ = h(φ ,ψ), ψ = h(ψ,φ).

Thus,

φ = h(φ ,ψ) = c1φ − c2φ

c3φ−c4ψ
,

ψ = h(ψ,φ) = c1ψ− c2ψ

c3ψ−c4φ
.

Simplifying this gives us

c3φ
2− c4φψ = c1c3φ

2− c1c4φψ− c2φ (3.1)

c3ψ
2− c4φψ = c1c3ψ

2− c1c4φψ− c2ψ (3.2)

Subtracting Eq.(3.2) from Eq.(3.1) yields

c3(φ
2−ψ

2) = c1c3(φ
2−ψ

2)+ c2(ψ−φ).

Therefore,

(φ −ψ)
[
c3(1− c1)(φ +ψ)+ c2

]
= 0.

Hence, if c1 < 1, then φ = ψ. As a result, Theorem B in [20] assures that the equilibrium point is a global attractor.

4. Periodicity of the solutions

This section is devoted to study the periodicity of the solution of Eq.(1.1).

Theorem 4.1. Eq.(1.1) has no prime period two solutions.

Proof. Suppose that Eq.(1.1) has prime period two solutions on the form:

..., t, τ, t, τ, ...,

where t 6= τ. Then, Eq.(1.1) leads to

t = c1t− c2t
c3t− c4t

,

τ = c1τ− c2τ

c3τ− c4τ
.

Therefore,

(1− c1)t = − c2

c3− c4
,

(1− c1)τ = − c2

c3− c4
.

This exactly implies that t = τ, which contradicts our assumption.
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5. Special case of Eq.(1.1)

We now turn to solve the following difference equation theoretically.

xn+1 = xn−3−
xn−3

xn−3− xn−7
, n = 0,1, ... (5.1)

Theorem 5.1. Let {xn}∞

n=−7 be a solution to Eq.(5.1) and assume that x−7 = α, x−6 = β , x−5 = γ, x−4 = δ , x−3 = κ, x−2 = λ , x−1 =
µ, x0 = ρ. Then, for n = 0,1,2, ..., the solution of Eq.(5.1) is given by the following formulas:

x8n−7 = − [(n−1)α−nκ] [α−κ +n]
α−κ

, x8n−6 =−
[(n−1)β −nλ ] [β −λ +n]

β −λ
,

x8n−5 = − [(n−1)γ−nµ] [γ−µ +n]
γ−µ

, x8n−4 =−
[(n−1)δ −nρ] [δ −ρ +n]

δ −ρ
,

x8n−3 = − [nα− (n+1)κ] [α−κ +n]
α−κ

, x8n−2 =−
[nβ − (n+1)λ ] [β −λ +n]

β −λ
,

x8n−1 = − [nγ− (n+1)µ] [γ−µ +n]
γ−µ

, x8n =−
[nδ − (n+1)ρ] [δ −ρ +n]

δ −ρ
.

Proof. It can be easily seen that the solution is true at n = 0. Now, we suppose that n > 0 and assume that the relations are satisfied at n−1
as follows:

x8n−15 = − [(n−2)α− (n−1)κ] [α−κ +n−1]
α−κ

, x8n−14 =−
[(n−2)β − (n−1)λ ] [β −λ +n−1]

β −λ
,

x8n−13 = − [(n−2)γ− (n−1)µ] [γ−µ +n−1]
γ−µ

, x8n−12 =−
[(n−2)δ − (n−1)ρ] [δ −ρ +n−1]

δ −ρ
,

x8n−11 = − [(n−1)α−nκ] [α−κ +n−1]
α−κ

, x8n−10 =−
[(n−1)β −nλ ] [β −λ +n−1]

β −λ
,

x8n−9 = − [(n−1)γ−nµ] [γ−µ +n−1]
γ−µ

, x8n−8 =−
[(n−1)δ −nρ] [δ −ρ +n−1]

δ −ρ
.

Next, it can be obviously observed from Eq.(5.1) that

x8n−7 = x8n−11−
x8n−11

x8n−11− x8n−15

= − [(n−1)α−nκ] [α−κ +n−1]
α−κ

−
− [(n−1)α−nκ][α−κ+n−1]

α−κ

− [(n−1)α−nκ][α−κ+n−1]
α−κ

+
[(n−2)α−(n−1)κ][α−κ+n−1]

α−κ

= − [(n−1)α−nκ] [α−κ +n−1]
α−κ

+
[(n−1)α−nκ]

κ−α

= − [(n−1)α−nκ] [α−κ +n]
α−κ

.

x8n−6 = x8n−10−
x8n−10

x8n−10− x8n−14

= − [(n−1)β −nλ ] [β −λ +n−1]
β −λ

−
− [(n−1)β−nλ ][β−λ+n−1]

β−λ

− [(n−1)β−nλ ][β−λ+n−1]
β−λ

+
[(n−2)β−(n−1)λ ][β−λ+n−1]

β−λ

= − [(n−1)β −nλ ] [β −λ +n−1]
β −λ

+
[(n−1)β −nλ ]

λ −β

= − [(n−1)β −nλ ] [β −λ +n]
β −λ

.

Other formulas can be proved in a similar way. Thus, the remaining proofs will be omitted.

6. Numerical examples

In order to confirm our theoretical work, we will illustrate some figures that show the behaviour of the solutions according to the previous
conditions.



180 Journal of Mathematical Sciences and Modelling

Example 6.1. The local stability of the equilibrium point is depicted in this example under the values c1 = 0.3, c2 = 0.1, c3 = 8, c4 =
1, x−7 = 0.001, x−6 =−0.02, x−5 =−0.03, x−4 = 0.02, x−3 =−0.04, x−2 = 0.021, x−1 =−0.01, x0 =−0.02. See Figure 6.1.
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Local stability of the equlibrium point

Figure 6.1: Local Stability of The Equilibrium Point.

Example 6.2. The global stability of the equilibrium point is given in Figure 6.2 according to the following data. c1 = 0.4, c2 = 0.2, c3 =
8, c4 = 1, x−7 = 0.1, x−6 =−0.2, x−5 = 6, x−4 =−5, x−3 = 3, x−2 =−1, x−1 = 1, x0 =−0.2.
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Figure 6.2: Global Stability of The Equilibrium Point.
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Example 6.3. In Figure 6.3, we plot another behaviour of the solutions of Eq.(1.1). Here, we assume that c1 = 0.6, c2 = 0.2, c3 = 4, c4 =
0.2, x−7 =−1, x−6 =−0.2, x−5 = 0.2, x−4 = 1, x−3 = 0.1, x−2 =−0.5, x−1 = 0.25, x0 =−0.3.
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The behaviour of the solution

Figure 6.3: Solution of Eq.(1.1).

Example 6.4. Figure 6.4 shows the solution of the special case equation when we take x−7 =−0.8, x−6 = 0.2, x−5 = 0.7, x−4 = 1.5, x−3 =
−0.1, x−2 = 0.5, x−1 = 0.12, x0 =−1.
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Figure 6.4: Solution of the Special Case Equation.

7. Conclusion

In this work, we have explored the stability and periodicity of Eq.(1.1) and analysed the solutions of Eq.(5.1). Section 2 highlighted a
condition under which the equilibrium point of Eq.(1.1) is locally asymptotically stable. Following this, we have shown that the equilibrium
point is a global stable if c1 < 1, as pictured in Figure 6.2. In Section 4, it has been proved that Eq.(1.1) has no prime period two solutions.
Finally, the analytical and numerical solutions of Eq.(5.1) has been provided in Theorem 5.1 and Section 6, respectively.
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