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Abstract: In this study, the boundary coefficients of Transverse Electric (TE) and Transverse Magnetic (TM) modes at a planar slab optic 

guides are modeled by Neural Networks (NN). After modal analysis, train and test files are prepared for NN. Multi-Layer Perceptron 

(MLP) and Radial Basis Function (RBF) neural networks are performed and compared with each other. NNs are expected to be capable 

of modeling optical fiber technology in industry as a result of this study. 
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1. Introduction 

Optic fiber which is the main structure of optical system is 

preferred because of their small losses and high channel capacity. 

Optical system can work in conformity with the existing systems, 

and optic fiber is not influenced by electromagnetic fields [1-3].  

In this study, neural networks (NN) are employed in optic guides 

for boundary conditions. An NN, also called artificial neural 

network (ANN), is a mathematical and computational model. The 

smallest unit of NN is an artificial neuron which is inspired by 

biological neural. In general all NNs are used to model complex 

relationships between input and output data. NNs can learn and 

generalize from existing data even required formulas and 

parameters are unavailable. Generalization, nonlinearity, 

adaptability of NN provide usage and easiness in all fields of 

science [6-8]. NN applications in the optical communication is 

ever-growing. In this study, Multi-Layer Perceptron (MLP) and 

Radial Basis Function (RBF) neural networks are used and 

compared for guided Transverse Electric (TE) and Transverse 

Magnetic (TM) modes through planar slab optic guides. 

Analytical results and network outputs are evaluated to find out 

about the usage of NN in optical fiber technology. 

There are many NN applications in various areas and also optical 

technology. NNs have been successfully used in optical fiber 

technology for prediction, calibration, sensing parameters, etc. 

NN in [9] use fiber optic vibration sensing to predict the size and 

location of delamination in composite beams. On the other hand, 

the study in [10] describes NN based prediction of the response 

of a fiber optic sensor using evanescent field absorption. 

Moreover, intelligent statistical mode sensors are proposed and 

analyzed using several statistical features in [11] using NN.  

The remainder of this paper is organized as follows: In the second 

part of the study, TE and TM modes are studied associated with 

modal analysis. TE and TM modes are determined by using the 

Maxwell equations, Helmholtz equations and dielectric-dielectric 

boundary conditions. TE and TM coefficients are found by 

equating the tangential components due to the nature of the 

boundary conditions. In the third part NN model is designed and 

indicated the inputs, outputs for our application. The study is 

concluded in section four by comparing analytical results and NN 

outputs. 

2. Modal Analysis in Planar Slab Optic Guides 

Modal analysis of TE and TM modes is determined by using the 

Maxwell equations, Helmholtz equations and dielectric-dielectric 

boundary conditions. Additionally, electrical properties of the 

optic medium and the law of the light reflection-refraction are 

important to examine the guided modes. The refractive index of 

the core must be greater than the refractive index of the 

surrounding area in order to keep the light in the core [1-5, 12, 

13]. 

Figure1 shows a planar slab optic guide extending to infinity in 

the y direction with diameter 2d. Electromagnetic properties 

showed no change in the y direction. In this case the 

mathematical arrangements must be with the Eq. (1). 
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Figure1: Cladded planar slab optic fibers 
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A guided optic wave propagates in the guide along its 

longitudinal direction. We consider a straight guide whose 

longitudinal direction is taken to be in the z direction. Therefore, 

the electric and magnetic fields are: 
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Ampère and Faraday rules are given in optic guides by 
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By substituting Eq. (2) and Eq. (3) into Eq. (4) and Eq. (5), the 

field components are obtained as follows: 
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𝜅 is the core region eigenvalue, where  
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and 𝛽 is the phase constant and also propagation constant in optic 

guides.                                    

The components in the 𝑧 direction are the longitudinal field 

components and the others are transverse field components. 

Transverse component will be found by finding the longitudinal 

ones. Therefore Helmholtz equation is used that is valid in 

homogeneous media with no source as follows: 
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TE and TM mode solutions are divided into two part as periodic 

even modes and periodic odd modes. The modes attenuates 

exponentially in the region surrounding the core. 

Rearranging the Eq.s (6), (7), (8), (9) with the Eq.(1), 
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Thus the transverse components are expressed in terms of 

longitudinal components in the planar slab optic guides. 

2.1. TE and TM modes in Planar Slab Optic Guides 

2.1.1. TE modes 

The electric field component in the propagation direction  

𝐸𝑧 = 0. Thus, 𝐸𝑦, 𝐻𝑥 and 𝐻𝑧 components are available. The 

Helmholtz equation  
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with the 𝐸𝑦 field component 
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Eq. (18) gives different solutions in the core and clad regions. 

Because the electric field propagates differently in the core and 

the clad. 

 

2.1.1.1. Guided Even TE modes 

 

In the core region dx  ,𝐸𝑦 field component is found from 

the solution of Eq.(18) that 
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With 𝐸𝑦, the magnetic fields are as follows: 
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In the clad region (│𝑥│ ≥  𝑑) electric and magnetic fields are 

given by 
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and 𝛾 is the clad region eigenvalue, where 
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Dielectric-dielectric boundary conditions required by the equation 

of the field tangential components at the border (│𝑥│ = 𝑑) as: 

21 yy EE   (28) 

21 zz HH   
(29) 

𝑃𝑧  is the power of the guided mode and 𝐴1 can be obtained by 

Poynting’s theorem as follows: 
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Here it is possible to get 𝐴2 by the help of boundary conditions. 
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2.1.1.2. Guided Odd TE modes 

 

The field components in the core region (│𝑥│ ≤  𝑑) are obtained 

as follows: 
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In the clad region (│𝑥│ ≥  𝑑) electric and magnetic fields are 

given by 
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The field tangential components are equal at the border required 

by the dielectric-dielectric boundary conditions as: 

21 yy EE   (38) 

21 zz HH   (39) 

It is possible to find the odd TE mode coefficient in the core by 

Poynting’s theorem and in the clad by Boundary conditions as 

follows: 
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2.1.2. TM Modes 

The magnetic field component in the propagation direction  

𝐻𝑧 = 0.  Thus 𝐸𝑥, 𝐸𝑧 and 𝐻𝑦 components are available. The 

Helmholtz equation is given by 
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With the 𝐻𝑦 field component, the electric fields are as follows: 
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2.1.2.1. Guided Even TM modes 

 

In the core region ( dx  ); 
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)cos(11 xCH y   (45) 

In the clad region (│𝑥│ ≥  𝑑) 

))(exp(22 dxCH y    (46) 

𝐶1 can be obtained by Poynting’s theorem . 
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TM mode coefficient is found by Boundary conditions in the clad 

region as follows: 

)cos(12 dCC            (48) 

2.1.2.2. Guided Odd TM modes 

 

In the core region ( dx  ); 

)sin(11 xDH y                (49) 

In the clad region ( dx  ) 

))(exp(22 dxDH y          (50) 

D1 can be obtained by Poynting’s theorem. 
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It is possible to find the odd TM mode coefficient in the clad by 

Boundary conditions.    
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3. Neural Network Design  

3.1. Multilayer Perceptron (MLP) 

MLP networks contain successive linear transformations 

followed by processing with nonlinear activation functions. They 

also implement nonlinear transformations for function 

approximation. The network consists of input layer, hidden layers 

and output layer. Every layer computes the activation function of 

a weighted sum of the layer’s inputs. 

Some issues which must be regarded in designing and training a 

MLP : 

 The number of hidden layers  

 The number of neurons in each hidden layer 

 A globally optimal solution that avoids local minimum 

 An optimal solution in a reasonable period of time. 

 

 

3.2. Radial Basis Function (RBF) 

RBF network is a feed-forward neural network using radial basis 

functions. The input layer is made up source nodes. The second 

layer is hidden layer. The output layer supplies the response of 

the network to the activation patterns applied to the input layer. 

Given the inputs 𝑥𝑗, the total input to the 𝑖𝑡ℎ hidden neuron 𝛾𝑖 is 

given by 
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for 𝑖 =  1, 2, … , 𝑁, where, 𝑁 is the number of hidden neurons. 

The output value of the 𝑖𝑡ℎ hidden neuron is  𝑧𝑖𝑗 =  𝜎(𝛾𝑖), where 

𝜎(𝛾) is a radial basis function. The outputs of the RBF network 

are computed from hidden neurons as 
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where, 𝑤𝑘𝑖 is the weight of the link between the 𝑖𝑡ℎ neuron of the 

hidden layer and the 𝑘𝑡ℎ neuron of the output layer. Training 

parameters of the RBF network consist of 𝑤𝑘𝑖, 𝑐𝑖𝑗 , and 𝜆𝑖𝑗 for 

𝑘 =  1, 2, … , 𝑚, 𝑖 =  1, 2, . . . . , 𝑁, and 𝑗 =  1, 2, . . . 𝑛  [11]. 

3.3. Methods and Simulations 

In our work NNs designed for boundary coefficients in optic 

guides consist of 5 inputs and 4 outputs. Both MLP and RBF 

were trained with 50 samples and tested with 50 samples 

determined according to the definition of the problem. The 

training and test data of NN were obtained from formula results 

given in section 2. 

The input and output parameters are defined as follows: 

The input parameters are 

 𝑛1 and 𝑛2 : refractive indexes of core and clad 

 𝑑 : radius of the core 

 𝛽 :phase constant 

 𝑓  :working frequency, 

and the output parameters are 

 real and imaginary part of 𝐴1 

 real and imaginary part of 𝐶1. 

The MLP network, which has a configuration of 5 input neurons, 

1 hidden layer with 10 neurons and 2 output neurons with 

learning rate = 0.6, goal = 10-9, is trained for1000 epochs. In the 

RBF network, the spread value is chosen as 0.7, which gives the 

best accuracy. The results consisting of target and neural network 

outputs are shown in Table 1, 2 and 3 respectively. Table 4 shows 

the performance of MLP and RBF. 

4. Conclusion 

In this work, the neural network is employed as a toll in design of 

optic fibers for boundary conditions. MLP and RBF neural 

network outputs have shown good accuracy from available data 

without processing long and complex equations. Using NN in 

optical fiber technology gives an advantage when formulas and 

parameters are unavailable, nonlinear, long or complex. NN can 

be applied to other fields of optical communications. 

 



Table 1: Normalized target values from analytical results 

Normalized test values from analytical results 

Real{A1} Imag{A1} Real{C1} Imag{C1} 

0,98027 0,86815 0,43701 0,65630 

0,85098 0,59347 0,37221 0,44177 

0,68318 0,32248 0,29305 0,23608 

0,91904 0,64459 0,51645 0,59846 

0,73240 0,29364 0,52469 0,34163 

0,77968 0,45111 0,39669 0,38350 

0,68327 0,31853 0,29350 0,23345 

0,78195 0,36222 0,44708 0,34372 

0,74594 0,39702 0,33094 0,29954 

0,66652 0,25432 0,32251 0,20777 

0,67616 0,35627 0,29597 0,26624 

0,95620 0,77225 0,48037 0,64950 

0,71040 0,29141 0,3974 0,26990 

0,98335 0,79536 0,56115 0,74822 

0,74309 0,49399 0,33168 0,37424 

Table 2: MLP neural network output values 

MLP neural network outputs 

Real{A1} Imag{A1} Real{C1} Imag{C1} 

0,98002 0,86835 0,43690 0,65622 

0,85149 0,59412 0,37213 0,44192 

0,68299 0,32273 0,29381 0,23716 

0,91880 0,64424 0,51632 0,59724 

0,73181 0,29629 0,52577 0,34224 

0,77990 0,45085 0,39691 0,38314 

0,68305 0,31874 0,29424 0,23445 

0,78330 0,36084 0,44760 0,34766 

0,74624 0,39657 0,33098 0,30024 

0,66562 0,25278 0,32249 0,2068 

0,67609 0,35757 0,29626 0,26600 

0,95593 0,77338 0,48030 0,64927 

0,71048 0,29110 0,39738 0,26956 

0,98438 0,79492 0,56162 0,74913 

0,74303 0,49369 0,33152 0,37410 

 

Table 3: RBF neural network output values 

RBF neural network outputs 

Real{A1} Imag{A1} Real{C1} Imag{C1} 

0,98048 0,86910 0,43719 0,65782 

0,85088 0,59388 0,37218 0,44235 

0,68314 0,32265 0,29301 0,23617 

0,91937 0,64445 0,51683 0,59927 

0,73264 0,29525 0,52452 0,34197 

0,77960 0,45056 0,39667 0,38320 

0,68321 0,31855 0,29345 0,23339 

0,78113 0,36197 0,44670 0,34501 

0,74612 0,39952 0,33107 0,3018 

0,66687 0,25274 0,32275 0,20773 

0,67635 0,35268 0,29623 0,26408 

0,95647 0,77455 0,48059 0,65190 

0,71015 0,28701 0,39737 0,26708 

0,98304 0,79456 0,56075 0,74607 

0,74303 0,49448 0,33161 0,37411 

Table 4: Percentage accuracy performance of MLP and RBF 

 %Accuracy 

MLP 99.81 

RBF 98.74 
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