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1. Introduction
The general from of the fractional programming problemsFPPs
mathematical modelis as follows[1]
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where    ,i if x g x , are supposed to be continuous
functions,  S is compact. Fractional programming problem sof the
form (1) arise reality whenever rates such as the ratios
(profit/revenue), (profit/time), (-waste of raw material/quantity of
used raw material), are to be maximized often these problems are
linear concave-convex fractional programming.
Fractional programmingproblems is a nonlinear programming

method that has known increasing exposure recently and its
importance, in solving concrete problems, is steadily increasing.
Furthermore, nonlinear optimization models describe practical
problems much better than the linear optimization, with many
assumptions, does. The fractional programming problems are
particularly useful in the solution of economic problems in which
different activities use certain resources in different proportions.

While the objective is to optimize a certain indicator, usually the
most favorable return on allocation ratio subject to the constraint
imposed on the availability of resources. It also has a number of
important practical applications in manufacturing, administration,
transportation, data mining, etc.
The solution methods to solve fractional programming problems
can be broadly classified into classified into exact and inexact
approaches. Some examples of traditional approaches is that of
([2] who introduced the parametric approach, [3]solved the linear
fractional programming problems by converting Fractional
ProgrammingProblems FPP into an equivalent linear
programming problem and solved it using already existing
standard algorithms for Linear Programming ProblemLPP, [4],
[5] reviewed some of the methods that treated solving the FPP as
the primal and dual simplex algorithm.  The crisscross, which is
based on pivoting, within an infinite number of iterations, either
solves the problem or indicates that the problem is infeasible or
unbounded. The interior point method, as well as Dinkelbach
algorithms both reduces the solution of the Linear Fractional
Programming LFP problem to the solution of a sequence of
Linear Programming LP problems. Isbell Marlow
method,Martos’ Algorithm, Cambini–Martein’s Algorithm,
Bitran and Novae’s Method, Swarup’s Method. Moreover, there
are many recent approaches employing traditional mathematical
methods for solving the Fractional ProgrammingProblem FPPs
such as: [6-7].
A few studies in recent years used heuristics approaches to solve
fractional programmingproblems. [8] presented a genetic
algorithm based method to solve the linear fractional
programming problems. A set of solution point are generated
using random numbers, feasibility of each solution point is
verified, and the fitness value for all the feasible solution points
are obtained. Among the feasible solution points, the best
solution point is found out and then replaces the worst solution
point. A pairwise crossover method is used for crossover and a
new set of solution points is obtained. These steps are repeated
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for a certain number of generations and the best solution for the
given problem is obtained. [9] developed a genetic algorithm for
the class of bi-level problems in which both level objective
functions are linear fractional and the common constraint region
is a bounded polyhedron. [1] proposed algorithm for the sum-of-
ratios problems based harmony search algorithm. [10] developed
neural networks for nonlinear fractional programming problem.
The research proposed a new projection neural network model.
It’s theoretically guaranteed to solve variational inequality
problems. The multiobjectiveminimax nonlinear fractional
programming was defined and its optimality is derived by using
its Lagrangian duality. The equilibrium points of the proposed
neural network model are found to correspond to the Karush
Kuhn Trcker point associated with the nonlinear fractional
programming problem. [11] presented a neural network method
for solving a class of linear fractional optimization problems with
linear equality constraints. The proposed neural network model
have the following two properties. First, it is demonstrated that
the set of optima to the problems coincides with the set of
equilibria of the neural network models which means the
proposed model is complete. Second, it is also shown that the
model globally converges to an exact optimal solution for any
starting point from the feasible region. [12]Used particle swarm
optimization algorithm for solving fractional programming
problems.[13–16] introduced solution for integer fractional
programming problem and complex variable fractional
programming problems based swarm intelligence under
uncertainty.
Flower pollination is an intriguing process in the natural
world[17], [18]. Its evolutionary characteristics can be used to
design new optimization algorithms. The algorithm obtained
good results were dealing with lower-dimensional optimization
problems[17], but may become problematic for higher-
dimensional problems because of its tendency to converge very
fast initially. This paper introduced an improved Flower
pollination algorithm by integrating it with chaosto improve the
reliability of the global optimality, also enhances the quality of
the results.
This paper is organized as follows: after introduction, the original
Flower pollination algorithm isbriefly introduced. In section 3,
the proposed algorithm is described. section 4 introduces
themeaning of chaos, while the results are discussed in section 5.
Finally, conclusions are presented in section 6.

2. The Original Flower Pollination Algorithm
Flower Pollination Algorithm (FPA) was founded by Yang in the
year 2012. Inspired by the flow pollination process of flowering
plants are the following rules:

Rule 1: Biotic and cross-pollination can be considered as a
process of global pollination process, and pollen-carrying
pollinators move in a way that obeys Le'vy flights.
Rule 2: For local pollination, a biotic and self-pollination are
used.
Rule 3: Pollinators such as insects can develop flower
constancy, which is equivalent to a reproduction probability
that is proportional to the similarity of two flowers involved.
Rule 4: The interaction or switching of local pollination and
global pollination can be controlled by a switch probability
p[0,1], with a slight bias toward local pollination.

In order to formulate updating formulas, we have to convert the
aforementioned rules into updating equations. For example, in the
global pollination step, flower pollen gametes are carried by
pollinators such as insects, and pollen can travel over a long

distance because insects can often fly and move in a much longer
range[17].Therefore, Rule 1 and flower constancy can be
represented mathematically as:

))((1 BxLxx t
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Where t
ix is the pollen i or solution vector xiat iteration t, and Bis

the current best solution found among all solutions at the current
generation/iteration. Here γ is a scaling factor to control the step
size. In addition, L(λ) is the parameter that corresponds to the
strength of the pollination, which essentially is also the step size.
Since insects may move over a long distance with various
distance steps, we can use a Le'vy flight to imitate this
characteristic efficiently. That is, we draw L > 0 from a Levy
distribution:
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Here, Γ(λ) is the standard gamma function, and this distribution is
valid for large steps s > 0.
Then, to model the local pollination, both Rule 2 and Rule 3 can
be represented as:
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Where t
jx and t

kx are pollen from different flowers of the same
plant species. This essentially imitates the flower constancy in a
limited neighborhood. Mathematically, if t

jx and t
kx comes from

the same species or selected from the same population, this
equivalently becomes a local random walk if we draw U from a
uniform distribution in [0, 1].Though Flower pollination activities
can occur at all scales, both local and global, adjacent flower
patches or flowers in the not-so-far-away neighborhood are more
likely to be pollinated by local flower pollen than those faraway.
In order to imitate this, we can effectively use the switch
probability like in Rule 4 or the proximity probability p to switch
between common global pollination to intensive local pollination.
To begin with, we can use a naive value of p = 0.5as an initially
value. A preliminary parametric showed that p = 0.8 might work
better for most applications[17].
The basic steps of FPA can be summarized as the pseudo-code
shown in Figure 1.
Flower pollination algorithm[17]
Define Objective functionf (x), x = (x1, x2, ..., xd)
Initialize a population of n flowers/pollen gametes with random
solutions
Find the best solution Bin the initial population
Define a switch probability p ∈ [0, 1]
while (t <MaxGeneration)
for i = 1 : n (all n flowers in the population)
if rand <p,
Draw a (d-dimensional) step vector L which obeys a
Lévydistribution
Global pollination via )(1 t

i
t
i

t
i xBLxx 

else
DrawUfrom a uniform distribution in [0,1]

Do local pollination via )(1 t
k

t
j

t
i

t
i xxUxx 

end if
Evaluate new solutions
If new solutions are better, update them in the population
end for
Find the current best solution B
end while
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Output the best solution found

Figure 1. Pseudo code of the Flower pollination algorithm

3. Chaos Theory
Chaos is a deterministic, random-like process found in nonlinear,
dynamical system, which is
non-period, non-converging and bounded. Moreover, it depends
on its initial condition and parameters[19-22]. Applications of
chaos in several disciplines including operations research,
physics, engineering, economics, biology, philosophy and
computer science[23].
Recently chaos has been extended to various optimization areas
because it can more easily escape from local minima and improve
global convergence in comparison with other stochastic
optimization algorithms [24]. Using chaotic sequences in flower
pollination algorithm can be helpful to improve the reliability of
the global optimality, and enhance the quality of the results.

3.1. Chaotic maps

At random-based optimization algorithms, the methods using
chaotic variables instead of random variables are called chaotic
optimization algorithms (COA) [20]. In these algorithms, due to
the non-repetition and ergodicity of chaos, it can carry out overall
searches at higher speeds than stochastic searches that depend on
probabilities [25-26]. To achieve this issue, herein one-
dimensional, noninvertible maps are utilized to generate chaotic
sets. We will illustrate some of well-known one-dimensional
maps as:
3.1.1. Logistic map
The Logistic map is defined by:= (1 − ) (0,1)0 <  ≤ 4 (5)

3.1.2. The Sine map
The Sine map is written as the following equation:= sin( ) (0,1) 0 < ≤ 4 (6)

3.1.3. Iterative chaotic map
The iterative chaotic map with infinite collapses is described as:= sin ∈ (0,1) (7)

3.1.4. Circle map
The Circle map is expressed as:= + − ( ) sin(2 ) 1 (8)

3.1.5. Chebyshev map
The family of Chebyshev map is written as the following
equation:= cos( ( )) ∈ (−1,1) (9)

3.1.6. Sinusoidal map
This map can be represented by= sin( ) (10)

3.1.7. Gauss map
The Gauss map is represented by:= 0 = 01 ≠ 0 (11)

3.1.8. Sinus map
Sinus map is formulated as follows:= 2.3( ) ( ) (12)

3.1.9. Dyadic map
Also known as the dyadic map, bit shift map, 2x mod 1 map,
Bernoulli map, doubling map or sawtooth map. Dyadic map can
be formulated by a mod function:= 2 1 (13)

3.1.10. Singer map
Singer map can be written as:= (7.86 − 23.31 + 28.75 − 13.3 ) (14)

 between 0.9 and 1.08
3.1.11. Tent map
This map can be defined by the following equation:= < 0.5(1 − ) ≥ 0.5 (15)

4. The Proposed Algorithm (CFPA) for Solving
Fractional programming problems

In the proposed chaotic flower pollination algorithm, we used
chaotic maps to tune the flower pollinationalgorithm parameter
and improve the performance [19-20].
The steps of the proposedchaotic flower pollination algorithm for
solving Fractional programming problemsare as follows:

Chaotic Flower pollination algorithm
Define Objective function f (x), x = (x1, x2, ..., xd)
Initialize a population of n flowers/pollen gametes with random
solutions
Find the best solution Bin the initial population
Define a switch probability p,  where p has been chosen from
chaotic sequence between [0, 1]
Tuning of parameters using chaotic maps (L, λ, U)
while (t <MaxGeneration)
for i = 1 : n (all n flowers in the population)
if rand <p,
Draw a (d-dimensional) step vector L which obeys a Lévy
distribution
Global pollination via )(1 t

i
t
i

t
i xBLxx 

else
Draw U from a uniform distribution in [0,1]

Do local pollination via )(1 t
k

t
j

t
i

t
i xxUxx 

end if
Evaluate new solutions
If new solutions are better, update them in the population
end for
Find the current best solution B
end while
Output the best solution found

Figure 2. Pseudo code of the Chaotic Flower pollination algorithm

5. NumericalResults
Ten diverse problems were collected from literature[27], [16] to
demonstrate the efficiency and robustness of solving FPPs. The
obtained numerical results are compared to their relevance found
in references; some examples were also solved using exact
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method f1and f3. Table 1shows they attained the comparison
result. In these problems, the initial parameters are set at n= 50
and the number of iterations is set to t = 1000, the selected
chaotic map for all problems is the logistic map, according to the
following equation:= (1 − ) (16)

Clearly,  [0,1] under the conditions that the initial  [0,1],
where is the iteration number and = 4.The results of CFPA
algorithm are conducted from 50 independent runs for each
problem. The comparison between the results determined by the
proposed approach and the compared algorithms are reported in
Table 1. The results have demonstrated the superiority of the
proposed approach to finding the optimal solution.
All the experiments were performed on a Windows 7 Ultimate
64-bit operating system; processor Intel Core i5 760 running at
2.81 GHz; 4 GB of RAMand code was implemented in
MATLAB.

5.1. Test problem 1

This problem is defined as:
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5.7. Test problem 7

This problem is defined as:
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5.8. Test problem 8

This problem is defined as:
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5.9. Test problem 9

This problem is defined as:
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5.10. Test problem 10

This problem is defined as:
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Table 1: Comparison results of the CFPA with other methods.

Test problem Technique/Reference Decision variable optimal value Objective function value

1f (max)
C.C. Transformation “Exact Method”
Dinkelbach algorithm “Exact Method”

CFPA

(x*,y*)= (30,0)
(x*,y*)= (30,0)
(x*,y*)= (30,0)

z*=3.714286
z*=3.714286

z*= 3.7142857

2f (min)
C.C. Transformation “Exact Method”
Dinkelbach algorithm “Exact Method”

CFPA

none
none

(x*,y*)=(0.0056,0.0008)

none
none

z*=6.25E-016

3f (min)

C.C. Transformation “Exact Method”
Dinkelbach algorithm “Exact Method”

[28] “Neural Network”
CFPA

(x*,y*)= (0,0)
(x*,y*)= (0,0)

(x*,y*)=(0.5,3)
(x*,y*)= (0,0)

z*=0.333
z*=0.333

z*=4.5
z*=0.333

4f (max)
C.C. Transformation “Exact Method”
Dinkelbach algorithm “Exact Method”
[29] “Goal Setting and Approximation”

CFPA

none
none

(x*,y*)=(7.229,0)
(x*,y*)= (1.0264,5.7391)
(x*,y*)= (1.025,5.628)

none
none

z*=0.084
z*=0.3383
z*=0.3385

5f (max)
C.C. Transformation “Exact Method”
Dinkelbach algorithm “Exact Method”

CFPA

none
none

(x*,y*)= (0,1.453)

none
none

z*=0.290012

6f (max)
C.C. Transformation “Exact Method”
Dinkelbach algorithm “Exact Method”

CFPA

none
none

(x*,y*)= (0,0)

none
none
z*= 0

7f (max)
C.C. Transformation “Exact Method”
Dinkelbach algorithm “Exact Method”
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The numerical results obtained using the proposed algorithm are
compared to assorted exact methods and metaheuristic techniques
as shown in table 1. Four exact methods were selected for solving
the 10 benchmark functions and carrying out the comparison. The
four methods are C.C. Transformation, Dinkelbach algorithm,
Goal setting and approximation and global optimization. Neural
network and harmony search are the other two metaheuristic
intelligent techniques incorporated in the compare test. The some
calculations are obtained out of the numerical solutions of all the
ten functions. The obtained optimization value the proposed
CFPA algorithm managed to explore new solution areas that
benchmark problem results using exact methods couldn’t reach
that could be clearly noticed from f2 to f10 in table (1).The
optimization value results for the rest functions indicates a better
achievement for CFPA algorithm. Boldface figures in the table
indicates the best result(s) among the algorithms. Figures 2,3 and
4. show that the proposed CFPA algorithm is able reach to global
optimization in f2,f5, and f6 though they have many local

optimizations.
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Figure 3: Two-dimensional Schaffer 4 function

Figure 4: Two-dimensional Sine Envelope function

5.11. Corrugated Bulkhead Design

Corrugated bulkhead design [32]are often used in chemical
tankers and product tankers in order to help facilities cargo tank
washing effectively. This problem is as an example of minimum-
weight design of the corrugated bulkheads for a tanker. Four
design variables of the problem are width (b), depth (h), length
(l), and plate thickness (t) for minimum-weight design of the
corrugated bulkheads for a tanker, the mathematical formula for
the optimization problem as follows:

   

 2 2

5.885
: , , ,

t b l
Minimize f b h l t

b l h



 

 

 

2 2
1

4
32 2 2

2

3

4

5

6

10.4 8.94 0
6

10.2 2.2 8.94 0
12

0.0156 0.15 0
0.0156 0.15 0
1.05 0

0, 0 , , 100 0 5

g th b b l h

g th b b l h

g t b
g t l
g t
g l h b h l and t

             

                  
   

   
  

      

Table 2: Comparison results of the corrugated bulkhead design example

b(cm) h(cm) l(cm) t(cm) best
CFPA 57.69231 37.26590 57.69231 1.05 7.008391

CS 57.69231 37.36410 57.69231 1.05 7.01413
FA 57.69231 38.00090 57.69231 1.05 7.05219

PSO 57.69231 37.56410 57.69231 1.05 7.02594
The comparison result of minimum-weight and the statistical
values of the best solution obtained by CFPA, CS,FA and PSO
are given in Table (2). Accuracy performance is measured in
terms of the best, mean, and standard deviation values of the
solutions obtained by 20 independent runs. The best minimum-
weight in this study is 7.008391 with thickness 1.05 cm.

5.12. Design of a Gear Train

The below figure (5) shows the gear train problem[16]. A gear
ratio between the driver and driven shafts must be achieved when
designing a compound gear train. The gear ratio for gear train is
defined as the ratio of the angular velocity of the output shaft to
that of the input shaft. It is desirable to produce a gear ratio as
close as possible to 1/6.931. For each gear, the number of teeth
must be between 12 and 60. The design variables Ta, Tb, Td, and
Tf are the numbers of teeth of the gears a, b, d and f, respectively,
which must be integers.

The optimization problem is expressed as:

Figure 5: A gear train.

The constraint ensures that the error between obtained gear ratio
and the desired gear ratio is not more than the 50% of the desired
gear ratio.

Table 3: Comparison results of the CFPA, CS, FA and PSO

CFPA CS FA PSO

Best
Mean

StdDev.

2.7E-012
2.7E-012
0.00E+00

2.70009E-
012

1.04E-010
2.7E-010

2.7E-012
5.1314E-

012
7.6868E-

012

2.700857E-
012

1.1371E-011
1.01307E-

011
The comparison resulted obtained by the CFPA, CA, FA and
PSO algorithms are given in Table (3),  The comparison in terms
of the best, error, mean, standard deviation values, these values
where obtained out of 20 independent runs. The result indicates a
better achievement for CFPA, with an objective function value of
2.7 E-012.
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6. Conclusion
The paper presents a new approach to solve FPPs based on
Flower pollination algorithm with chaos. Ten-benchmark
problem weresolvedusingthe proposed algorithm and many other
previous approaches.The results employing the proposed
algorithmwerecompared with the other exact and metaheuristic
approachpreviously used for handling FPPs. The algorithm
proved their effectiveness, reliability and competences insolving
different FPPs. The proposed algorithm managed
tosuccessfullysolve large-scale FPPs with an optimal solution at a
finite point and an unbounded constraint set. The features and
capabilitiesof the proposed algorithm was more evident when
dealing with large-scale problems and a solution is a regular
space.Thecomputational results proved that CFPA turned out to
besuperior to other algorithms for all the accomplished
testsyielding a higher and much faster growing mean fitness
atless computational time. The proposed algorithm can extend to
handle multiobjective fractional optimization.
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