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Abstract
In this paper, we consider the second order hybrid differential equations. For this class
of equations, we establish a new criterion to check whether all solutions of an equation,
in this class, oscillate. We prove this criterion, using a generalized Riccati technique and
an averaging method. The established oscillatory criteria have a distinct form, from all
other relevant criteria, in the literature. We illustrate the validity of our results by means
of various examples.
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1. Introduction
The problem of oscillation or non-oscillation of the solutions of differential equations

has been discussed by numerous authors and several techniques have been developed to
deal with this problem. For the fundamental theory and preliminary results, we refer
the reader to the books and articles in [2, 3, 8, 11, 13, 17, 18, 22, 24]. In the recent years,
there has been much attention on various aspects of quadratic perturbations of nonlinear
differential equations. The hybrid differential equation is an especially interesting type
of nonlinear differential equations that is open to research. The reason is that hybrid
differential equations include several dynamic systems, as special cases. There has been
considerable work on the theory of hybrid differential equations. We refer the readers to
the articles in [7,9,20,23,27]. Applications with numerical solutions have been studied by
several authors, see for example, [10,14,16,25].
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In a review of the literature on hybrid differential equations, Dhage and Lakshmikan-
tham [4] discussed the existence of extremal solutions and comparison result for first order
hybrid differential equation with linear perturbations of the following type:

d

dt

(
x(t)

f(t, x(t))

)
= g(t, x(t)), a.e. t ∈ J, x(t0) = x0 ∈ R,

where f ∈ C(J × R,R − {0}) and g ∈ C(J × R,R).
On the other hand, there has been no work on the qualitative theory of hybrid differential

equations. This has motivated us to extend the oscillation theory to hybrid differential
equations of second order. In the present paper, we initiate the oscillation theory for
hybrid differential equations of the form(

x(t)
f(t, x(t))

)′′

+ q(t)x(t) = g(t, x(t)), t ≥ t0. (1.1)

Throughout this paper, we assume the following conditions hold:
(A1) q(t) ∈ C([t0,∞),R+);
(A2) f(t, x(t)) ∈ C([t0,∞) × R,R+), there exists a function r(t) ∈ C

′([t0,∞),R+) such
that f(t, x(t)) ≥ h(x)r(t) ≥ Mr(t), where h(x) is not identically zero on [t0,∞) and
moreover, |h(x)| ≥ M > 0 and d

dtf(t, x(t)) > 0;
(A3) g(t, x(t)) ∈ C([t0,∞) ×R,R), there exists a function p(t) ∈ C([t0,∞),R+) such that
g(t,x(t))

x(t) ≤ p(t) for x ̸= 0, t ≥ t0 and q(t) ≥ p(t).
Note that if f(t, x(t)) = 1, g(t, x(t)) = 0, then equation (1.1) is reduced to the linear

differential equations of second order
x

′′(t) + q(t)x(t) = 0, t ≥ t0, (1.2)
which include several equations, namely, the famous Euler equation that has been studied
by many authors [1, 5, 6, 12,15,19,21,26].

By a solution of (1.1), we mean a nontrivial function x(t) ∈ C2([T0,∞)), T0 ≥ t0
which satisfies (1.1) on [T0,∞). We only consider those solutions x(t) of (1.1) satisfying
sup {|x(t)| : t ≥ T} > 0 for all T ≥ T0, and we assume that (1.1) possesses such solutions.
A solution of (1.1) is called oscillatory if it has arbitrarily many zeros on [t0,∞), and is
called nonoscillatory otherwise. Equation (1.1) is said to be oscillatory if all its solutions
are oscillatory.

The aim in this paper is to present some new oscillation criteria for (1.1) by using
generalized Riccati technique and an integral averaging method. The contribution is
original, as no results on the oscillation of nonlinear hybrid differential equations having
been reported in the literature.

The paper is divided in three sections. In Section 2, we establish some new oscillation
criteria for (1.1) while in the final section, we present some examples to illustrate the
effectiveness of our main results.

2. Main results
In this section, we present sufficient conditions, which guarantee the oscillatory behavior

of the solutions of equation (1.1). We begin with the following theorem.

Theorem 2.1. Suppose that the assumptions (A1) − (A3) hold. Moreover, assume that
there exists a positive nondecreasing function δ ∈ C1([t0,∞); (0,∞)) such that for all
sufficiently large t1 ≥ t0, we have

lim sup
t→∞

t∫
t1

(
δ(s)(q(s) − p(s)) − 1

4M
(δ′(s))2

r(s)δ(s)

)
ds = ∞. (2.1)

Then every solution x(t) of (1.1) is oscillatory.
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Proof. Suppose that x(t) is a nonoscillatory solution of (1.1). Without loss of generality
we may assume that x(t) > 0 for t ≥ t1 ≥ t0, since similar arguments can be made, for
the case x(t) < 0, eventually. Now, from (1.1), we have(

x(t)
f(t, x(t))

)′′

≤ 0 for t ≥ t1. (2.2)

Therefore
(

x(t)
f(t,x(t))

)′

is a decreasing function. We now claim that
(

x(t)
f(t,x(t))

)′

> 0 for

t ≥ t1. If not, then there exists t2 ≥ t1 such that(
x(t)

f(t, x(t))

)′

≤
(

x(t)
f(t, x(t))

)′

|t=t2 := c < 0, t ≥ t2.

Integrating from t2 to t, we get
x(t) ≤ (c(t− t2) + d)f(t, x(t)) → −∞ as t → ∞,

where d = x(t2)
f(t2,x(t2)) , which contradicts the fact that x(t) > 0 for t ≥ t1.

Define the function w(t) by the generalized Riccati substitution

w(t) = δ(t)
(

x(t)
f(t, x(t))

)′
1
x(t)

, t ≥ t1. (2.3)

Then w(t) > 0 for t ≥ t1. Differentiating (2.3) and using (1.1) and (A3), we have

w
′(t) = δ

′(t)
δ(t)

w(t) + δ(t)
x(t)

(g(t, x(t)) − q(t)x(t)) − w(t)x
′(t)
x(t)

≤ δ
′(t)
δ(t)

w(t) + δ(t)p(t) − q(t)δ(t) − w2(t) x
′(t)

δ(t)
(

x(t)
f(t,x(t))

)′ .

By (A2), the last inequality becomes

w
′(t) ≤ δ

′(t)
δ(t)

w(t) + δ(t)(p(t) − q(t)) − w2(t)
δ(t)

f(t, x(t))

≤ δ
′(t)
δ(t)

w(t) − δ(t)(q(t) − p(t)) −M
r(t)
δ(t)

w2(t). (2.4)

Using the inequality, Bu−Au2 ≤ B2

4A , we have

w
′(t) ≤ −δ(t)(q(t) − p(t)) + 1

4M
(δ′(t))2

r(t)δ(t)
.

Integrating the last inequality from t1 to t and taking the limit supremum on both sides,
yields

lim sup
t→∞

t∫
t1

(
δ(s)(q(s) − p(s)) − 1

4M
(δ′(s))2

r(s)δ(s)

)
ds ≤ w(t1), t ≥ t1,

which contradicts hypothesis (2.1). The proof of the theorem is complete. �

Next we present some new oscillation results for (1.1).
We introduce the class of functions Ω. Let D = {(t, s) : t0 ≤ s ≤ t}. The function H ∈
C(D,R) is said to belong to the class Ω, if
(T1) H(t, t) = 0 for t ≥ t0 and H(t, s) > 0 for t > s ≥ t0.
(T2) H has continuous and nonpositive partial derivatives on D with respect to s and there
exists a function h1(t, s) ∈ C(D,R) such that
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(i) h1(t, s)
√
H(t, s) = −∂H

∂s (t, s),

(ii) h2(t, s) = h1(t, s) −
√
H(t, s) δ

′ (s)
δ(s) .

Theorem 2.2. Assume that (A1) − (A3) hold. In addition, assume that there exists a
positive function δ ∈ C1([t0,∞); (0,∞)) such that for all sufficiently large t1 ≥ t0, we have

lim sup
t→∞

1
H(t, t0)

t∫
t0

(
H(t, s)δ(s)(q(s) − p(s)) − 1

4M
h2

2(t, s)δ(s)
r(s)

)
ds = ∞. (2.5)

Then every solution x(t) of (1.1) is oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of (1.1). Without loss of generality
we may assume that x(t) > 0 for t ≥ t1 for some t1 ≥ t0. Multiplying both sides of (2.4)
by H(t, s), integrating it with respect to s from t1 to t and using the properties of the
function H(t, s) for all t ≥ t1 ≥ t0, we get

t∫
t1

H(t, s)δ(s)(q(s) − p(s))ds

≤ −
t∫

t1

H(t, s)w′(s)ds+
t∫

t1

H(t, s)δ
′(s)
δ(s)

w(s)ds−
t∫

t1

MH(t, s)r(s)
δ(s)

w2(s)ds

≤ H(t, t1)w(t1) −
t∫

t1

h2(t, s)
√
H(t, s)w(s)ds−

t∫
t1

MH(t, s)r(s)
δ(s)

w2(s)ds

≤ H(t, t1)w(t1) −
t∫

t1

(√
MH(t, s)r(s)

δ(s)
w(s) + 1

2
h2(t, s)

√
δ(s)√

Mr(s)

)2
ds

+
t∫

t1

1
4M

δ(s)
r(s)

h2
2(t, s)ds.

Thus, we conclude that for every t ≥ t0,

t∫
t1

(
H(t, s)δ(s)(q(s) − p(s)) − 1

4M
δ(s)
r(s)

h2
2(t, s)

)
ds

≤ H(t, t1)w(t1) −
t∫

t1

(√
MH(t, s)r(s)

δ(s)
w(s) + 1

2
h2(t, s)

√
δ(s)√

Mr(s)

)2
ds (2.6)

≤ H(t, t1)w(t1) ≤ H(t, t0)|w(t0)|,

which implies that

t∫
t0

(
H(t, s)δ(s)(q(s) − p(s)) − 1

4M
δ(s)
r(s)

h2
2(t, s)

)
ds

≤ H(t, t0)
( t1∫

t0

(δ(s)(q(s) − p(s)))ds+ |w(t0)|
)
. (2.7)
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Inequality (2.7) yields

lim sup
t→∞

1
H(t, t0)

t∫
t0

(
H(t, s)δ(s)(q(s) − p(s)) − 1

4M
δ(s)
r(s)

h2
2(t, s)

)
ds

≤
t1∫

t0

(δ(s)(q(s) − p(s)))ds+ |w(t0)| < ∞.

which contradicts (2.5). The proof of the theorem is complete. �

The following corollaries can easily be derived, from Theorem 2.2.

Corollary 2.3. Assume that the conditions of Theorem 2.2 hold with (2.5) replaced by

lim sup
t→∞

1
H(t, t0)

t∫
t0

(H(t, s)δ(s)(q(s) − p(s))) ds = ∞ (2.8)

and

lim sup
t→∞

1
H(t, t0)

t∫
t0

1
4M

δ(s)
r(s)

h2
2(t, s)ds < ∞. (2.9)

Then every solution x(t) of (1.1) is oscillatory.

Theorem 2.2 enables us to derive many sufficient conditions for (1.1) with different
choices of the function H.
Consider H(t, s) = (t− s)n−1, (t, s) ∈ D for some integer n > 2. Then, Theorem 2.2 leads
to the following result.

Corollary 2.4. Assume that the conditions of Theorem 2.2 hold, equation (2.5) can be
written as

lim sup
t→∞

1
(t− t0)n−1

∫ t

t0

(
(t− s)n−1δ(s)

(
(q(s) − p(s))

− 1
4Mr(s)

(
δ

′(s)
δ(s)

− n− 1
t− s

)2))
ds = ∞, (2.10)

for some integer n > 2. Then every solution x(t) of (1.1) is oscillatory.

Let H(t, s) = (R(t)−R(s))λ, where λ is a constant, R(t) =
∫ t

t1
1

r(s)ds and limt→∞R(t) =
∞. Then, Theorem 2.2 implies the following result.

Corollary 2.5. Assume that the conditions of Theorem 2.2 hold, equation (2.5) can be
written as

lim sup
t→∞

1
(R(t) −R(t0))λ

∫ t

t0

(
(R(t) −R(s))λδ(s)

(
(q(s) − p(s))

− 1
4Mr(s)

(
δ

′(s)
δ(s)

− λ

r(s)(R(t) −R(s))

)2))
ds = ∞. (2.11)

Then every solution x(t) of (1.1) is oscillatory.

Let H(t, s) = (log( t
s))n, t > s > t1, n > 1 is an integer. Then, from Theorem 2.2, we

get the following result.
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Corollary 2.6. Assume that the conditions of Theorem 2.2 hold, equation (2.5) can be
written as

lim sup
t→∞

1
(log( t

t0
))n

∫ t

t0

(
(log( t

s
))nδ(s)

(
(q(s) − p(s))

− 1
4Mr(s)

(
δ

′(s)
δ(s)

− n

s(log( t
s))

)2))
ds = ∞. (2.12)

Then every solution x(t) of (1.1) is oscillatory.

Let H(t, s) = (
∫ t

s
du

θ(u))n, t > s > t0, where n > 1 is an integer and θ : [t0,∞) → R+

is a continuous function such that limt→∞(
∫ t

t0
du

θ(u)) = ∞. Then Theorem 2.2 yields the
following result.

Corollary 2.7. Assume that the conditions of Theorem 2.2 hold, equation (2.5) can be
written as

lim sup
t→∞

(∫ t

t0

du

θ(u)

)−n ∫ t

t0

((∫ t

s

du

θ(u)

)n

δ(s)
(

(q(s) − p(s))

− 1
4Mr(s)

(
δ

′(s)
δ(s)

− n

θ(s)(
∫ t

s
du

θ(u))

)2))
ds = ∞. (2.13)

Then every solution x(t) of (1.1) is oscillatory.

Theorem 2.8. Assume that

0 < inf
s≥t0

(
lim inf

t→∞

H(t, s)
H(t, t0)

)
≤ ∞ (2.14)

and

lim sup
t→∞

1
H(t, t0)

t∫
t0

δ(s)
r(s)

h2
2(t, s)ds < ∞. (2.15)

Then (1.1) is oscillatory if there exists a continuous function ψ on [t0,∞) with
∞∫

t0

r(s)
δ(s)

ψ2
+(s)ds = ∞, (2.16)

where ψ+(t) = max {ψ(t), 0} and such that

lim sup
t→∞

1
H(t, T )

t∫
T

(
H(t, s)δ(s)(q(s) − p(s)) − 1

4M
δ(s)
r(s)

h2
2(t, s)

)
ds ≥ ψ(T ), (2.17)

for every T ≥ t0.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Then there exists a T0 ≥ t0 such
that x(t) ̸= 0 for all t ≥ T0. We define w(t) as in (2.3) on [T0,∞). As in the proof
of Theorem 2.2, inequality (2.6) is satisfied for all t, t1 with t ≥ t1 = T ≥ T0. So, for
t ≥ T ≥ T0, we obtain the inequality

1
H(t, T )

t∫
T

(
H(t, s)δ(s)(q(s) − p(s)) − 1

4M
δ(s)
r(s)

h2
2(t, s)

)
ds

≤ w(T ) − 1
H(t, T )

t∫
T

(√
MH(t, s)r(s)

δ(s)
w(s) + 1

2
h2(t, s)

√
δ(s)√

Mr(s)

)2
ds
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and therefore

lim sup
t→∞

1
H(t, T )

t∫
T

(
H(t, s)δ(s)(q(s) − p(s)) − 1

4M
δ(s)
r(s)

h2
2(t, s)

)
ds

≤ w(T ) − lim inf
t→∞

1
H(t, T )

t∫
T

(√
MH(t, s)r(s)

δ(s)
w(s) + 1

2
h2(t, s)

√
δ(s)√

Mr(s)

)2
ds. (2.18)

Thus, by (2.17), we get

w(T ) ≥ ψ(T ) + lim inf
t→∞

1
H(t, T )

t∫
T

(√
MH(t, s)r(s)

δ(s)
w(s) + 1

2
h2(t, s)

√
δ(s)√

Mr(s)

)2
ds,

for all t > T ≥ T0. This implies that

w(T ) ≥ ψ(T ) for all T ≥ T0, (2.19)

and

lim inf
t→∞

1
H(t, T )

t∫
T

(√
MH(t, s)r(s)

δ(s)
w(s) + 1

2
h2(t, s)

√
δ(s)√

Mr(s)

)2
ds

≤ w(T0) − ψ(T0) < ∞,

that is,

lim inf
t→∞

(θ(t) + η(t)) < ∞, (2.20)

where

θ(t) = 1
H(t, T0)

t∫
T0

M
r(s)
δ(s)

H(t, s)w2(s)ds, t > T0, (2.21)

η(t) = 1
H(t, T0)

t∫
T0

√
H(t, s)h2(t, s)w(s)ds, t > T0. (2.22)

In order to show that
t∫

T0

r(s)
δ(s)

w2(s)ds < ∞, (2.23)

suppose that
t∫

T0

r(s)
δ(s)

w2(s)ds = ∞. (2.24)

Indeed, let α be a positive constant. Then, by condition (2.14), we get

inf
s≥t0

(
lim inf

t→∞

H(t, s)
H(t, t0)

)
> α > 0. (2.25)

On the other hand, for any positive constant β, due to (2.24), there exists a T1 > T0 such
that

t∫
T0

r(s)
δ(s)

w2(s)ds ≥ β

α
for all t ≥ T1.



Some new oscillation criteria for second-order hybrid DEs 1341

Therefore

θ(t) = M

H(t, T0)

t∫
T0

H(t, s)d
( s∫

T0

r(u)
δ(u)

w2(u)du
)

= M

H(t, T0)

t∫
T0

( s∫
T0

r(u)
δ(u)

w2(u)du
)(

− ∂H(t, s)
∂s

)
ds

≥ Mβ

αH(t, T0)

t∫
T1

(
− ∂H(t, s)

∂s

)
ds = Mβ

α

H(t, T1)
H(t, T0)

.

But

H(t, T1)
H(t, t0)

> α,

then there exists T2 ≥ T1 such that lim inf
t→∞

H(t,T1)
H(t,t0) ≥ α, for all t ≥ T2. So, we have

θ(t) ≥ Mβ for all t ≥ T2. Then,

lim
t→∞

θ(t) = ∞, (2.26)

since β is an arbitrary positive constant.
Next, let us consider a sequence {τl}l=1,2,... in (T0,∞) with τl → ∞ as l → ∞ and such
that

lim
l→∞

(θ(τl) − η(τl)) = lim inf
t→∞

(θ(t) − η(t)).

Now, by (2.20), there exists a constant µ such that

θ(τl) − η(τl) ≤ µ (l = 1, 2, ...). (2.27)

Furthermore, (2.26) guarantees that

lim
l→∞

θ(τl) = ∞, (2.28)

and hence (2.27) gives

lim
l→∞

η(τl) = −∞. (2.29)

Taking into account (2.28) and using (2.27), we derive

1 + η(τl)
θ(τl)

≤ µ

θ(τl)
< k, 0 < k < 1 for large l. (2.30)

From (2.29), this implies that

η2(τl)
θ(τl)

> (k − 1)η(τl),

lim
l→∞

η2(τl)
θ(τl)

= ∞. (2.31)
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By Schwarz’s inequality, we have

η2(τl) = 1
H2(τl, T0)

( τl∫
T0

√
H(τl, s)h2

2(τl, s)w(s)ds
)2

≤
( 1
H(τl, T0)

τl∫
T0

δ(s)
r(s)

h2
2(τl, s)ds

)( 1
H(τl, T0)

τl∫
T0

H(τl, s)
r(s)
δ(s)

w2(s)ds
)

≤ θ(τl)
M

( 1
H(τl, T0)

τl∫
T0

δ(s)
r(s)

h2
2(τl, s)ds

)
,

and therefore

η2(τl)
θ(τl)

≤ 1
Mα

( 1
H(τl, t0)

τl∫
t0

δ(s)
r(s)

h2
2(τl, s)ds

)
.

Using (2.31), we have

lim
l→∞

1
H(τl, t0)

τl∫
t0

δ(s)
r(s)

h2
2(τl, s)ds = ∞,

which gives

lim sup
l→∞

1
H(t, t0)

t∫
t0

δ(s)
r(s)

h2
2(t, s)ds = ∞,

which contradicts (2.15). Hence (2.24) fails to hold. Finally,
∞∫

t0

r(s)
δ(s)

ψ2
+(s)ds ≤

∞∫
t0

r(s)
δ(s)

w2(s)ds < ∞,

which contradicts (2.16). Therefore (1.1) is oscillatory. �
Theorem 2.9. Let all the assumptions of Theorem 2.8 hold, except for (2.15) which is
replaced by

lim sup
t→∞

1
H(t, t0)

t∫
t0

H(t, s)δ(s)(q(s) − p(s))ds < ∞. (2.32)

Then every solution of (1.1) is oscillatory.

The proof is similar to that of Theorem 2.8, and hence is omitted.
We conclude with the following remarks that suggest some open problems, for future
research.

Remark 2.10. The results obtained in this article can be extended for the more general
differential equation having a damped term(

x(t)
f(t, x(t))

)′′

+ p(t)
(

x(t)
f(t, x(t))

)′

+ q(t)h(x(t)) = g(t, x(t)), t ≥ t0,

where p(t) is a continuous function on [t0,∞).

Remark 2.11. All above results can be extended to the following form(
b(t)

(
a(t) x(t)

f(t, x(t))

)′)′

+ q(t)h(x(t)) = g(t, x(t)), t ≥ t0.
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Remark 2.12. The results obtained in this paper merely initiate the study of the oscil-
lations of hybrid differential equations. Therefore, this problem remains largely open, for
future research.

3. Examples
In this section, we provide some examples to illustrate our main results.

Example 3.1. Consider the hybrid differential equation(
x(t)
et

)′′

+ x(t) = (et − 1) sin t, t ≥ t0. (3.1)

Here q(t) = 1,M = 1, f(t, x(t)) = et, r(t) = 1, g(t, x(t)) = (et−1) sin t and g(t,x(t))
x(t) = 1− 1

et .
Now, choose ϵ > 0 such that 1 − 1

et < ϵ < 1 and p(t) = ϵ with δ(t) = 1. Consider

lim sup
t→∞

t∫
t1

(
δ(s)(q(s) − p(s)) − 1

4M
(δ′(s))2

r(s)δ(s)

)
ds

= lim sup
t→∞

t∫
t1

(1 − ϵ)ds → ∞ as t → ∞.

Hence, all the conditions of Theorem 2.1 are satisfied. Therefore, every solution of (3.1)
is oscillatory. In fact, x(t) = et sin t is one such solution of (3.1).

Example 3.2. Consider the second-order hybrid differential equation(
x(t)
t

)′′

+ 1
t2
x(t) = (t+ 3)et, t ≥ 1. (3.2)

Here q(t) = 1
t2 , g(t, x(t)) = (t + 3)et,M = 1, f(t, x(t)) = t, r(t) = 1 and p(t) = t+4

t2 with
δ(t) = 1. Consider

lim sup
t→∞

t∫
t1

(
δ(s)(q(s) − p(s)) − 1

4M
(δ′(s))2

r(s)δ(s)

)
ds

= lim sup
t→∞

t∫
t1

( 1
s2 − s+ 4

s3

)
ds ≤ lim sup

t→∞

t∫
t1

1
s2ds = ∞.

Thus, the conditions of Theorem 2.1 are not satisfied. In fact, x(t) = t2et is a nonoscillatory
solution of (3.2).

Example 3.3. Consider the hybrid differential equation of second order(
x(t)
et

)′′

+ x(t) = (et − 1) sin t, t ≥ t0. (3.3)

Here q(t) = 1,M = 1, f(t, x(t)) = et, r(t) = 1, g(t, x(t)) = (et−1) sin t and g(t,x(t))
x(t) = 1− 1

et .
Now, choose ϵ > 0 such that 1 − 1

et < ϵ < 1, p(t) = ϵ and δ(t) = 1 with H(t, s) = t− s and
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h1(t, s) = h2(t, s) = 1√
t−s

. Consider

lim sup
t→∞

1
H(t, t0)

t∫
t0

(
H(t, s)δ(s)(q(s) − p(s)) − 1

4M
h2

2(t, s)δ(s)
r(s)

)
ds

= lim sup
t→∞

1
(t− t0)

t∫
t0

(
(t− s)(1 − ϵ) − 1

4
1

t− s

)
ds → ∞ as t → ∞.

Thus, all the conditions of Theorem 2.2 are satisfied. Hence every solution of (3.3) is
oscillatory. For example, x(t) = et cos t is one such solution.
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