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DYNAMIC ANALYSIS OF UNIFORM AND NON-UNIFORM CROSS-SECTION 

CANTILEVER SANDWICH BEAMS 

Mesut HÜSEYİNOĞLU 1*, Murat ŞEN2, Osman YİĞİD 3, Orhan ÇAKAR4 

In this study, an analytical solution for dynamic analysis of uniform and non-

uniform cross-section cantilever sandwich beam is presented. The sandwich 

beam was assumed to be an Euler-Bernoulli beam and formed with a thin core 

and two thin skin layers. So the shear deformations and rotational effects were 

neglected. The equivalent flexural rigidity was obtained for the entire 

sandwich structure. Some implementations for the solution method are given 

and the results are compared with numerical solutions. The usability of the 

Euler-Bernoulli Beam Theory for thin layered uniform or non-uniform 

sandwich beams is investigated. The solutions obtained from analytical and 

numerical solutions are in good agreement. 
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1. Introduction 

Sandwich structures have a very wide usage from aircrafts to automotive, marine, storage and 

transportation. Due to their light weight, high bending stiffness and damping capability, they are 

preferred in many engineering applications. Generally a sandwich structure is combined with two elastic 

thin skin layers and a viscoelastic core layer. Using the advantages of light weight, vibration isolation 

and flexural strength properties of these structures come forward in mechanical and structural 

engineering. These advantages make researchers focus on these structures and a lot of papers have been 

published on this topic for the last decade. Some of them are the studies of analytical approaches when 

the big amount of them are numerical and experimental analysis. Khalili et al. [1] investigated the free 

vibrations of three layer sandwich beams by using dynamic stiffness method considering different 

density, thickness and shear modulus of core materials for various boundary conditions. Rabinovitch 

and Hamed [2] made a study on dynamic behavior of sandwich beams with viscoelastic soft core. They 

took into account the shear and transverse effects for sandwich beams by utilizing the Maxwell and 

Kelvin-Voigt models for viscoelasticity. A model was formulated by Palmeri and Ntotsios [3]  for 

dynamic analysis of sandwich beams by using mathematical derivation of generalized Maxwell model 

of shear type viscoelastic layer for the core and consisting of two parallel Euler-Bernoulli elastic beams. 

Irazu et al. [4]  made a study on the sandwich structures with viscoelastic adhesive films. They 
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characterized the sandwich structure and the viscoelastic films by using standard experimental dynamic 

tests by obtaining loss factor, storage modulus and shear complex modulus. A method was presented by 

Sakiyama et al. [5] so as to analysis the vibration characteristics of a three layered sandwich structure 

combined with elastic or viscoelastic core by using an approach utilizing the solution of differential 

equations of the flexural behavior of the structure under loading condition. Wang et al. [6]  analyzed 

vibration characteristics of three layered sandwich plates with bounded piezoelectric patch actuators and 

a viscoelastic core. They handled the viscoelastic core as complex layer and variant with frequency and 

temperature by using the Golla-Hughes-McTavish method to account for the frequency dependent 

properties of it. Zghal et al. [7]  gave an approach to deal with the local nonlinearities on the dynamic 

behavior of such model assembled structures. 

Finite element solutions are widely used for sandwich structures [8]–[12]. Zhen and Wanji [13] 

used a high order zigzag method for vibration analysis of composite beams. They made an elimination 

for the higher order derivatives of displacement parameters of  shear stresses by utilizing the variational 

principle of Hu-Washizu. Pham et al. [14] presented a shear deformable finite element formulation for 

free and forced vibration analysis of two directional functionally graded sandwich beams which 

combined with a homogeneous ceramic core layer and two functionally graded skin layers. High order 

methods are used successfully in many studies [15]–[17]. 

In sandwich structures, core material, pattern or cell type and geometry effect the dynamic 

characteristics of structures [18]–[22].  Sun and Thamburaj [23] studied on sound and vibration 

transmission across a sandwich beam combined with anisotropic layers. They investigated the effects of 

damping, thickness of the layers and material density on the sound transmission loss. They focused on 

selecting a core material and geometry to transfer the vibration from the top skin into the shear 

deformation and in-plane wave in the core for reducing the deflection of the bottom skin of the sandwich 

beams. 

There are also number of analytical or numerical studies on various kinds of functionally graded 

structures [24]–[35]. Yang et al. [36] studied on the resonance frequencies and critical speed of an 

axially moving sandwich beam and on the relationship between the axially travelling speed and the 

natural frequencies. Lougou et al. [37] developed a double scale asymptotic method which seperates the 

original problem into two small ones to analyze the layered sandwich structures with viscoelastic core. 

In this study, an analytical solution for free vibration characteristics of uniform and non-uniform 

cross-section sandwich beams for fixed-free boundary condition is presented. The sandwich beam was 

assumed to be a thin Euler- Bernoulli beam. So the shear deformations and the rotational effects were 

neglected. In the following sections, the methodology, the application and the conclusion parts are given 

respectively. 

 

2. Material and Method 

There are two common approaches in vibrations of beams one of which is Euler-Bernoulli beam 

theory and the second is Timoshenko beam theory. In the former approach the shear deformations and 

rotational effects are neglected while in the latter approach they are taken in account. Euler-Bernoulli 

beam theory is suitable for thin beams (the thickness of the beam is very small according to width and 

length of it). But for thick beams Timoshenko beam theory is more appropriate. In our study, the 

sandwich beam is considered thin enough to neglect the rotational effects. So, Euler-Bernoulli beam 

theory is used. Free body diagram of a small part of a simple Euler-Bernoulli beam is given in Figure 1. 
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Figure 1. Free body diagram of a small part of a simple Euler-Bernoulli beam. 

 

If  a small unit element dx is handled of an Euler-Bernoulli beam exposed to a distributed load 

f(x, t),  the differential equation of motion can be expressed as: 

2

2

( , ) ( , )
( , ) ( , ) ( , ) ( )

  
      

V x t w x t
f x t dx V x t dx V x t m x dx

x t
 (1) 

Here, m(x) is the linear mass density (kg/m). The right part of the equation is the inertial force of 

the small element. By neglecting the rotary inertia if the moments about z axis trough the point Q are 

taken and after summation: 

 

 
( , ) ( , )

( , ) ( , ) ( , ) ( , ) 0
2

    
            

dx V x t M x t
f x t dx V x t dx dx M x t dx M x t

x x
 (2) 

 

Equation (2) can be obtained and by simplifying it, the equation (3) can be written. 

 

2( , ) ( , ) ( , )
( ) ( , ) 0

2

    
          

f x t V x t M x t
dx V x t dx

x x
 (3) 

 

Here, dx is very small and (dx)2 is almost zero, so the term (dx)2 can be neglected. So, this 

expression can be rewritten as in equation (4): 

( , )
( , )


 



M x t
V x t

x
 (4) 

By substitution this expression into equation (1) 

 
2 2

2 2

( , )
( , ) ( , ) ( )

 
 
 

w x t
f x t dx M x t dx m x dx

x t
 (5) 

Also, the relation between the bending moment and the deflection of beam can be expressed by 

dx 

o x 

x 

y 

dx 

x 

M(x,t) 

Q w(x,t) 

 

f(x,t) 

 V(x,t) 

y 
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2

2

( , )
( , ) ( )






w x t
M x t EI x

x
 (6) 

Here EI(x) is the flexural rigidity and combined by modulus of elasticity (E) of the material and 

moment of inertia (I(x)) of the beam changes through x direction respectively. Substitution of equation 

(6) into (5) and to simplify with dividing the equation (5) by dx yields: 

 

2 2 2

2 2 2

( , ) ( , )
( ) ( ) ( , )

   
  

   

w x t w x t
EI x m x f x t

x x t
 (7) 

 

The equivalent flexural rigidity EI(x) can be written for n layers sandwich structure with 

combination of the layers can be expressed as: 

1 1 2 2( ) ( ) ( )......... ( )  n nEI x E I x E I x E I x  (8) 

For three layer symmetric sandwich beam with two face sheets and a core layer, the equation (8) 

can be rewritten: 

( ) 2 ( ) ( ) f f c cEI x E I x E I x  (9) 

2.1. For uniform cross-section sandwich beams 

For uniform cross-section sandwich beams, the linear mass density and the flextural rigidity are 

constant due to the uniform thickness and width through the length. A uniform cross-section sandwich 

beam is illustrated in Figure 2.  

 

Figure 2. A uniform cross-section sandwich beam. 

 

For uniform cross-section sandwich beams (EI(x) and m(x) are constant) the equation (7) can be 

written as: 

2 2 2

2 2 2

( , ) ( , )
( , )

   
  

   

w x t w x t
EI m f x t

x x t
 (10) 

For free vibrations (with no excitation force) and for uniform cross-section beams, simplified 

equation (11) is obtained, where, 𝑎2 = 𝐸𝐼 𝑚⁄  

4 2
2

4 2

( , ) ( , )
0

 
 

 

w x t w x t
a

x t
 (11) 

E
2
, h

2
, ρ

2
 

E
1
, h

1
, ρ

1
 

E
3
, h

3
, ρ

3
 L 

b 
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With the separation of variables the solution can be expressed by equalizing to a constant ω2, 

4 2
2 2

4 2

( ) ( )
( , )

( ) ( )
    

IV
IVX x T t d X d T

a X T
X x T t dx dt

 (12) 

This equation can be decomposed spatial and time parts.  

2( ) ( ) 0 ( ) sin cos     T t T t T t A t B t  (13) 

Here, A and B can be determined by the initial conditions. By rearranging the equation (12) for 

spatial equation 

2

2
( ) ( ) 0


 IVX x X x

a
 (14) 

By defining 𝑥 = 𝐴𝑒𝜆𝑥 and recalling the equation (11) yields: 

2 2
4

2

 
  

m

a EI
 (15) 

Then general solution of the equation (14) can be calculated in the form as follows: 

1 2 3 4( ) sin cos sinh cosh      X x c x c x c x c x  (16) 

Here C1, C1, C1, C1 are constant and one can obtain those constants from boundary conditions. 

The boundary conditions for cantilever beam can be written as follows: 

For clamped end at 𝑥 = 0 

 

1 2 3 4

4 2

(0) 0

(0) sin 0 cos0 sinh0 cosh0 0



    

 

x

x c c c c

c c

 (17) 

 

1 2 3 4

3 1

(0) 0

(0) cos0 sin0 cosh0 sinh0 0   

 

     

 

x

x c c c c

c c

 (18) 

 

For free end at 𝑥 = 𝐿 

 

2 2 2 2

1 2 3 4

1 2

( ) 0

( ) sin cos sinh cosh 0

(sin sinh ) (cos cosh ) 0

       

   

 

      

   

x L

x L c L c L c L c L

c L L c L L

 (19) 

 

3 3 3 3

1 2 3 4

1 2

( ) 0

( ) cos sin cosh sinh 0

(cos cosh ) ( sin cosh ) 0

       

   

 

      

    

x L

x L c L c L c L c L

c L L c L L

 (20) 

 

If the last two equalities are written in matrix form 
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1

2

(sin sinh ) (cos cosh ) 0

(cos cosh ) ( sin sinh ) 0

   

   

      
    

      

cL L L L

cL L L L
 (21) 

 

For nontrivial solution, the determinant of the first part of the left equation must be zero. For this: 

cos cosh 1 0 1,2,........    n nL L n n  (22) 

The characteristic equation can be obtained. The first four roots of equation (22) are calculated 

as: βnL=1.8751, 4.6941, 7.8548, 10.9955    (n=1, 2, 3, 4) 

With a transformation of βnL=λn  the natural frequencies equation can be obtained: 

 

2

2
(r / s)


  n

n

EI

L m
 (23) 

 

2

2
(Hz) ( 2 )

2


 


 n

n n n

EI
f f

L m
 (24) 

 

For a uniform cross-section three layered sandwich beam, the equivalent flexural rigidity and 

mass density can be expressed as: 

 

22 33 3

3 3 21 1 2 2
1 1 2 3 3

12 2 12 12 2

      
         

         

h h hh h h h
EI E b bh E b E b bh  (25) 

1 1 2 2 3 3    m A A A   (26) 

By using equations (17-22), the mode shapes can be obtained as in equation (27). 

 

 
 

 1

sin sinh
( ) ( ) cos cosh sin sinh

cos cosh

 
   

 

 
    

 

n n

n n n n n

n n

L L
X x c x x x x

L L
 (27) 

 

2.2. For non-uniform cross-section sandwich beams 

For non-uniform cross-section sandwich beams, the linear mass density and the flextural rigidity 

are not constant, because the width of the sandwich beam is not constant through the length while the 

length and the total height of the sandwich beam is constant. A non-uniform cross-section sandwich 

beam is illustrated in Figure 3.  
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Figure 3. A non-uniform cross-section sandwich beam. 

 

For non-uniform cross-section sandwich beams flextural rigidity (EI(x)) and linear mass density 

(m(x)) in equation (7) are not constant and they change through the length. Assuming the total height of 

the sandwich beam is constant and the width of the beam is changing exponentially through the length 

as: 

0( )  xb x b e  (28) 

where bo is the width of the beam at the fixed end and δ is the non-uniformity parameter. Mass 

density and the flexural rigidity changes with respect to b(x). 

1 1 2 2 3 3( ) ( ) ( )    m x h h h b x  (29) 

22 33 3

3 3 21 1 2 2
1 1 2 3 3( ) ( )

12 2 12 12 2

       
          

           

h h hh h h h
EI x b x E h E E h  (30) 

 

Assuming 
0 1 1 2 2 3 3( )    m h h h  and 

22 33 3

3 3 21 1 2 2
0 1 1 2 3 3

12 2 12 12 2

       
          

           

h h hh h h h
I E h E E h   

 

the mass density and the flexural rigidity simplify as: 

0( ) ( )m x m b x  (31) 

0( ) ( )EI x I b x  (32) 

Assuming the solution of the equation (7) to be 

( , ) ( )siny x t y x t   

E
2
, h

2
, ρ

2
 

E
1
, h

1
, ρ

1
 

E
3
, h

3
, ρ

3
 

L 

bL 

b
0
 

b(x) 
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then after simplification, it reduces to 

4 3 2
2 2 0

4 3 2

0

2 ( ) 0     
md y d y d y

y x
dx dx dx I

 (33) 

Solution of Eq. (33) can be obtained as: 

 2
1 2 3 4( ) cos( ) sin( ) cosh( ) sinh( )



   
x

y x e C ax C ax C bx C bx  (34) 

where, 

2 2

0 04 4
;

2 2

    
 a b  (35) 

Here,  

20
0

0

 
m

I
  

 

and C1, C2,  C3,  C4,   are constant and can be determined from boundary conditions. 

For fixed-free beam boundary conditions are: 

(0) 0; (0) 0; ( ) 0; ( ) 0     y y y L y L  (36) 

The natural frequencies of the fixed-free beam can be obtained substituting these boundary 

conditions into Eq. (34). A characteristic equation for this configuration of beam is obtained as: 

 
3 3 3 2

5 5 4 3 2

3 3
3 3

2 4 2 4 2 2
2 4 4 2

3 2
4 2 3

cos( )sinh( )( )
8 2 2 4 4

cos( )cosh( )( 2 )
8 2 2

sin( )sinh( )( 3 )
16 4 16 4 2

sin( )cosh( )( ) 0
4 4

        

    

       

    

ab ab a b a ab
ab a b aL bL ab a b

ab ab a b
aL bL a b

a a b b a b
aL bL a b a b

b a b
aL bL a b a b

 (37) 

 

3. Applications 

In application studies, for both uniform and non-uniform cross-section sandwich beams the 

natural frequencies were obtained by using presented analytical method and by utilizing numerical 

approach. The non-uniformity is expressed as a function ( 2

0( )  xb x b e ) for which the width 

changes through the length. The numerical studies were made by using ANSYS Wokbech finite 

element software. For both uniform and non-uniform sandwich beams, the material properties are given 

in Table 1. The sandwich structures are made by using two aluminum face layers and ABS core layer 

for both types. The layers of the sandwich beams were assumed to be thin enough as it is supposed to 

be for Euler-Bernoulli beam theory approach and assumed to remain in contact form with each other 

with perfect connection. 
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Table 1. Material properties of uniform and non-uniform cross-section sandwich beams. 

Parameters 
Uniform 

Cross-section 

Non-uniform  

Cross-section 

E1 (GPa) 69 69 

E2 (GPa) 2 2 

E3 (GPa) 69 69 

ρ1 (kg/m3) 2700 2700 

ρ2 (kg/m3) 1020 1020 

ρ3 (kg/m3) 2700 2700 

h1 (mm) 1 1 

h2 (mm) 1 1 

h3 (mm) 1 1 

b (mm) 50 (constant) 
2

0( )  xb x b e  

L (mm) 500 500 

  For a few bending modes, the natural frequencies obtained by presented analytical solution are 

illustrated in Figure 4. (in which the value of the characteristic equation is zero) and the ones obtained 

by numerical approach are given in Table 2 and Table 3 with percentage difference for both uniform 

and non-uniform cross-section sandwich beams comperatively. 

Figure 4. Natural frequencies of uniform and non-uniform cross-section sandwich beams. 

 

Table 2. The first five natural frequencies of uniform cross-section sandwich beams for bending vibarations. 

Frequencies  

(Hz) 
Analytical 

Numerical 

(ANSYS) 

Difference 

(%) 

1st Frequency  10.81 10.86 -0.46 

2nd Frequency 67.73 67.89 -0.24 

3rd Frequency 189.60 189.38 0.12 

4th Frequency 371.60 369.22 0.64 

5th Frequency 614.30 606.48 1.27 

Table 3. The first five natural frequencies of non-uniform cross-section sandwich beams for bending vibarations.. 

Frequencies  

(Hz) 
Analytical 

Numerical 

(ANSYS) 

Difference 

(%) 

1st Frequency  14.38 14.67 -2.02 

2nd Frequency 73.43 74.45 -1.39 

3rd Frequency 195.20 195.50 -0.15 

4th Frequency 377.10 374.60 0.66 

5th Frequency 619.80 610.39 1.52 
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4. Conclusion 

An analytical solution for vibration analysis of uniform and non-uniform cross-section sandwich 

cantilever beams is presented. The sandwich beams were considered with small thicknesses and they 

were handled as Euler-Bernoulli beams for which the shear deformations and the rotational effects are 

ignored. The natural frequencies of both type sandwich structures were obtained by using the presented 

analytical solution and ANSYS finite element software. It is observed that the analytical and the 

numerical results are in good agreement with maximum percentage difference as 1.27 for the uniform 

cross-section and 1.52 for the non-uniform cross-section sandwich beams. According to obtained results, 

for dynamic analysis of thin layered sandwich beams the presented solution using the Euler-Bernoulli 

Beam Theory approach is usefull and can give good results. 
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