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Abstract

The object of this paper is to study Ricci solitons under some curvature conditions in nearly
cosymplectic manifolds.

1. Introduction

Cosympletic manifold is an odd dimensional counterpart of a Kähler manifold which is defined by Lipperman and Blair 1967 [9]. In parallel
with Olzak’s work [1], [2], Endo investigated the geometry of nearly cosymplectic manifolds [3].
Ricci soliton is a special solution to the Ricci flow introduced by Hamilton [10] in the year 1982. In [12], Sharma initiated the study of Ricci
solitons in contact Riemannian geometry. Later, Tripathi [13], Nagaraja et al. [11] and others extensively studied Ricci solitons in contact
metric manifolds. Ricci soliton in Riemanian manifold (M,g) is a natural generalization of an Einstein metric and is defined as a triple
(g,V,λ ) with g a Riemannian metric, V a vector field and λ a real scalar such that

(LV g)(X ,Y )+2S(X ,Y )+2λg(X ,Y ) = 0 (1.1)

where S is the Ricci tensor of M and LV denoted the Lie derivative operator along the vector field V . The Ricci soliton is said to be shrinking,
steady and expanding accordingly as λ is negative, zero and positive respectively.
In [16], [19], authors studied the properties of generalized recurrent manifolds where as the properties of generalized ϕ-recurrent manifolds
have studied in [8], [16], [17] and [18].
In this paper we study some curvature conditions such that ϕ-recurrent, pseudo-projective ϕ-recurrent, concircular ϕ-recurrent and Ricci
recurrent which characterize Ricci solitons in nearly cosymplectic manifolds.

2. Preliminaries

2.1. Nearly Cosymplectic Manifolds

Let (M,ϕ,ξ ,η ,g) be an (2n+ 1)−dimensional almost contact Riemannian manifold, where ϕ is a type of (1,1)−tensor field, ξ is the
structure vector field, η is a 1−form and g is the Riemannian metric. It is well known that the (ϕ,ξ ,η ,g)−structure satisfies the conditions
[7] for any vector fields X and Y on M,

ϕ2X =−X +η(X)ξ , η(ξ ) = 1, g(X ,ξ ) = η(X)

η(ϕX) = 0, ϕξ = 0, (2.1)
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g(ϕX ,ϕY ) = g(X ,Y )−η(X)η(Y ). (2.2)

A nearly cosymplectic manifold is an almost contact metric manifold (M,ϕ,ξ ,η ,g) such that

(∇X ϕ)Y +(∇Y ϕ)X = 0, (2.3)

for all vector fields X ,Y . Clearly, this condition is equivalent to (∇X ϕ)X = 0. It is known that in a nearly cosymplectic manifold the Reeb
vector field ξ is Killing and satisfies ∇ξ ξ = 0 and η is a contact form ∇ξ η = 0. The tensor field h of type (1,1) defined by

∇X ξ = hX , (2.4)

is skew symmetric and anticommutes with ϕ. It satisfies

hξ = 0, η ◦ϕ = 0, (2.5)

and the following formulas hold [3], [4]

g((∇X ϕ)Y,hZ) = η(Y )g(h2X ,ϕZ)−η(X)g(h2Y,ϕZ),

tr(h2) = constant,

R(Y,Z)ξ = η(Y )h2Z−η(Z)h2Y, (2.6)

S(Z,ξ ) =−tr(h2)η(Z), (2.7)

where R, S, Q and η are the Riemannian curvature tensor type of (1,3), the Ricci tensor of type (0,2), the Ricci operator defined by
g(QX ,Y ) = S(X ,Y ).
Let (g,V,λ ) be a Ricci soliton in a nearly cosymplectic manifold M. Taking V = ξ then from (2.4) and (1.1), we have

S(X ,Y ) =−λg(X ,Y ). (2.8)

The above equation yields

QX =−λX , (2.9)

S(X ,ξ ) = λη(X), (2.10)

r =−λn. (2.11)

Also by definition of covariant derivative, we have

(∇W S)(Y,ξ ) = ∇W S(Y,ξ )−S(∇WY,ξ )−S(Y,∇W ξ ). (2.12)

3. ϕ-Recurrent Nearly Cosymplectic Manifolds

Definition 3.1. A nearly cosymplectic manifold is said to be ϕ-recurrent manifold [14] if there exist a non-zero 1−form A such that

ϕ
2((∇W R)(X ,Y )Z = A(W )R(X ,Y )Z (3.1)

for arbitrary vector fields X , Y, Z, W.
Let us consider a ϕ-recurrent nearly cosymplectic manifold. By virtue of (2.1) and (3.1), we have

−(∇W R)(X ,Y )Z +η((∇W R)(X ,Y )Z)ξ = A(W )R(X ,Y )Z. (3.2)

Theorem 3.2. Let given Ricci soliton on nearly cosymplectic manifolds. Then there is not exist ϕ−recurrent nearly cosymplectic manifold.
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Proof. Contracting (3.2) with U , we obtain

−g((∇W R)(X ,Y )Z,U)+η((∇W R)(X ,Y )Z)η(U) = A(W )g(R(X ,Y )Z,U). (3.3)

Let ei (i = 1,2, ...,2n+1), be an orthonormal basis of the tangent space at any point of the manifold. Taking X =U = ei in (3.3) and taking
summation over i, 1≤ i≤ 2n+1, we get

−(∇W S)(Y,Z) = A(W )S(Y,Z). (3.4)

Replacing Z by ξ in (3.4) and using (2.7), we have

−(∇W S)(Y,ξ ) =−tr(h2)A(W )η(Y ). (3.5)

Using (2.7) and (2.4) in (2.12), we obtain

(∇W S)(Y,ξ ) =−[S(Y,hW )+ tr(h2)g(Y,hW )]. (3.6)

In view of (3.5) and (3.6), we have

S(Y,hW ) =−tr(h2)[g(Y,hW )+A(W )η(Y )]. (3.7)

Taking Y = ξ in (3.7), we get

S(ξ ,hW ) =−tr(h2)[g(Y,hW )+A(W )η(ξ ). (3.8)

Using (2.1), (2.5) and (2.8) in (3.8), we find

−λg(hW,ξ ) = tr(h2)A(W ),

tr(h2)A(W ) = 0,

A(W ) = 0.

This is a contradiction.

4. Generalized ϕ−Recurrent Nearly Cosymplectic Manifolds

Definition 4.1. A nearly cosymplectic manifold is said to be generalized ϕ-recurrent manifold if its curvature tensor R satisfies the relation

ϕ
2((∇W R)(X ,Y )Z) = A(W )R(X ,Y )Z +B(W ){g(Y,Z)X−g(X ,Z)Y}, (4.1)

where A and B are 1−forms and non-zero and these are defined by

A(W ) = g(W,ρ1), B(W ) = g(W,ρ2),

and ρ1,ρ2 are unit vector fields associated with 1−forms A, B respectively.

Theorem 4.2. In a generalized ϕ-recurrent strictly nearly cosymplectic manifold (Mn,g), the associated vector fields ρ1 and ρ2 of the
1−forms A and B respectively are co-directional.

Proof. In consequence of (2.1), equation (4.1) becomes

−(∇W R)(X ,Y )Z +η((∇W R)(X ,Y )Z)ξ = A(W )R(X ,Y )Z +B(W ){g(Y,Z)X−g(X ,Z)Y} ,

from which it follows by taking inner product with U that

−g((∇W R)(X ,Y )Z,U)+η((∇W R)(X ,Y )Z)η(U) = A(W )g(R(X ,Y )Z,U)+B(W ){g(Y,Z)g(X ,U)−g(X ,Z)g(Y,U)}. (4.2)

Let {ei}, i = 1,2, ...,2n+1 be an orthonormal basis of the tangent space at any point of the manifold. Then putting X =U = ei in (4.2) and
taking summation over i,1≤ i≤ 2n+1, we get

−(∇W S)(Y,Z)+
2n+1

∑
i=1

η((∇W R)(ei,Y )Z)η(ei) =

A(W )S(Y,Z)+2nB(W )g(Y,Z). (4.3)

Again replacing Z by ξ in (4.3) and using (2.1) and (2.7), we get

−(∇W S)(Y,ξ )+
2n+1

∑
i=1

η((∇W R)(ei,Y )ξ )η(ei) = {−trh2A(W )+2nB(W )}η(Y ). (4.4)

The second term of left hand side in (4.4) with (2.1)takes the form

2n+1

∑
i=1

η((∇W R)(ei,Y )ξ )η(ei) = η((∇W R)(ξ ,Y )ξ )η(ξ ) = g((∇W R)(ξ ,Y )ξ ,ξ ). (4.5)
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Using (2.4), (2.5)and (2.6)in (4.5), we obtain

g((∇W R)(ξ ,Y )ξ ,ξ ) = 0. (4.6)

In view of (4.6), (4.4) becomes

(∇W S)(Y,ξ ) = {tr(h2)A(W )−2nB(W )}η(Y ). (4.7)

The equation (2.12) with (2.4) and (2.7) takes the form

(∇W S)(Y,ξ ) =−tr(h2)g(Y,hW )−S(Y,hW ). (4.8)

From equations (4.7) and (4.8), we find

−tr(h2)g(Y,hW )−S(Y,hW ) = (tr(h2)A(W )−2nB(W ))η(Y ). (4.9)

Replacing Y by ξ then using (2.5) in (4.9) we have

A(W ) = (
2n

tr(h2)
)B(W ).

This means that the vector fields ρ1 and ρ2 of the 1−forms are co-directional.

5. Ricci-Recurrent Nearly Cosymplectic Manifold

Theorem 5.1. Let given Ricci soliton on nearly cosymplectic manifolds. Then there is not exist Ricci recurrent nearly cosymplectic manifold.

Proof. A nearly cosymplectic manifold is said to be Ricci-recurrent manifold if there exist a non-zero 1−form A such that

(∇W S)(Y,Z) = A(W )S(Y,Z). (5.1)

Replacing Z by ξ in (5.1) and using (2.7), we have

(∇W S)(Y,ξ ) =−tr(h2)A(W )η(Y ). (5.2)

Using (2.4) and (2.7) in (2.12), we obtain

(∇W S)(Y,ξ ) =−[S(Y,hW )+ tr(h2)g(y,hW )]. (5.3)

In view of (5.2) and (5.3), we have

S(Y,hW ) =−tr(h2)g(Y,hW )+ tr(h2)A(W )η(Y ). (5.4)

Taking Y = ξ in (5.4), we get

A(W ) = 0.

It contradicts that A 6= 0. Thus, the proof is completed.

6. Pseudo-projective ϕ−recurrent Nearly Cosymplectic Manifold

In a nearly cosymplectic manifold M, the pseudo-projective curvature tensor P̃ is given by [20]

P̃(X ,Y )Z = aR(X ,Y )Z +b[S(Y,Z)X−S(X ,Z)Y ]− r
2n+1

(
a
2n

+b)[g(Y,Z)X−g(X ,Z)Y ] (6.1)

where a and b are constants such that a,b 6= 0.

Theorem 6.1. Ricci soliton in a pseudo-projective ϕ-recurent nearly cosymplectic manifold (M,g) with 1-form non-zero A depends on the
sign of tr(h2).

Proof. A nearly cosymplectic manifold is said to be pseudo-projective ϕ-recurrent manifold if there exists a non-zero 1−form A such that

ϕ
2((∇W P̃)(X ,Y )Z) = A(W )P̃(X ,Y )Z, (6.2)

for arbitrary vector fields X , Y, Z, W . Let us consider a pseudo-projective ϕ-recurrent nearly cosymplectic manifold. By virtue of (2.1) and
(6.2), we have

−(∇W P̃)(X ,Y )Z)+η((∇W P̃)(X ,Y )Z)ξ = A(W )P̃(X ,Y )Z). (6.3)

Contracting (6.3) with U , we obtain

−g((∇W P̃)(X ,Y )Z,U)+η((∇W P̃)(X ,Y )Z)η(U) = A(W )g(P̃(X ,Y )Z,U). (6.4)
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Let ei (i = 1,2, ...,2n+1), be an orthonormal basis of the tangent space at any point of the manifold. Then putting X =U = ei in (6.4) and
taking summation over i, 1≤ i≤ 2n+1, we get

(∇W S)(Y,Z) = A(W ){S(Y,Z)− r
2n+1

g(Y,Z)}. (6.5)

Replacing Z by ξ in (6.5) and using (2.1) and (2.7), we have

(∇W S)(Y,ξ ) =−A(W ){tr(h2)− r
2n+1

}η(Y ). (6.6)

Using (2.7) and (2.4) in (2.12), we obtain

(∇W S)(Y,ξ ) =−[S(Y,hX)+ tr(h2)g(Y,hX). (6.7)

In view of(6.6) and (6.7), we have

S(Y,hX) = A(W ){tr(h2)+
r

2n+1
}η(Y )− tr(h2)g(Y,hX).

Taking Y = ξ and using (2.5), (2.8), (2.11) we get

A(W ){tr(h2)− λn
2n+1

}= 0.

for non-zero A(W ) we find

λ =
tr(h2)(2n+1)

n
.

Hence, the proof is completed.

7. Concircular ϕ−Recurrent Nearly Cosymplectic Manifold

The Concircular curvature tensor of (M,g) is given by [21]

C̃(X ,Y )Z = R(X ,Y )Z− r
2n(2n+1)

[g(Y,Z)X−g(X ,Z)Y ]. (7.1)

Definition 7.1. A nearly cosymplectic manifold is said to be concircular ϕ−recurrent manifold if there exist a non-zero 1−form A such that

ϕ
2((∇W C̃)(X ,Y )Z) = A(W )C̃(X ,Y )Z. (7.2)

for arbitrary vector fields X , Y, Z, W.

Theorem 7.2. Ricci soliton in a concircular ϕ−recurrent nearly cosymplectic manifold M with 1−form non-zero A depends on the sign of
tr(h2).

Proof. Let us consider a concircular ϕ−recurrent nearly cosymplectic manifold. By virtue of (2.1) and (7.2), we have

−(∇W C̃)(X ,Y )Z +η((∇W C̃)(X ,Y )Z)ξ = A(W )C̃(X ,Y )Z. (7.3)

Contracting (7.3) with U , we obtain

−g((∇W C̃)(X ,Y )Z,U)+η((∇W C̃)(X ,Y )Z)η(U) = A(W )g(C̃(X ,Y )Z,U). (7.4)

Let ei (i = 1,2, ...,2n+1), be an orthonormal basis of the tangent space at any point of the manifold. Then putting X =U = ei in (7.4) and
taking summation over i, 1≤ i≤ 2n+1, we get

(∇W S)(Y,Z) =−A(W ){S(Y,Z)− r
2n+1

g(Y,Z)}. (7.5)

Replacing Z by ξ in (7.5) and using (2.1) and (2.7), for a constant r, we have

(∇W S)(Y,ξ ) = A(W )η(Y ){tr(h2)+
r

2n+1
}. (7.6)

Using (2.7) and (2.4) in (2.12), we obtain

(∇W S)(Y,ξ ) =−[S(Y,hW )+ tr(h2)g(Y,hW )]. (7.7)

In view of (7.6) and (7.7), we have

S(Y,hW ) =−{tr(h2)+
r

2n+1
}A(W )η(Y )− tr(h2)g(Y,hW ). (7.8)

Taking Y = ξ , and using (2.5) and (2.8) a characteristic vector field in (7.8), we get

A(W ){tr(h2)+
r

2n+1
}= 0. (7.9)

Using (2.11) in (7.9), for non-vanishing A, we have

λ =
tr(h2)(2n+1)

n
.

So, we have desired result.
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