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Abstract 

Let (ℵ, 𝐹) be a forward complete and connected Finsler manifold of dimensional 𝑛 ≥ 2. In this study, we extend 

Ambrose’s compactness theorem in Riemannian manifolds to Finsler manifolds by using the weighted Ricci 

curvature. We use the Bochner Weitzenböck formula and suitable sequence choices for the proofs of the desired 

results. 
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Ambrose Teoreminin Finsler Versiyonu Üzerine Bir Not 
 

 

Öz 

(ℵ, 𝐹) manifoldu forward tam, bağlantılı ve 𝑛 ≥ 2 boyutlu bir Finsler manifold olsun. Bu çalışmada, Riemann 

manifoldlarında elde edilen Ambrose kompaktlık teoremi, ağırlıklı Ricci eğriliği kullanılarak Finsler manifoldlara 

genişletilmiştir. İstenilen sonuçların kanıtları için Bochner Weitzenböck formülü ve uygun dizi seçimleri 

kullanılmıştır. 

 

Anahtar kelimeler: Finsler manifold, S-eğriliği, ağırlıklı Ricci eğriliği.  

 
1. Introduction 
 

Finsler geometry includes analogues for many of the natural objects in Riemannian geometry. The recent 

works have shown that some well-known results in Riemannian geometry have been extended to the 
Finsler setting. For examples in this scope, the reader is referred to [1-3] and references therein. 

In the Riemannian case, Ambrose [4] proved a compactness theorem by a condition on the integral of 

Ricci tensor along geodesics. Later, this theorem was generalized to the Finsler manifolds by Anastasiei 

(see, [5]). Besides, Kim [6] has established the Finsler version of Galloway’s compactness theorem [7] 
by using Ricci scalar. 

 In this work, we will obtain the corresponding Zhang’s theorem (see Theorem 1.4 in [8]) and 

Cavalcante-Oliveira-Santos’s theorem (see Theorem 2.1 in [9]), which are the generalizations of 

Ambrose compactness theorem, for the weighted Ricci curvature R𝑖𝑐∞ and R𝑖𝑐𝑁 on Finsler manifolds, 

respectively. In particular, we will use Zhang’s approach to give proofs of the following results. 

 

Theorem 1.  Let ℵ be a forward complete and connected 𝑛-dimensional Finsler manifold. Assume  every 

geodesic 𝛾(𝑡) issuing from point 𝑝 ∈ ℵ satisfies  

 

∫
∞

0
R𝑖𝑐∞(𝛾

′(𝑡))𝑑𝑡 = ∞, (1) 

 

and the 𝑆-curvature |𝑆(𝛾′(𝑡))| ≤ 𝐻/𝑟 , where 𝑟(𝑥) = 𝑑(𝑥, 𝑝) is the distance function from 𝑝 ∈ ℵ, then 

manifold is compact.  

 Next we obtain a compactness theorem for weighted Ricci tensor R𝑖𝑐𝑁. 
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Theorem 2.  Let ℵ be a forward complete and connected 𝑛-dimensional Finsler manifold. Assume every 

geodesic 𝛾(𝑡) issuing from point 𝑝 ∈ ℵ satisfies  

 

∫
∞

0
R𝑖𝑐𝑁(𝛾

′(𝑡))𝑑𝑡 = ∞,                                                                                                                        (2) 

 

then manifold is compact.  

 

 The above theorems are not require the weighted Ricci tensor R𝑖𝑐∞ and R𝑖𝑐𝑁 to be everywhere 

non-negative. 

 Now, we review below basic informations of the Finsler geometry to be used in the proofs of 

main theorems.  

 

2. Finsler Geometry 

 

Let (ℵ, 𝐹) be a Finsler 𝑛-manifold equipped by Finsler metric 𝐹:𝑇ℵ → [0,∞). Let (𝑥, 𝑦) be a point of 

𝑇ℵ such that 𝑥 ∈ ℵ and 𝑦 ∈ 𝑇𝑥ℵ and Ω:𝑇ℵ → ℵ be the natural projection. A Finsler metric is a 𝒞∞-

Finsler structure of ℵ satisfying the following statements:  

 

1. (Regularity) 𝐹 is smooth on 𝑇ℵ\0,  

2. (Positive homogeneity) 𝐹(𝑢, µ𝑣) = µ𝐹(𝑢, 𝑣) for all µ > 0,  

3. (Strong convexity) The 𝑛 × 𝑛 matrix (fundamental quadratic form)  

 

𝑔𝑖𝑗: =
1

2
[𝐹2]𝑣𝑖𝑣𝑗                                                                                                                                     (3) 

 

is positively definite at each point of  𝑇ℵ\0.  

The Chern curvature 𝑅𝑉  for vectors fields 𝑋, 𝑌, 𝑍 ∈ 𝑇𝑥ℵ\0 is defined by  

 

𝑅𝑉(𝑈, 𝑉)𝑍:= ∇𝑈
𝑉∇𝑉

𝑉𝑍 − ∇𝑉
𝑉∇𝑈

𝑉𝑍 − ∇[𝑈,𝑉]
𝑉 𝑍,                                                                                           (4) 

 

and for given linearly independent vectors 𝑉,𝑊 ∈ 𝑇𝑥ℵ\0, the flag curvature is defined as follows:  

 

𝐾(𝑊,𝑉): =  
𝑔𝑉(𝑅

𝑉(𝑊,𝑉)𝑉,𝑊)

𝑔𝑉(𝑊,𝑊)𝑔𝑉(𝑉,𝑉)−𝑔𝑉(𝑊,𝑉)2
                                                                                                      (5) 

 

Then the Ricci curvature of 𝑉 is defined as  

 

R𝑖𝑐(𝑉):= ∑𝑛−1𝑖=1 𝐾(𝑉, 𝐸𝑖),                                                                                                                      (6) 

 

where {𝑒1, 𝑒2, . . . , 𝑒𝑛−1 , 𝑉/𝐹(𝑉)} is an orthonormal basis of 𝑇𝑥ℵ with respect to 𝑔𝑉 . 

Let 𝑑𝜇 = 𝜎𝐹(𝑥)𝑑𝑥
1𝑑𝑥2 . . . 𝑑𝑥𝑛  be the volume form on ℵ. A vector 𝑊 ∈ 𝑇𝑥ℵ\0,  

 

𝜏(𝑥,𝑊):= ln
√det(𝑔𝑖𝑗(𝑥,𝑊))

𝜎𝐹(𝑥)
                                                                                                                    (7) 

 

is a scalar function on 𝑇𝑥ℵ\0  and called the distortion of (ℵ, 𝐹, 𝑑𝜇).  
Setting  

 

𝑆(𝑥,𝑊):=
𝑑

𝑑𝑡
(𝜏(𝛾(𝑡), �̇�(𝑡)))|𝑡=0,                                                                                                         (8) 

 

where 𝛾 is the geodesic with 𝛾(0) = 𝑥, �̇�(0) = 𝑊. 𝑆(𝑥, 𝜆𝑊) = 𝜆𝑆(𝑥,𝑊) for all 𝜆 > 0. 𝑆 is a scalar 

function on 𝑇𝑥ℵ\0 and called the 𝑆-curvature. 𝑆-curvature measures the change rate of the distortion 

along geodesics in the direction 𝑊 ∈ 𝑇𝑥ℵ. 
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For all 𝑁 ∈ (𝑛,∞), we define the weighted Ricci curvature of (ℵ, 𝐹, 𝑑𝜇) as follows (see [1]):  

 

{
 
 

 
 R𝑖𝑐𝑁(𝑊):= R𝑖𝑐(𝑊) + �̇�(W) −

𝑆(𝑊)2

𝑁 − 𝑛
,

R𝑖𝑐∞(𝑊):= R𝑖𝑐(W) + �̇�(𝑊),

R𝑖𝑐𝑛(𝑊)  ∶= {
R𝑖𝑐 + �̇�(𝑊), 𝑖𝑓    𝑆(𝑊) = 0
−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Also R𝑖𝑐𝑁(𝑘𝑊):= 𝑘
2R𝑖𝑐𝑁(𝑊) for 𝑘 > 0.  

A Finsler manifold (ℵ, 𝐹) is forward complete if every geodesic 𝜎: [0, 𝐿] → ℵ, can be expanded to a 

geodesic on [0,∞). According to the Hopf-Rinow theorem, every pair of points 𝑝, 𝑞 ∈ ℵ can be joined 

by a minimal geodesic. 

 

The Legendre transformation ℒ: 𝑇ℵ → 𝑇∗ℵ is defined as  

 

ℒ(𝑊):= {
𝑔𝑊(𝑊, . ), 𝑊 ≠ 0,
0 𝑊 = 0.

 

 

Let 𝜇: ℵ → 𝑅 be a smooth function, the gradient of 𝜇 at 𝑦 ∈ ℵ is defined as ∇𝜇(𝑦):= ℒ−1(𝑑𝜇). 
The divergence of a vector field 𝑍 = 𝑍𝑖𝜕/𝜕𝑥𝑖 on ℵ is given as 

 

d𝑖𝑣𝑍:= ∑𝑛𝑖=1 (
𝜕𝑍𝑖

𝜕𝑥𝑖
+𝑍𝑖 𝜕𝜑

𝜕𝑥𝑖
).                                                                                                                (9) 

 

for an arbitrary volume form 𝑑𝜇 = 𝑒𝜑𝑑𝑥1𝑑𝑥2 . . . 𝑑𝑥𝑛 . Then we define the Finsler-Laplacian of 𝜇 by 

Δ𝜇:= d𝑖𝑣(∇𝜇) = d𝑖𝑣(ℒ−1(𝑑𝜇)). 
The following lemma will be very helpful in the proofs of main results (see [10]).  

 

Lemma 3.  Let (ℵ, 𝐹, 𝑑𝜇) be a Finsler 𝑛-manifold, and ℎ: ℵ → 𝑅 a smooth function on ℵ. Then on  

𝒰 = {𝑥 ∈ ℵ: ∇ℎ|𝑥 ≠ 0} we have  
 

Δℎ = ∑𝑖 𝐻(ℎ)(𝐸𝑖 , 𝐸𝑖) − 𝑆(∇ℎ): = t𝑟∇ℎ𝐻(ℎ) − 𝑆(∇ℎ),          (10) 

 

where 𝐸1, 𝐸2, . . . , 𝐸𝑛 is a local 𝑔∇ℎ-orthonormal frame on 𝒰.  

Finally, the reversibility 𝜆  of ℵ is defined as  

 

𝜆𝐹:= sup
𝑥∈𝑀,𝑦∈𝑇𝑀\0

𝐹(𝑥,−𝑦)

𝐹(𝑥,𝑦)
.                                                                                                                     (11) 

 

Clearly, 𝜆𝐹 ∈ [1,∞], and (ℵ, 𝐹) is reversible if 𝜆𝐹 = 1. 

 

3. Proofs of the Theorems   

 

Given (ℵ, 𝐹, 𝑑𝜇) Finsler manifold of dimensional 𝑛 and 𝑟(𝑥) = 𝑑(𝑥, 𝑞) distance function with respect 

to a fixed point 𝑞 ∈ ℵ. The distance function 𝑟 is only smooth on ℵ − (𝐶𝑞 ∪ {𝑞}) where 𝐶𝑞  is the cut 

locus of the point 𝑞 ∈ ℵ. Let  𝛾 be a minimal unit speed geodesic segment. We have ∇𝑟 = 𝛾′(𝑡) and 

𝐹(∇𝑟) = 1 (see [11]). Besides, we obtain a weighted Riemannian metric 𝑔∇𝑟 by using the Finsler metric. 

Thus we can apply Riemannian calculation for 𝑔∇𝑟  (on ℵ − (𝐶𝑞 ∪ {𝑞})). 
Firstly we shall achieve the proof of Theorem 1.   

 

Proof of Theorem 1. Assume by contradiction that ℵ is non-compact Finsler manifold and let 𝛾(𝑡) be a 

unit speed ray starting from 𝑝 ∈ ℵ. For every 𝑡 > 0, denote by 𝜂(𝑡):= (Δ𝑟)(𝛾(𝑡)) the Finsler-Laplacian 

of distance function. In the Finsler case, by Lemma 3, the Bochner Weitzenböck formula [12] says 
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0 ≥ R𝑖𝑐∞(𝛾
′(𝑡)) + 𝜂′(𝑡) +  1

𝑛−1
(𝜂(𝑡) + 𝑆(𝛾′(𝑡)))2.      (12) 

 

By the inequality (𝑥 + 𝑦)2 ≥
1

𝛼+1
𝑥2 −

1

𝛼
𝑦2, 𝛼 > 0, we have  

 

0 ≥ R𝑖𝑐∞(𝛾
′(𝑡)) + 𝜂′(𝑡) +

𝜂(𝑡)2

(𝑛−1)(𝛼+1)
− 𝑆(𝛾′(𝑡))2

(𝑛−1)𝛼
 .     (13) 

 
Let us the modified Finsler-Laplacian denote by �̃�(𝑡): = 𝜂(𝑡) + ℎ(𝑡), where ℎ(𝑡) is a smooth function. 

Then from (13) and the assumption given in Theorem 1, we get  
 

0 ≥ R𝑖𝑐∞(𝛾
′(𝑡)) + (�̃�(𝑡) − ℎ(𝑡))′ +

(�̃�(𝑡) − ℎ(𝑡))2

(𝑛 − 1)(𝛼 + 1)
−
𝑆(𝛾′(𝑡))2

(𝑛 − 1)𝛼
 

   ≥ R𝑖𝑐∞(𝛾
′(𝑡)) + �̃�′(𝑡) +

�̃�(𝑡)2

(𝑛−1)(𝛼+1)(𝛽+1)
       

   −ℎ′(𝑡) −
ℎ(𝑡)2

(𝑛−1)(𝛼+1)𝛽
−

𝐻2

(𝑛−1)𝛼𝑟2
                                                                                                              (14) 

 

for every 𝛽 > 0. Taking (𝑛 − 1)(𝛼 + 1)𝛽 = 𝑘 > 0 and (𝑛 − 1)𝛼 = 𝑙 > 0, we have  
 

0 ≥ R𝑖𝑐∞(𝛾
′(𝑡)) + �̃�′(𝑡) +

�̃�(𝑡)2

𝑙+𝑘+𝑛−1
− ℎ′(𝑡) −

ℎ(𝑡)2

𝑘
− 𝐻2

𝑙𝑟2
  (15) 

 

Here, if ℎ(𝑡) and 𝑙 are chosen to be ℎ(𝑡) = 𝑘/2𝑟 and 𝑙 = 4𝐻2/𝑘, then the term −ℎ′(𝑡) −
ℎ(𝑡)2

𝑘
−

𝐻2

𝑙𝑟2
  in 

(15) equals to zero. Therefore we have  

 

R𝑖𝑐∞(𝛾
′(𝑡)) ≤ −�̃�′(𝑡) −

𝑘�̃�(𝑡)2

4𝐻2+𝑘2+(𝑛−1)𝑘
        (16) 

 

Integrating both sides of the inequality (16) from 1 to 𝑡, we obtain  
 

∫
𝑡

1
R𝑖𝑐∞(𝛾

′(𝑠))𝑑𝑠 ≤ −�̃�(𝑡) + �̃�(1) −  ∫
𝑡
1

𝑘�̃�(𝑠)2

4𝐻2+𝑘2+(𝑛−1)𝑘
𝑑𝑠. (17) 

 

On the other hand, under the assumption  

 

∫
∞

0
R𝑖𝑐∞(𝛾

′(𝑡))𝑑𝑡 = ∞, (18) 

 

given in Theorem 1, we have  

 

lim
𝑡→∞

− �̃�(𝑡) − ∫
𝑡
1

𝑘�̃�(𝑠)
2

4𝐻2+𝑘2+(𝑛−1)𝑘
𝑑𝑠 = ∞.                                                                                                      (19) 

 

Here, multiplying by  
𝑘

4𝐻2+𝑘2+(𝑛−1)𝑘
  on both sides then yields  

 

lim
𝑡→∞

−  
𝑘�̃�(𝑡)

4𝐻2+𝑘2+(𝑛−1)𝑘
−  ∫

𝑡

1
(

𝑘�̃�(𝑠)

4𝐻2+𝑘2+(𝑛−1)𝑘
)
2
 𝑑𝑠 = ∞.     (20) 

 

Therefore, given 𝜗 > 1 there exists 𝑡1 > 1 such that  
 

−
𝑘�̃�(𝑡)

4𝐻2+𝑘2+(𝑛−1)𝑘
− ∫

𝑡

1
(

𝑘�̃�(𝑠)

4𝐻2+𝑘2+(𝑛−1)𝑘
)2𝑑𝑠 ≥ 𝜗                                                                            (21) 
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for all 𝑡 ≥ 𝑡1. 

Let us set  

𝑡ℓ+1 = 𝑡ℓ + 𝜗
1−ℓ      f𝑜𝑟  ℓ ≥ 1.     (22) 

 

The one that seems {𝑡ℓ} is an increasing sequence and it converges to Υ:= 𝑡1 +
𝜗

𝜗−1
 as ℓ → ∞. 

We claim the fact that  
 

−�̃�(𝑡) ≥
4𝐻2+𝑘2+(𝑛−1)𝑘

𝑘
𝜗ℓ    f𝑜𝑟  𝑎𝑙𝑙  𝑡 ≥ 𝑡ℓ .                                                                                     (23) 

 

To prove the claim, we use induction argument. It is trivial from inequality (21) for ℓ = 1. By induction, 

we get the claim for ℓ. Then we must prove that −�̃�(𝑡) ≥
4𝐻2+𝑘2+(𝑛−1)𝑘

𝑘
𝜗ℓ+1 for all 𝑡 ≥ 𝑡ℓ+1. By means 

of the inequality (21), we obtain  
 

−�̃�(𝑡) ≥
4𝐻2 + 𝑘2 + (𝑛 − 1)𝑘

𝑘
𝜗 +

𝑘

4𝐻2 + 𝑘2 + (𝑛 − 1)𝑘
∫
𝑡

1

�̃�(𝑠)2𝑑𝑠 

≥
𝑘

4𝐻2 + 𝑘2 + (𝑛 − 1)𝑘
∫
𝑡ℓ

1

𝜂(𝑠)2𝑑𝑠+
𝑘

4𝐻2 + 𝑘2 + (𝑛 − 1)𝑘
∫
𝑡

𝑡ℓ

𝜂(𝑠)2𝑑𝑠 

≥
𝑘

4𝐻2 + 𝑘2 + (𝑛 − 1)𝑘
∫
𝑡

𝑡ℓ

𝜂(𝑠)2𝑑𝑠 

≥
4𝐻2 + 𝑘2 + (𝑛 − 1)𝑘

𝑘
𝜗2ℓ(𝑡 − 𝑡ℓ) 

≥
4𝐻2+𝑘2+(𝑛−1)𝑘

𝑘
𝜗2ℓ(𝑡ℓ+1 − 𝑡ℓ) =

4𝐻2+𝑘2+(𝑛−1)𝑘

𝑘
𝜗ℓ+1.     (24) 

 

This proves the above claim. 

From hence, we have  
 

lim
ℓ→∞

− �̃�(𝑡ℓ) = −�̃�(Υ) ≥ lim
ℓ→∞

4𝐻2+𝑘2+(𝑛−1)𝑘

𝑘
𝜗ℓ.   (25) 

 

However, this result contradicts with the smoothness of �̃�(𝑡). Namely, lim
𝑡→Υ−

− �̃�(𝑡) = ∞. Thus the proof 

of Theorem 1 is satisfied.  
Now we hold with the proof of Theorem 2. 

 

Proof of Theorem 2. In a similar way of that is made to prove Theorem 1, via the Bochner Weitzenböck 

formula for R𝑖𝑐𝑁 weighted Ricci curvature [12], we have that  
 

R𝑖𝑐𝑁(𝛾
′(𝑡)) ≤ −𝜂′(𝑡) +

𝜂(𝑡)2

𝑁
,                                                                                                            (26) 

 

where 𝜂(𝑡): = (Δ𝑟)(𝛾(𝑡)). Integrating both sides of (26) and taking the limit as 𝑡 → ∞, we get  

 

lim
𝑡→∞

∫
𝑡

1
R𝑖𝑐𝑁(𝛾

′(𝑠))𝑑𝑠 ≤ lim
𝑡→∞

(−𝜂(𝑡) + 𝜂(1) − ∫
𝑡
1
𝜂(𝑠)

2

𝑁
𝑑𝑠).                                                          (27)

  

Under the assumption (2) given in Theorem 2, we have  

lim
𝑡→∞

(−𝜂(𝑡) − ∫
𝑡
1
𝜂(𝑠)2

𝑁
𝑑𝑠) = ∞.                                                                                                          (28) 

 

Multiplying 1/𝑁 by (28), yields  
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lim
𝑡→∞

(−
𝜂(𝑡)

𝑁
− ∫

𝑡
1 (

𝜂(𝑠)

𝑁
)
2
𝑑𝑠) = ∞.                                                                                                      (29) 

 

From the above equation, given 𝐶 > 1 there exists 𝑡1 > 1 such that  

 

−
𝜂(𝑡)

𝑁
− ∫

𝑡
1 (

𝜂(𝑠)

𝑁
)
2
𝑑𝑠 ≥ 𝐶                                                                                                                  (30) 

 

for all 𝑡 ≥ 𝑡1. 

We consider an increasing sequence {𝑡ℓ} defined by  
 

𝑡ℓ+1 = 𝑡ℓ + 𝐶
1−ℓ      f𝑜𝑟  ℓ ≥ 1, (31) 

 

such that {𝑡ℓ} converges to 𝑇:= 𝑡1 +
𝐶

𝐶−1
 as ℓ → ∞. 

The claim that −𝜂(𝑡) ≥ 𝑁𝐶ℓ for all 𝑡 ≥ 𝑡ℓ. By induction, similar computations as in Theorem 1 yields 

−𝜂(𝑡) ≥ 𝑁𝐶ℓ+1 for all 𝑡 ≥ 𝑡ℓ+1. Indeed, we have that  

−𝜂(𝑡) ≥ 𝑁𝐶 +
1

𝑁
∫
𝑡

1

𝜂(𝑠)2𝑑𝑠 

            ≥
1

𝑁
∫
𝑡ℓ

1

𝜂(𝑠)2𝑑𝑠 +
1

𝑁
∫
𝑡

𝑡ℓ

𝜂(𝑠)2𝑑𝑠 

            ≥
1

𝑁
∫
𝑡

𝑡ℓ

𝜂(𝑠)2𝑑𝑠 

            ≥ 𝑁𝐶2ℓ(𝑡 − 𝑡ℓ) 
            ≥ 𝑁𝐶2ℓ(𝑡ℓ+1 − 𝑡ℓ) = 𝑁𝐶

ℓ+1. (32) 

 

Consequently, because of the same reasons in Theorem 1, we contradict with the smoothness of 𝜂(𝑡). 
Thus the proof of Theorem 2 is satisfied. 
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