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Abstract- In batch manufacturing, the items are grouped into batches. These batches are treated as individual jobs and they are 
not divided. However, if batch sizes are large, it may be beneficial to split these batches into smaller transfer lots which is known 
as lot streaming. Lot streaming provides acceleration of the production by processing the items of the original batch in an 
overlapping fashion. In this paper, the lot streaming problem is defined, the problem characteristics and the notation are 
explained. Then the solution procedures in the literature for lot streaming problems are discussed respectively for 2-machine, 3-
machine and, m-machine cases. For all types of 2 and 3-machine problems, there exist polynomial time algorithms. For certain 
m-machine problems, there also exist polynomial time algorithms. 
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1. Introduction 

Traditionally batch manufacturing has an important place 
in production scheduling. In batch manufacturing, items are 
grouped into several batches and each batch is treated as an 
individual job. In this case when a batch goes to a resource for 
an operation, all the items belonging to this batch have to wait 
until every item is processed. After the processing of the last 
item, the batch is ready for the next operation. 

In general, if there are k items in a batch and each item has 
a processing time of pi time units for each resource i, then this 
batch requires a processing time of k×pi time units on each 
resource i. This means, on the average at each resource, an 
item waits (k×pi)/2 time units after being processed. If the 
batch size k is large then it may be beneficial to divide this 
batch into smaller sublots which can be transferred 
independently between resources. 

The idea of dividing the batch into smaller transfer lots is 
the origin of lot streaming. This term was introduced by Reiter 
[9]: 

“Lot Streaming is the process of splitting a process lot into 
sublots, and then scheduling those sublots in overlapping 
fashion, in order to accelerate the progress of an order in 
production.” [6] 

Today, synchronized manufacturing, which can be 
defined as “Any systematic way that attempts to move 
material quickly and smoothly through the various resources 
of the plant in concert with market demand” [4], gained much 
importance. In synchronized manufacturing, the process batch 
that is the quantity of a product considered for processing in a 
resource does not need to be equal to the transfer batch that is 
the quantity of units that are moved at the same time from one 
resource to the next [11]. In fact the idea of different transfer 
and process batches is same as what lot streaming does. For 

that reason, lot streaming has an important place in 
synchronized manufacturing systems such as Just  In Time 
(JIT). By lot streaming, it is possible to accelerate the 
processing of the products at the same time reducing the work 
in process (WIP) inventory level and these are the aims of all 
manufacturing firms. 

As an example, we can consider a batch with 500 items. 
If each item has a processing time of 2 time units on machine 
1 (p1 = 2) and 1 time unit on machine 2 (p2 = 1), then according 
to the traditional batch manufacturing, the makespan will be 
500x2 + 500x1 = 1500. 

Next, if we consider to split this batch into two sublots 
with sizes 300 and 200, then it takes 300x2 = 600 time units 
for the items of the 1st sublot to be ready for machine 2. In the 
same manner, the items of the 2nd sublot will be ready for 
machine 2 after 300x2 + 200x2 = 1000 time units. As seen in 
Figure 1, dividing this batch into two sublots provides a 
makespan of 1200 time units which is smaller than the 
makespan under the original case. This small example gives 
an idea about how lot streaming accelerates the process of the 
items. 

 
Fig. 1. Lot streaming effect on batch of 500 items on 
2 machines 
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In the next section, the characteristics of the lot streaming 
problem, its notation and models are explained. In sections 3 
and 4, the solution procedures for 2 and 3-machine cases are 
examined, respectively. In section 5, the case of having more 
than 3 machines is discussed, and finally in section 6, there is 
a brief overview of the ideas covered in this paper. 

2. Lot Streaming Model and Notation 

Although there is not a common notation in general, the 
notations used in different sources for the lot streaming 
problem is similar to each other. In this paper, the notation 
given in [3] is used. 

In the lot streaming problem, there is an original job lot 
which has U identical items. These items are required to be 
processed by m machines. (Assuming that no machine is used 
for more than one operation) Each item has a processing time 
of pi on machine i. 

In most of the lot streaming problems, the number of 
sublots is a given parameter of the problem. Here, the number 
of sublots is denoted by n. If n = 1, this means that lot 
streaming is not allowed. In this case the makespan M will be: 

𝑀𝑀 = 𝑈𝑈 × ∑ 𝑝𝑝𝑖𝑖𝑚𝑚
𝑖𝑖=1                     (1)  

If n = U, then we are allowed to transfer each item one by 
one between the machines. If there is no setup time, for n = U, 
then   the minimum makespan can be achieved and it is: 

 𝑀𝑀 = 𝑈𝑈 × ∑ 𝑝𝑝𝑖𝑖 + 𝑈𝑈 × 𝑝𝑝𝑚𝑚𝑚𝑚−1
𝑖𝑖=1            (2) 

2.1. Sublot Sizes 

Suppose that there are n sublots for each machine and also 
there are m different machines. As a result, in total there are 
𝑛𝑛 ×𝑚𝑚 sublots in the model. These sublots are represented by 
𝐿𝐿𝑖𝑖𝑖𝑖 where 𝐿𝐿𝑖𝑖𝑖𝑖 shows the size of the jth sublot on machine i. 
Alternatively, 𝑥𝑥𝑖𝑖𝑖𝑖  shows the proportion of the size of the jth 
sublot on machine i over the total lot size U, in other words, 
𝑥𝑥𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑖𝑖/𝑈𝑈. 

Sometimes, in lot streaming models, equal lot sizes are 
assumed. In such a case, all sublots have the same size and 
𝐿𝐿𝑖𝑖𝑖𝑖 = 𝐿𝐿 ∀𝑖𝑖, 𝑗𝑗. 

Another case is the model with consistent sublots. If the 
sublot sizes are same for every machine, then the sublots are 
called consistent and 𝐿𝐿𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑗𝑗  . 

Finally, the most general case related to sublot size is the 
model with variable sublots. If all 𝐿𝐿𝑖𝑖𝑖𝑖 values are allowed to be 
different than each other, then it is said that variable lot sizes 
are allowed. Since equal and consistent sublots can be 
represented by using variable sublots, variable sublot case is 
dominant over equal and consistent sublot cases. 

2.2. Discrete versus Continuous Models 

The models can be divided into two classes as continuous 
or discrete case. In continuous case, sublot sizes can be real 

numbers, however in discrete case, sublots should have 
discrete number of items. If there is a solution procedure for  
finding optimal lot sizes for continuous case, it is possible to 
find an answer for discrete case by rounding off 
 the results of the continuous case, but the optimality is not 
guaranteed. 

2.3. No Idling versus Intermittent Idling 

In some lot streaming problems, there is a constraint 
which requires that when a machine starts processing, it 
should process continuously all the items without being idle. 
This requirement is called “No Idling”. If the machines are 
allowed to have idle time between the processes of two 
consecutive sublots, then this case is called “Intermittent 
Idling”. 

It is clear that for the 1st machine to have no idling 
restriction does not affect the makespan M. Also, it is known 
that: A lot streaming problem and its inverse are equivalent 
[2]. In other words, we can obtain the same optimal solution 
assuming that lots flow in the reverse order. By combining 
these two ideas, we can conclude that for 2-machine problem, 
no idling restriction does not affect the optimal makespan. If 
there are m machines in a model with no idling restriction and 
if variable sublots are allowed, it is possible to find 
optimal sublots by dividing m machines into m-1 adjacent 
pairs and solving the 2-machine problem for each pair 
separately [3]. 

2.4. Notation 
 
To solve a lot streaming problem, we need information 

about certain characteristics of the problem. This information 
can be represented by the following way which is given in [3]: 

m    : Number of machines 
E,C,V: Properties of sublot sizes: (E for Equal, C for 

Consistent, V for Variable sublot sizes) 
II , NI: Idling condition (II for Intermitted Idling and NI 

for No Idling) 
DV, CV: Discrete (DV) or Continuous (CV) case 
 
Then according to the above information, each lot 

streaming problem can be represented in a form by using the 
notation:   

m / V, C or E / II or NI / CV or DV           
As an example, 2/C/NI/CV represents a lot streaming 

problem which has two machines, consistent sublots, no idling 
restriction and it may have real numbered lot sizes. 

 
2.5. Dominance 

 
Related to the sublot sizes, variable sublot case is 

dominant over consistent sublot case which is dominant over 
equal sublot case. This means that a model with variable 
sublots should have shorter or equal makespan than the 
makespan of the same model with consistent or equal sublots. 

It is clear that II (Intermittent Idling) dominates NI (No 
Idling) case and CV (Continuous) dominates over DV 
(Discrete) case. 

According to these dominance relationships, the least 
restrictive model is m/V/II/CV. 
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3. Two-Machine Problems 

In 2-machine problems, there are n sublots and transfer of 
sublots occurs between 1st and 2nd machines. As explained 
before, allowing intermittent idling does not improve the 
makespan. For that reason, optimal solution can be obtained 
by solving 2/C/NI problem. In [2], this problem is solved and 
it is shown that if there are n sublots and the ratio of the 
processing times of machine 1 to machine 2, that is p2=p1=q, 
then for continuos version, the optimal solution for jth sublot 
can be found by solving equation (3): 

𝐿𝐿𝑗𝑗 = 𝑞𝑞 × 𝐿𝐿𝑗𝑗−1 = 𝑞𝑞𝑗𝑗−1 × 𝐿𝐿1             (3) 

In optimal solution of 2/C/NI problem, there should not 
be idle time on machine 2 after it starts processing. In fact, the 
equation 𝐿𝐿𝑗𝑗 = 𝑞𝑞 × 𝐿𝐿𝑗𝑗−1 is the condition for the lot sizes that 
provide no idling on machine 2. To understand this better, we 
can consider a 2/C/NI problem for which U = 7, n = 3, p1 = 2 
and p2 = 1. Then according to the above formula, the optimal 
lot sizes will be L1= 4,L2  = 2 and L3  = 1. In Figure 2, it is seen 
that for these lot sizes there is no idle time on machine 2 after 
it starts processing. 

 

Fig. 2. An example for 2/C/NI problem 

A solution procedure exists also for 2/C/NI/DV problem. 
In this procedure, initially an upper bound for the makespan 
M is determined. Then, by an iterative procedure, sublot sizes 
are determined. If during iterations, it is found that the optimal 
makespan is greater than the initially estimated M value, this 
M value is increased by some determined amount and the 
iterations are done again for the new M value. The interested 
reader is referred to [3] for more details. 

For 2-machine problem, it is also possible to consider the 
setup times and limited transporter capacity. Baker [7], 
investigates 2-machine problem with setup time. He considers 
both attached and separable setup cases and defines the 
optimality condition. 

Related to the 2-machine problem with limited 
transporter capacity, the solution for the problem 2/C/NI/CV 
with k transporters with cycle time CT is found again by the 
formula 𝐿𝐿𝑗𝑗 = 𝑞𝑞 × 𝐿𝐿𝑗𝑗−1 where: 

𝐿𝐿1 = �

�𝐶𝐶𝐶𝐶 𝑝𝑝2� �∗(1−𝑞𝑞)

1−𝑞𝑞𝑘𝑘
                 if 𝑞𝑞 ≠ 1

      
�𝐶𝐶𝐶𝐶 𝑝𝑝2� �

𝑘𝑘
                            if 𝑞𝑞 = 1       

       (4)                  

and 

𝐿𝐿𝑛𝑛 = 𝑈𝑈 − ∑ 𝐿𝐿𝑗𝑗𝑛𝑛−1
𝑖𝑖=1          (5) 

 

The reader can find the derivation of equations (4) and (5) 
in [3]. In the same paper, the iterative solution procedures for 
2/C/NI/DV and 2/C/NI/CV with limited transporter capacity 
are also given. 

4. Three-Machine Problems 

For 2-machine problem, it is enough to consider 
consistent sublot sizes to find the optimal lot sizes. However, 
in 3-machine problem, we may not have consistent sublots in 
the optimal solution. So, for 3-machine problem, minimum 
makespan M can be obtained by having variable sublots. 

4.1. Three-Machine Problems with Consistent Sublots 
 
For 3 or more machines, consistent sublot problem for 

continuous version can be solved by a linear programming 
(LP) model which is shown by Baker [5]. There are two LP 
models. The first model is constructed by defining the 
relationship between the completion times of sublots and its 
objective is minimizing the completion time of the last sublot 
on the last machine. This objective value is same as makespan 
value. In the second model, idle time relationship between the 
machines are defined and the objective is minimizing the total 
idle time that occurs on the last machine till the process of the 
last sublot. 

Clearly, for discrete version of a consistent sublot 
problem for 3 or more machines, the solution can be found by 
putting a constraint in LP model which requires that sublot 
sizes are integer. In this case, an integer linear programming 
problem should be solved to find the optimal lot sizes. 

 

4.2.  Three-Machine Problems with with Variable Sublots and 
Intermittent Idling 
 
3/V//II problems can be divided into two as: 3/V/II/CV or 

3/V/II/DV. For 3/V/II/CV problem, a solution procedure is 
given in [1]. In this solution procedure, the inequality 

(𝑝𝑝2) − 𝑝𝑝1 ∗ 𝑝𝑝3 ≤ 0                          (6) 

is checked. If inequality (6) holds, then in the optimal 
solution, sublot sizes have the below relationship shown by 
equation (7): 

𝐿𝐿𝑗𝑗+1 × (𝑝𝑝1 + 𝑝𝑝2) = 𝐿𝐿𝑗𝑗 × (𝑝𝑝2 + 𝑝𝑝3)           (7) 

 If inequality (6) does not hold, then optimal sublot sizes 
can be found by dividing the 3-machine problem into two 
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subproblems. In this case optimal lot sizes between machines 
1 and 2, machines 2 and 3 are found separately. These are also 
optimal lot sizes for the original 3-machine problem. 

In fact inequality (6) specifies the critical path for optimal 
sublots in the network for 3-machine flow shop problem. What 
the above solution procedure does is that it determines the 
critical path property in the network of a 3-machine flow shop 
problem for the optimal lot sizes. According to this 
information, it finds the optimal lot sizes which minimize 
the critical path length. The interested reader is referred to [1].  

For the problem 3/V/II/DV again the inequality (6) is 
checked. If this inequality does not hold, it is possible to find 
a solution by dividing the machines into two adjacent pairs 
and finding optimal lot sizes separately as done in the 
continuous version. If inequality holds then there exists an 
iterative procedure to find optimal lot sizes which can be 
found in [3].   

5. Problems for More Than Three Machines 

When the number of machines is greater than 3 (m > 3), 
the problems become more difficult. As it is stated at the 
beginning, m/V/NI problem can be solved by applying 2-
machine solution procedure to every adjacent air of machines. 
If the problem has consistent sublot requirements, then it can 
be solved by Baker's LP model which is described in section 
4.1. 

For m/V/II/CV problem, it is possible to formulate a 
mixed integer linear programming model [8]. By some 
modifications, this model can be used to find optimal solution 
for some other objective functions such as minimum mean 
flow time or minimum mean unit completion time. 

Also we can consider the lot streaming problems for job 
shops. Job shop case is different than flow shop case in a way 
that the sublots can go to the same machine more than once 
for different operations. A solution procedure for lot streaming 
problem in job shop can be found in [10]. The solution 
procedure described in this paper uses the idea of solving a 
lot-sizing problem with a given sequence of sublots on the 
machines and a standard job shop scheduling problem with 
fixed sublot sizes. 

6. Conclusion 

In this paper, lot streaming is defined and some basic lot 
streaming problems are discussed with solution procedures 
that exist in the literature. In this respect, first, the problem 
characteristics and notation are described. Next, 2-machine, 3-

machine and m-machine cases are explained. It is seen that 
there exist polynomial time solution algorithms for all 2- 
machine and 3-machine problems. There exist also 
polynomial time algorithms for m/V/NI/DV and m/V/N I/CV, 
because these problems can be solved by applying 2-machine 
procedures to adjacent pairs of machines. In addition, 
m/C/II/CV and m/C/NI/CV can be solved in polynomial time, 
because they have LP models. 

The problems m/C/NI/DV, m/C/II/DV and m/V/II/DV have 
integer linear programming models but there is not a proof for 
NP-completeness [3]. For m/V/II/CV problem, there exists a 
mixed integer programming model [8], but it does not have a 
proof for NP-completeness, either. 
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