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ABSTRACT: TOPSIS, developed in 1981 by Hwang and Yoon, is one of the known multi-criteria decision-

making (MCDM) methods. In 2015, the group decision-making method based on TOPSIS under fuzzy soft 

environment was defined and applied to a decision-making problem by Eraslan and Karaaslan. Recently, this 

method has been configured by Enginoğlu and Memiş via fuzzy parameterized fuzzy soft matrices (fpfs-

matrices), faithfully to the original, because a more general form is needed for the method in the event that the 

parameters have uncertainties. However, the configured method has two drawbacks which affect its running 

time and the ranking order negatively. We, in this study, improve this method by removing the disadvantages. 

We then compare the running time of these algorithms. The results show that the new method outperforms it, 

in particular, a large number of data come into question. For example, the proposed method offers up to 

97.7672% of time advantage for ten objects and 9000 parameters. Afterwards, we apply the new method to a 

performance-based value assignment to seven state-of-art filters used in image denoising, so that we can order 

them in terms of performance. Finally, we discuss the need for further research. 

 
Keywords – Fuzzy sets, Soft sets, Soft decision-making, Soft matrices, fpfs-matrices 

1. Introduction 

Molodtsov (1999) propounded the concept of soft sets, parameterized family of subsets of 

the set of alternatives, to deal with uncertainties, and up to now, many researchers have 

conducted various applied and theoretical studies on that (Maji et al., 2001, 2003; Çağman 

and Enginoğlu, 2010a; Çağman et al., 2011a; Çağman et al., 2011b; Karaaslan et al., 2012; 

Enginoğlu et al., 2015; Zorlutuna and Atmaca, 2016; Riaz and Hashmi, 2017, 2018; Şenel, 

2016, 2017, 2018; Ullah et al., 2018; Sezgin et al., 2019). To able to use the ability of this 

concept in computer mathematics (or sciences), Çağman and Enginoğlu then presented the 

soft matrices (Çağman and Enginoğlu, 2010b), fuzzy soft matrices (Çağman and Enginoğlu, 

2012), and fuzzy parameterized fuzzy soft matrices (fpfs-matrices) (Enginoğlu, 2012; 

Enginoğlu and Çağman, n.d.).  

 

Since fuzzy/soft sets/matrices and their hybrid versions adept in decision-making, the studies 

containing soft decision-making (SDM) methods have been increased rapidly (Çağman et 

al., 2010; Razak and Mohamad, 2011, 2013; Deli and Çağman, 2015; Karaaslan, 2016; Riaz 

et al., 2018). For example, Eraslan and Karaaslan (2015) proposed the group decision-

making method based on TOPSIS under fuzzy soft environment. The method therein, 

however, has two drawbacks which affect its running time and the ranking order negatively.  

Among these versions mentioned above, fuzzy parameterized fuzzy soft matrices (fpfs-

matrices) are the most prominent in terms of performance. Therefore, Enginoğlu and Memiş 
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(2018a) have configured eighteen SDM methods via fpfs-matrices, faithfully to the original. 

Since the configurations have been made as faithfully to the originals, the drawbacks, such 

as mentioned above have also been transferred. On the other hand, the lack of the names of 

the configured methods causes difficulty of use. To overcome this drawback, Enginoğlu and 

Memiş have suggested a notation using the combination of the first letters of the authors’ 

surname and the last two digits of the publication year of the paper. For example, the method 

constructed by Eraslan and Karaaslan in 2015 was denoted by EK15 therein. Moreover, the 

authors have pointed out that studies on the simplifications and different configurations of 

these configurated methods therein are worth doing. Therefore, several SDM algorithms 

provided in (Enginoğlu and Memiş, 2018a) have been simplified and applied (Enginoğlu and 

Memiş, 2018b,c; Enginoğlu et al., 2018a,b, 2019b) to a decision-making problem.  

 

In this paper, we have focused on improving a new method free of the disadvantages 

mentioned above. In Section 2, we present the concept of fpfs-matrices (Enginoğlu, 2012; 

Enginoğlu and Çağman, n.d.) and give EK15 (Eraslan and Karaaslan, 2015; Enginoğlu and 

Memiş, 2018a). In Section 3, we propound a new method, namely EMK19. Here, EMK19 

refers to the method constructed by Enginoğlu, Memiş, and Karaaslan in 2019. In Section 4, 

we compare the running time of these algorithms. In Section 5, we apply EMK19 to a 

decision-making problem in which the noise removal/image denoising filters can be ordered 

in terms of performance. We then compare the ranking orders by EMK19 with the ranking 

orders by EK15. Finally, we discuss the need for further research.  

2. Preliminaries 

In this section, firstly, definitions of fpfs-sets (Enginoğlu et al., 2010; Enginoğlu and Çağman, 

n.d.) and fpfs-matrices (Enginoğlu, 2012; Enginoğlu and Çağman, n.d.) have been presented. 

Throughout this paper, let 𝐸 be a parameter set, 𝐹(𝐸) be the set of all fuzzy sets over 𝐸, and 

𝜇 ∈ 𝐹(𝐸). Here, a fuzzy set is denoted by { 𝑥
𝜇(𝑥)

∶ 𝑥 ∈ 𝐸}. 

Definition 2. 1. (Enginoğlu et al., 2010; Enginoğlu and Çağman, n.d.) Let 𝑈 be a universal 

set, 𝜇 ∈ 𝐹(𝐸), and 𝛼 be a function from 𝜇 to 𝐹(𝑈). Then, the set {(𝜇(𝑥)𝑥, 𝛼(𝜇(𝑥)𝑥)): 𝑥 ∈ 𝐸} 
being the graphic of 𝛼 is called a fuzzy parameterized fuzzy soft set (fpfs-set) parameterized 

via 𝐸 over 𝑈 (or briefly over 𝑈). 

Example 2. 1.  Let 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}. Then, 

𝛼 = {( 𝑥1
0 , { 𝑢2

0.9 , 𝑢5
0.6 }), ( 𝑥2

0.5 , { 𝑢1
0.8 , 𝑢3

0.4 , 𝑢4
0.7 }), ( 𝑥3

0.7 , { 𝑢1
0.2 , 𝑢3,

1 𝑢5
0.8 }), ( 𝑥4

1 , { 𝑢2
0.5 , 𝑢4

0.8 })}  

is an fpfs-set over 𝑈. 

In the present paper, the set of all fpfs-sets over 𝑈 is denoted by 𝐹𝑃𝐹𝑆𝐸(𝑈). 

Definition 2..2. (Enginoğlu, 2012; Enginoğlu and Çağman, n.d.) Let 𝛼 ∈ 𝐹𝑃𝐹𝑆𝐸(𝑈). Then, 

[𝑎𝑖𝑗] is called the matrix representation of 𝛼 (or briefly fpfs-matrix of 𝛼) and is defined by  

[𝑎𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
𝑎01 𝑎02 𝑎03 … 𝑎0𝑛 …

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ]
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such that for 𝑖 ∈ {0,1,2,⋯ } and 𝑗 ∈ {1,2,⋯ },  

𝑎𝑖𝑗 ≔ {
𝜇(𝑥𝑗), 𝑖 = 0

𝛼(𝜇(𝑥𝑗)𝑥𝑗)(𝑢𝑖), 𝑖 ≠ 0
 

Here, if |𝑈| = 𝑚 − 1 and |𝐸| = 𝑛, then [𝑎𝑖𝑗] has order 𝑚 × 𝑛. 

Example 2. 2.  The fpfs-matrix of 𝛼 provided in Example 2.1 is as follows:  

[𝑎𝑖𝑗] =

[
 
 
 
 
 
0 0.5 0.7 1
0 0.8 0.2 0
0.9 0 0 0.5
0 0.4 1 0
0 0.7 0 0.8
0.6 0 0.8 0 ]

 
 
 
 
 

 

From now on, the set of all fpfs-matrices parameterized via 𝐸 over 𝑈 is denoted by 

𝐹𝑃𝐹𝑆𝐸[𝑈]. 
 

Secondly, we present the algorithm of EK15. Here, EK15 refers to the method constructed 

by Eraslan and Karaaslan in 2015. Throughout this paper, 𝐼𝑛 = {1,2,3, … , 𝑛} and 𝐼𝑛
∗ =

{0,1,2,3, … , 𝑛}. 
 

EK15’s Algorithm Steps 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ], [𝑎𝑖𝑗

2 ], …, [𝑎𝑖𝑗
𝑡 ]  

Step 2. Obtain [𝑏𝑖𝑗] defined by 𝑏𝑖𝑗 ≔ 𝑎0𝑗
𝑖  such that 𝑖 ∈ 𝐼𝑡 and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑐𝑖𝑗] defined by 

𝑐𝑖𝑗 ≔
𝑏𝑖𝑗

√∑𝑡
𝑘=1 𝑏𝑘𝑗

2

, 𝑖 ∈ 𝐼𝑡 and 𝑗 ∈ 𝐼𝑛 

Step 4. Obtain [𝑑𝑖1] defined by  

𝑑𝑖1 ≔
1

𝑡
∑

𝑡

𝑗=1

𝑐𝑗𝑖,       𝑖 ∈ 𝐼𝑛 

Step 5. Obtain [𝑒𝑖1]  defined by  

𝑒𝑖1 ≔
𝑑𝑖1

∑ 𝑑𝑘1
𝑛
𝑘=1

,       𝑖 ∈ 𝐼𝑛 

Step 6. Obtain [𝑓𝑖𝑗] defined by  

𝑓𝑖𝑗 ≔
1

𝑡
∑ 𝑎𝑖𝑗

𝑘

𝑡

𝑘=1

,     𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 7. Obtain [𝑔𝑖𝑗] defined by 𝑔𝑖𝑗 ≔ 𝑒𝑗1𝑓𝑖𝑗 such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 8. Obtain [𝑔1𝑗
+ ] and [𝑔1𝑗

− ] defined by  

𝑔1𝑗
+ ≔ max

𝑖
{𝑔𝑖𝑗} and    𝑔1𝑗

− ≔ min
𝑖

{𝑔𝑖𝑗}, 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 
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Step 9. Obtain [𝑠𝑖1
+ ] and [𝑠𝑖1

− ] defined by  

𝑠𝑖1
+ ≔ √∑𝑛

𝑗=1 (𝑔𝑖𝑗 − 𝑔1𝑗
+ )2    and    𝑠𝑖1

− ≔ √∑𝑛
𝑗=1 (𝑔𝑖𝑗 − 𝑔1𝑗

− )2, 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛  

Step 10. Obtain [𝑠𝑖1] defined by  

𝑠𝑖1 ≔
𝑠𝑖1

−

𝑠𝑖1
+ + 𝑠𝑖1

− ,    𝑖 ∈ 𝐼𝑚−1 

Step 11. Obtain the set {𝑢𝑘 ∈ 𝑈 | 𝑠𝑘1 = max
𝑖

𝑠𝑖1}  

3. The SDM Method: EMK19 

TOPSIS (Hwang and Yoon, 1981) is a very efficient fuzzy multi-criteria decision-making 

method. Eraslan and Karaaslan (2015) have introduced an SDM method EK15 to transfer 

TOPSIS’s ability to fuzzy soft sets. The first step of EK15 contains a normalisation that 

makes the norms of columns of the weight matrix are 1. This normalisation leads to changing 

the weights given by the decision-makers. To this end, in this section, we propose a new 

SDM method referred to as EMK19 and which is an improved version of EK15. 

Example 3. 1. Assume that [
0.8 0.4

0.7 0.5
] is a weight matrix. Then, the normalised matrix of it 

is [
0.53 0.44

0.46 0.55
]. Changing the weights provided by the decision-makers brings about faults. 

For more details, see Section 5. 

 

The algorithm of EMK19 is as follows: 

 

EMK19’s Algorithm Steps 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ], [𝑎𝑖𝑗

2 ], …, [𝑎𝑖𝑗
𝑡 ] 

Step 2. Obtain [𝑏𝑖𝑗] defined by 

𝑏𝑖𝑗 ≔
1

𝑡
∑

𝑡

k=1

𝑎𝑖𝑗
𝑘 , 𝑖 ∈ 𝐼𝑚−1

∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑐𝑖𝑗] defined by 𝑐𝑖𝑗 ≔ 𝑏01𝑏𝑖𝑗 such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 4. Obtain the Positive Ideal Solution matrix [𝑐1𝑗
+ ] and Negative Ideal Solution matrix 

[𝑐1𝑗
− ] defined by  

𝑐1𝑗
+ ≔ max

𝑖
{𝑐𝑖𝑗} and    𝑐1𝑗

− ≔ min
𝑖

{𝑐𝑖𝑗}, 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 5. Obtain [𝑠𝑖1
+ ] and [𝑠𝑖1

− ] defined by  

𝑠𝑖1
+ ≔ √∑𝑛

𝑗=1 (𝑐𝑖𝑗 − 𝑐1𝑗
+ )2    and    𝑠𝑖1

− ≔ √∑𝑛
𝑗=1 (𝑐𝑖𝑗 − 𝑐1𝑗

− )2, 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛  

Step 6. Obtain [𝑠𝑖1] defined by  

𝑠𝑖1 ≔
𝑠𝑖1

−

𝑠𝑖1
+ + 𝑠𝑖1

− , 𝑖 ∈ 𝐼𝑚−1 

Step 7. Obtain the set {𝑢𝑘 ∈ 𝑈 | 𝑠𝑘1 = max
𝑖

𝑠𝑖1}  
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4. Simulation Results 

In this section, we compare the running time of EK15 and EMK19 by using MATLAB 

R2019b and a laptop with I(R) Core(TM) CPU i5-4200H @ 2.7 GHz and 8 GB RAM in this 

study. We present the running time of EK15 and EMK19 in Table 1 and Fig. 1 for ten objects 

and the parameters ranging from 10 to 100 and in Table 2 and Fig. 2 for ten objects and the 

parameters ranging from 1000 to 10000. The results show that EMK19 offers up 93.1230% 

and 97.7672% running time advantages over EK15, respectively. 
 

Table 1. The results for ten objects and the parameters ranging from 10 to 100 
 10 20 30 40 50 60 70 80 90 100 

EK15 0.0259 0.0079 0.0019 0.0021 0.0106 0.0091 0.0065 0.0070 0.0077 0.0100 

EMK19 0.0084 0.0041 0.0004 0.0006 0.0052 0.0018 0.0005 0.0005 0.0005 0.0016 

Difference 0.0175 0.0038 0.0015 0.0014 0.0054 0.0074 0.0060 0.0065 0.0072 0.0084 

Advantage (%) 67.381

5 
47.7115 77.6380 69.5378 50.5395 80.5389 92.1688 92.9776 93.1230 84.4345 

 

 
Fig. 1. The figure for Table 1 

 

Table 2. The results for ten objects and the parameters ranging from 1000 to 10000 
  1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

EK15 0.1268 0.1318 0.1428 0.1790 0.3185 0.3367 0.3654 0.4763 0.5295 0.5478 

EMK19 0.0172 0.0127 0.0047 0.0078 0.0103 0.0178 0.0091 0.0175 0.0118 0.0130 

Difference 0.1096 0.1191 0.1380 0.1712 0.3082 0.3190 0.3563 0.4588 0.5177 0.5348 

Advantage (%) 86.412

6 
90.3990 96.6908 95.6312 96.7686 94.7260 97.5066 96.3297 97.7672 97.6232 

 

 
Fig. 2. The figure for Table 2 

 

We then provide their running time in Table 3 and Fig. 3 for ten parameters and the objects 

ranging from 10 to 100 and in Table 4 and Fig. 4 for ten parameters and the objects ranging 

from 1000 to 10000. The results show that EMK19 offers up 97.3944% and 89.2337% 

running time advantages over EK15, respectively. 
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Table 3. The results for 10 parameters and the objects ranging from 10 to 100 
  10 20 30 40 50 60 70 80 90 100 

EK15 0.0265 0.0082 0.0019 0.0019 0.0108 0.0083 0.0077 0.0201 0.0076 0.0077 

EMK19 0.0084 0.0042 0.0005 0.0006 0.0047 0.0019 0.0007 0.0005 0.0008 0.0006 

Difference 0.0181 0.0039 0.0015 0.0013 0.0060 0.0064 0.0071 0.0196 0.0068 0.0071 

Advantage (%) 68.213

5 
48.0682 76.0231 66.6493 56.0540 77.4725 91.4512 97.3944 89.4101 92.3568 

 

 
Fig. 3. The figure for Table 3 

 

Table 4. The results for 10 parameters and the objects ranging from 1000 to 10000 
  1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

EK15 0.1246 0.1010 0.1890 0.1970 0.2970 0.4219 0.4762 0.5702 0.6538 0.7521 

EMK19 0.0209 0.0223 0.0203 0.0349 0.0981 0.1037 0.1110 0.1446 0.1779 0.2207 

Difference 0.1036 0.0787 0.1686 0.1621 0.1989 0.3182 0.3651 0.4256 0.4760 0.5314 

Advantage (%) 83.1842 77.9321 89.2337 82.2880 66.9633 75.4141 76.6789 74.6398 72.7968 70.6547 

 

 
Fig. 4. The figure for Table 4 

 

Finally, we provide the running time in Table 5 and Fig. 5 for the parameters and the objects 

ranging from 10 to 100, and in Table 6 and Fig. 6 for the parameters and the objects ranging 

from 100 to 1000. The results show that EMK19 performs better than EK15 in any number 

of parameter. 

 

Table 5. The results for the parameters and the objects ranging from 10 to 100 
  10 20 30 40 50 60 70 80 90 100 

EK15 0.0260 0.0094 0.0062 0.0144 0.0497 0.0290 0.0337 0.0282 0.0352 0.0512 

EMK19 0.0090 0.0046 0.0011 0.0012 0.0038 0.0024 0.0008 0.0009 0.0019 0.0014 

Difference 0.0170 0.0048 0.0051 0.0132 0.0459 0.0266 0.0330 0.0273 0.0333 0.0499 

Advantage (%) 65.4306 50.6152 81.8680 91.5282 92.3300 91.7701 97.7494 96.7116 94.5352 97.3419 
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Fig. 5. The figure for Table 5 

 

Table 6. The results for the parameters and the objects ranging from 100 to 1000 
   100 200 300 400 500 600 700 800 900 1000 

EK15 0.1096 0.2234 0.4419 0.7348 0.9994 1.4881 2.0419 2.8349 3.7299 5.2057 

EMK19 0.0180 0.0101 0.0127 0.0231 0.0686 0.0879 0.1797 0.2726 0.4585 0.5438 

Difference 0.0915 0.2133 0.4292 0.7117 0.9308 1.4002 1.8622 2.5623 3.2714 4.6620 

Advantage (%) 83.5328 95.4762 97.1204 96.8567 93.1375 94.0954 91.1989 90.3841 87.7071 89.5547 

 

 
Fig. 6. The figure for Table 6 

 

5. An Application of EMK19 to Performance-Based Value Assignment 

In this section, we apply EMK19 to a performance-based value assignment problem for seven 

state-of-art images denoising filters concerning salt-and-pepper noise (SPN) removal 

performance by using the results provided in (Enginoğlu et al., 2019a). We present the results 

in Table 7-9 as follows: 

 

Table 7. The mean-PSNR results for the 20 traditional images with different SPN ratios 

Filters/Noise Density 10% 20% 30% 40% 50% 60% 70% 80% 90% 

DBA 37.52 34.29 31.96 29.83 27.86 25.89 23.90 21.55 18.55 

MDBUTMF 36.80 32.18 29.02 28.48 28.81 28.34 26.95 23.42 15.29 

BPDF 36.98 33.54 31.03 28.88 26.82 24.60 21.98 17.74 10.51 

NAFSMF 36.08 33.27 31.49 30.15 29.02 27.96 26.82 25.47 22.34 

AWMF 36.34 35.00 33.83 32.69 31.47 30.14 28.68 26.99 24.70 

DAMF 39.58 36.33 34.14 32.45 30.99 29.64 28.28 26.69 24.35 

ARmF 40.04 37.12 35.14 33.53 31.99 30.45 28.86 27.08 24.74 
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Table 8. The mean-SSIM results for the 20 traditional images with different SPN ratios 

Filters/Noise Density 10% 20% 30% 40% 50% 60% 70% 80% 90% 

DBA 0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966 

MDBUTMF 0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566 

BPDF 0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585 

NAFSMF 0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190 

AWMF 0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028 

DAMF 0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964 

ARmF 0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056 

 

Table 9. The mean-VIF results for the 20 traditional images with different SPN ratios 

Filters/Noise Density 10% 20% 30% 40% 50% 60% 70% 80% 90% 

DBA 0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635 

MDBUTMF 0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730 

BPDF 0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334 

NAFSMF 0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226 

AWMF 0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928 

DAMF 0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913 

ARmF 0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955 

 

Assume that the success in high noise densities is more important than in the others. In that 

case, the values given in Table 7-9 can be represented with three fpfs-matrices as follows: 

 

[𝑎𝑖𝑗] ≔

[
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9371 0.8564 0.7982 0.7450 0.6958 0.6466 0.5969 0.5382 0.4633
0.9191 0.8037 0.7248 0.7113 0.7195 0.7078 0.6731 0.5849 0.3819
0.9236 0.8377 0.7750 0.7213 0.6698 0.6144 0.5490 0.4431 0.2625
0.9011 0.8309 0.7865 0.7530 0.7248 0.6983 0.6698 0.6361 0.5579
0.9076 0.8741 0.8449 0.8164 0.7860 0.7527 0.7163 0.6741 0.6169
0.9885 0.9073 0.8526 0.8104 0.7740 0.7403 0.7063 0.6666 0.6081
1.0000 0.9271 0.8776 0.8374 0.7990 0.7605 0.7208 0.6763 0.6179]

 
 
 
 
 
 
 

 

 

[𝑏𝑖𝑗] ≔

[
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966
0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566
0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585
0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190
0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028
0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964
0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056]

 
 
 
 
 
 
 

 

and 

[𝑐𝑖𝑗] ≔

[
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635
0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730
0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334
0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226
0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928
0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913
0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955]

 
 
 
 
 
 
 

 

 

Here, the entries of [𝑎𝑖𝑗] except for its first row have been obtained by normalising via the 

maximum value provided in Table 7. 
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If we apply EMK19 to the fpfs-matrices [𝑎𝑖𝑗], [𝑏𝑖𝑗], and [𝑐𝑖𝑗], then the score matrix and the 

decision set are as follows:  

[𝑠𝑖1] = [0.4089    0.4313    0.0633    0.6885    0.9547    0.9415    1]𝑇 
and  

{ DBA0.4089 , MDBUTMF0.4313 , BPDF0.0633 , NAFSMF0.6885 , AWMF0.9547 , DAMF0.9415 , ARmF1 } 

The scores show that ARmF outperforms the others and the ranking order 

BPDF≺DBA≺MDBUTMF ≺NAFSMF≺DAMF≺AWMF≺ARmF is valid. 
 

Assume that the success in low noise densities is more important than in the others. In that 

case, the values given in Table 7-9 can be represented with three fpfs-matrices as follows: 
 

[𝑑𝑖𝑗] ≔

[
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.9371 0.8564 0.7982 0.7450 0.6958 0.6466 0.5969 0.5382 0.4633
0.9191 0.8037 0.7248 0.7113 0.7195 0.7078 0.6731 0.5849 0.3819
0.9236 0.8377 0.7750 0.7213 0.6698 0.6144 0.5490 0.4431 0.2625
0.9011 0.8309 0.7865 0.7530 0.7248 0.6983 0.6698 0.6361 0.5579
0.9076 0.8741 0.8449 0.8164 0.7860 0.7527 0.7163 0.6741 0.6169
0.9885 0.9073 0.8526 0.8104 0.7740 0.7403 0.7063 0.6666 0.6081
1.0000 0.9271 0.8776 0.8374 0.7990 0.7605 0.7208 0.6763 0.6179]

 
 
 
 
 
 
 

 

[𝑒𝑖𝑗] ≔

[
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966
0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566
0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585
0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190
0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028
0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964
0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056]

 
 
 
 
 
 
 

 

and 

[𝑓𝑖𝑗] ≔

[
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635
0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730
0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334
0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226
0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928
0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913
0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955]

 
 
 
 
 
 
 

 

 

Here, the entries of [𝑑𝑖𝑗] except for its first row have been obtained by normalising via the 

maximum value provided in Table 7.  

If we apply EMK19 to the fpfs-matrices [𝑑𝑖𝑗], [𝑒𝑖𝑗], and [𝑓𝑖𝑗], then the score matrix and the 

decision set are as follows:  

 [𝑠𝑖1] = [0.4440    0.2796    0.2580    0.4321    0.7190    0.8822    1]𝑇 

and  

{ DBA0.4440 , MDBUTMF0.2796 , BPDF0.2580 , NAFSMF0.4321 , AWMF0.7190 , DAMF0.8822 , ARmF1 } 

The scores show that ARmF outperforms the others and the ranking order 

BPDF≺MDBUTMF≺NAFSMF≺DBA≺AWMF≺DAMF≺ARmF is valid. 
 

The ranking orders obtained by EK15, EMK19, and expert's view are in Table 10. It must be 

noted that EK15 has produced the same ranking order in both cases. Besides, EK15 is not in 

compliance with the expert's view, yet EMK19 is. All results show that EMK19 outperforms 

EK15. 
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Table 10. The ranking orders of the filters for EK15, EMK19, and expert’s view 

Matrices Algorithms Ranking Orders 

[𝑎𝑖𝑗],[𝑏𝑖𝑗],[𝑐𝑖𝑗] 

EK15 BPDF≺MDBUTMF≺DBA≺AWMF≺NAFSMF≺DAMF≺ARmF 

EMK19 BPDF≺DBA≺MDBUTMF ≺NAFSMF≺DAMF≺AWMF≺ARmF 

Expert’s View BPDF≺DBA≺MDBUTMF ≺NAFSMF≺DAMF≺AWMF≺ARmF 

[𝑑𝑖𝑗], [𝑒𝑖𝑗],[𝑓𝑖𝑗] 

EK15 BPDF≺MDBUTMF≺DBA≺AWMF≺NAFSMF≺DAMF≺ARmF 

EMK19 BPDF≺MDBUTMF≺NAFSMF≺DBA≺AWMF≺DAMF≺ARmF 

Expert’s View BPDF≺MDBUTMF≺NAFSMF≺DBA≺AWMF≺DAMF≺ARmF 

6. Conclusion 

The group decision-making method based on TOPSIS under fuzzy soft environment was 

defined in 2015 (Eraslan and Karaaslan, 2015). Afterwards, this method configured 

(Enginoğlu and Memiş, 2018a) via fpfs-matrices (Enginoǧlu, 2012, Enginoğlu and Çağman, 

n.d.). However, the normalisation step in the EK15 leads to faults in the ranking order. To 

overcome this problem, in this study, we proposed a new SDM methods EMK19. We then 

compared the running time of EMK19 and EK15. In addition to the results in Section 4, the 

results in Table 11 show that EMK19 outperforms EK15 in any number of data. Finally, we 

applied EMK19 to the performance-based value assignment problem for the filters used in 

(Enginoğlu et al. 2019a). EMK19 can be successfully applied to such problem many areas, 

such as in machine learning and image enhancement. 

 

Table 11. The mean/max advantage and max difference values of EMK19 over EK15 

Location Objects Parameters Mean Advantage % Max Advantage % Max Difference 

Table 1 10 10-100 75.6051 93.1230 0.0175 
Table 2 10 1000-10000 94.9855 97.7672 0.5348 

Table 3 10-100 10 76.3093 97.3944 0.0196 

Table 4 1000-10000 10 76.9786 89.2337 0.5314 

Table 5 10-100 10-100 85.9880 97.7494 0.0499 

Table 6 100-1000 100-1000 91.9064 97.1204 4.6620 
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