

3-(*n*-Propil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5on Molekülünün Deneysel (FT-IR, NMR) ve Teorik (DFT/HF) Çalışması

Gül KOTAN^{1,*}, Haydar YÜKSEK²

¹Kafkas Üniversitesi, KMYO, Kimya ve Kimyasal İşleme Teknolojileri Bölümü, 36100, Kars, Türkiye ²Kafkas Üniversitesi, Fen-Edebiyat Fakültesi, Kimya Bölümü, 36100, Kars, Türkiye

Araştırma Makalesi	Kimya	Geliş Tarihi/Received	Kabul Tarihi/Accepted
Research Article	Chemistry	11.11.2019	27.12.2019

Öz: Bu çalışmada, 3-(*n*-Propil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on Gaussian 09W programında Yoğunluk Fonksiyonel Teorisi (DFT) ve Hartee Fock (HF) metotları ile 6-31G(d,p) temel seti kullanılarak incelenmiştir. Bunun için öncelikle, molekülün en kararlı üç boyutlu formu GaussView5.0 programı ile çizilmiştir. Bu optimize olmuş molekülün yapısından yola çıkarak molekülün geometrik özellikleri (bağ açı ve uzunluğu), termodinamik özellikleri entropi (S), termal enerji (E), termal kapasite (CV)), elektronik özellikleri iyonlaşma potansiyeli (I), kimyasal sertlik-yumuşaklık, elektronegatiflik (χ), elektron ilgisi (A), elektrofilik ve nükleofilik indeks), yüksek enerjili dolu moleküler orbital (HOMO) ve düşük enerjili boş moleküler orbital (LUMO) enerjileri ve bu orbitaller arasındaki enerji farkı Δ*Eg*, spektroskopik özellikleri (FT-IR, ¹³C/¹H-NMR) DFT/ HF 6-31G(d,p) ile hesaplanmıştır. FT-IR titreşim frekans değerleri hesaplamasında Veda4f programından faydalanılmıştır. ¹³C/¹H-NMR spektral verilerinin teorik hesaplaması gaz ve çözücü (DMSO) fazında yapılmıştır ve deneysel değerleri ile karşılaştırılarak regrasyon analizleri yapılmıştır. Bulunan R² değerleri mukayese edilerek regrasyon grafikleri oluşturulmuştur. Bunlardan başka, molekülün toplam enerjisi, dipol momenti, mulliken atomik yük değerleri, moleküler elektron potansiyel, toplam yoğunluk, molekülün yüzey haritaları belirlenmiştir. Molekülün elektrofilik ve nükleofilik bölgeleri tespit edilmiştir.

Anahtar Kelimeler: DFT, HF, GIAO, 6-31G(d,p), Veda4f

Experimental (FT-IR, NMR) and Theoretical (DFT/HF) Study of 3-(n-Propyl)-4-(4-isopropylbenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one Molecule

Abstract: In this study, 3-(*n*-Propyl)-4-(4-isopropylbenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one was studied with the methods Density Functional Theory (DFT) and Hartree Fock (HF) using the basis set 6-31G(d,p) in the Gaussian 09W program. First, the most stable three-dimensional shape of the molecule was drawn using the GaussView5.0 program. Based on the structure of this optimized molecule,"the geometric properties (bond angle and length), the thermodynamic properties entropy (S), thermal energy (E), thermal capacity (CV), the electronic

Gül KOTAN	: ORCID:https://orcid.org/ 0000-0002-4507-9029
Haydar YÜKSEK	: ORCID:https://orcid.org/ 0000-0003-1289-1800
	Sorumlu Yazar/Corresponding Author E-mail: gulkemer@hotmail.com

properties (ionization potential (I) and chemical hardness softness, electronegativity (χ), electron affinity (A), electrophilic and nucleophilic index), the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and energy difference between these orbitals ΔEg , spectroscopic properties"(FT-IR, ¹³C/ ¹H-NMR, UV-vis) were calculated with DFT/ HF 6-31G(d,p). FT-IR vibration frequency values were calculated from the Veda4f program. The theoretical IR vibration frequency values were compared with the experimental IR values recorded in the literature. Theoretical calculations of ¹³C/ ¹H-NMR spectral data were performed in gas and solvent (DMSO) phase and regression analyzes were performed by comparison with experimental values. R² values were compared and regression graphs were created. In addition, the total energy of the molecule, dipole moment, Mulliken atomic charge values, molecular electron potential, total density, surface maps of molecule were determined. The electrophilic and nucleophilic regions of the structure were confirmed.

Keywords: DFT, HF, GIAO, 6-31G(d,p), Veda4f

1. GİRİŞ

1,2,4-Triazol bileşikleri ve onların türevleri organik kimyada çok yaygın bir şekilde kullanılırlar. Bu bileşikler bir aldehid ya da keton ile bir aminin kondenzasyon mekanizması ile sentezlenmiştir (Asiri ve Khan, 2010). Yapılarında -C=N- (azometin) grubu bulundururlar. Schiff bazları, antifungal (Patel ve Park, 2014), antibakteriyal (Mari ve ark. 2008), antioksidan (Yüksek ve ark., 2011), antitümör (Boraei ve ark., 2017), antiHIV (El-Sharief ve Moussa, 2009), antiinflammator (Upmanyu ve ark., 2011), antiviral (Kumar ve ark., 2010) olmak üzere çok çeşitli biyolojik aktiviteye sahiptirler.

Son yıllarda kuantum kimyasal hesaplamaların kullanımının artmasıyla Schiff bazlarının teorik birçok özelliği çalışılmıştır. Literatürde organik bileşiklerin termodinamik, elektronik, spektroskopik ve yapısal özelliklerini hesaplamalı olarak inceleyen birçok çalışma mevcuttur (Medetalibeyoğlu ve ark., 2018; Yüksek ve ark., 2017; Beytur ve Yüksek, 2014; Jin ve ark., 2018). Bu amaçla, çalışmada literatürde kayıtlı olan molekül Gaussian 09W programının Yoğunluk fonksiyonel teorisi (DFT) ve Hartree Fock (HF) metotları ve 6-31G(d,p) temel seti kullanılarak optimize edilmiştir (Frisch ve ark., 2009; Wolinski ve ark., 1990). Molekülün üç boyutlu görünümü GaussView 05 programı ile çizilmiştir (Dennington ve ark., 2009). Molekülün optimize edilmiş yapısından yola çıkarak teorik diğer parametreleri çalışılmıştır. Öncelikle, spektroskopik özellikleri olan Infrared analizi Veda 4f (Jomroz, 2004) programında çalışılmış ve elde edilen titreşim frekans değerleri metod ve sete göre uygun scala faktörleri ile çarpılmış ve skalalı değerler (Merrick, 2007) ile literatürden (Kemer, 2015) alınan deneysel titreşim frekans verileri karşılaştırılmıştır. Diğer bir spektral analiz karbon-13 ve proton nükleer manyetik rezonans kimyasal kayma değerleridir. Bunun için GIAO metodu (Wolinski ve ark., 1990; Ditchfield, 1972) ile molekülün ¹H/ ¹³C-NMR kimyasal kayma

değerleri gaz ve çözücü (DMSO) faz ortamında hesaplanmıştır ve deneysel NMR verileri ile mukayese edilerek regrasyon analizleri yapılmıştır ve bunun sonucunda bulunan R² değerleri değerlendirilerek regrasyon grafikleri çizilmiştir. UV-vis spektral değerleri'de hesaplanmıştır. Ayrıca, molekülün yüksek enerjili dolu moleküler orbital enerjisi (HOMO) ve düşük enerjili boş moleküler orbital enerjisi (LUMO) hesaplanarak enerji farkı ΔEg bulunmuştur. Bu"HOMO-LUMO ve ΔEg verileri kullanılarak molekülün elektronik özellikleri belirlenmiştir. Termodinamik özellikleri, geometrik özellikleri, mulliken atomik yük değerleri, toplam enerji, dipol moment gibi parametreleri teorik olarak çalışılmıştır. Bütün bunlara ek olarak, molekülün yüzey haritaları çizilmiştir ve elektronegatif ve elektropozitif bölgeler"tespit edilmiştir.

2. MATERYAL VE METOT

2.1. Hesaplama Detayları

Tüm hesaplamalar kapsamlı bir program olan "Gaussian 09W" paket programıyla yapılmıştır. DFT metodunun B3LYP fonksiyonu ve HF metodunda 6-31G(d,p) temel seti kullanılarak tüm hesaplamalar yapılmıştır."Optimize molekülün kullanımı ile molekülün teorik tüm parametreleri çalışılmıştır. Molekülün ¹³C/ ¹H-NMR kimyasal kayma değerleri "GIAO" yöntemi ile hesaplanmıştır. IR titreşim frekans değerleri Veda4f programı ile hesaplanmıştır. Ayrıca UV-vis spektral değerleri, mulliken atomik yükleri, yapısal, elektronik, geometrik, termodinamik özellikleri, HOMO-LUMO enerjileri hesaplanmıştır. Ayrıca, elektrostatik yüzey potansiyeli (ESP), moleküler elektron potansiyeli (MEP),"elektron yoğunluğu ve elektron potansiyel yoğunluğu gibi kontur yüzey haritaları belirlenmiştir.

3. BULGULAR

3.1. Geometrik Özellikleri

Çalışılan molekülün geometrik yapısı incelenmiş ve geometrik özellikleri olan bağ açısı ve bağ uzunlukları hesaplanmıştır. DFT/ HF yöntemleri ve 6-31G(d,p) temel seti ile belirlenen hesaplamalı sonuçlar ile literatürde (Ocak ve ark., 2003; Ustabaş ve ark., 2007) var olan bağ uzunluğu verileri karşılaştırılmış yakınlık derecesi tartışılmıştır. Literatürde, N-N, N=C, C=O bağ uzunlukları sırasıyla 1.404 , 1.280, 1.212 Å olarak ölçülmüştür (Ocak ve ark., 2003; Ustabaş ve ark., 2007). DFT(B3LYP) 6-31G(d,p)/ HF 6-31G(d,p) ile sırasıyla N36-N37 ve N38-N39 bağ uzunluğu 1.381,1.373/ 1.370, 1.367 ; N39=C3 bağ uzunluğu 1.290/ 1.260; C2=O40 bağ uzunluğu 1.223/ 1.203 Å olarak hesaplanmıştır ve Tablo 1'de

gösterilmiştir. Molekülün en yüksek bağ açısı C(2)-N(38)-N(39) atomları arasında 130.279/ 130.638 Å olarak ölçülmüştür ve Tablo 2'de gösterilmiştir.

Şekil 1. Molekülün optimize görüntüsü

Tablo	1.	Molekülün	B3LYP/HF	6-31G(d,p)	yöntemlerine	göre	hesaplanan	bağ	uzunlukları
(Å)					2	C	1	U	

	Bağ Uzunlukları	B3LYP	HF		Bağ Uzunlukları	B3LYP	HF
1	C(1)-N(37)	1.3012	1.2698	22	C(4)-C(5)	1.4048	1.3914
2	C(1)-N(38)	1.3902	1.3802	23	C(4)-C(9)	1.4042	1.3894
3	C(1)-C(13)	1.4918	1.4937	24	C(5)-H(18)	1.0847	1.0739
4	N(37)-N(36)	1.3817	1.3708	25	C(5)-C(6)	1.3894	1.3806
5	N(36)-H(16)	1.0067	0.9905	26	C(6)-H(19)	1.0872	1.0763
6	N(36)-C(2)	1.3700	1.3458	27	C(6)-C(7)	1.4042	1.3933
7	C(2)-O(40)	1.2237	1.2031	28	C(7)-C(8)	1.4022	1.3902
8	C(2)-N(38)	1.4179	1.3864	29	C(8)-H(20)	1.0864	1.0755
9	N(38)-N(39)	1.3736	1.3675	30	C(8)-C(9)	1.3916	1.3834
10	C(13)-H(29)	1.0959	1.0845	31	C(9)-C(21)	1.0870	1.0766
11	C(13)-H(30)	1.0943	1.0836	32	C(7)-C(10)	1.5220	1.5217
12	C(13)-C(14)	1.5423	1.5351	33	C(10)-H(22)	1.0978	1.0868
13	C(14)-H(31)	1.0951	1.0849	34	C(10)-C(11)	1.5403	1.5347
14	C(14)-H(32)	1.0965	1.0866	35	C(11)-H(23)	1.0942	1.0849
15	C(14)-C(15)	1.5305	1.5271	36	C(11)-H(24)	1.0952	1.0860
16	C(15)-H(33)	1.0959	1.0864	37	C(11)-H(25)	1.0953	1.0857
17	C(15)-H(34)	1.0944	1.0851	38	C(10)-C(12)	1.5403	1.5347
18	C(15)-H(35)	1.0958	1.0863	39	C(12)-H(26)	1.0952	1.0860
19	N(39)-C(3)	1.2901	1.2608	40	C(12)-H(27)	1.0953	1.0857
20	C(3)-H(17)	1.0884	1.0751	41	C(12)-H(28)	1.0942	1.0849
21	C(3)-C(4)	1.4640	1.4739				

Tablo 2. Molekülün B3LYP/ HF 6-31G(d,p) yöntemlerine göre hesaplanan bağ açıları (Å)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	N(37)-C(1)-N(38)	111.302	111.178	32	C(3)-C(4)-C(9)	118.706	118.631
2	N(37)-N(36)-C(2)	114.510	113.689	33	C(4)-C(9)-H(21)	119.339	119.659
3	N(37)-N(36)-(16)	120.485	121.057	34	C(4)-C(5)-H(18)	119.039	119.472
4	H(16)-N(36)-C(2)	125.000	125.235	35	H(18)-C(5)-C(6)	120.616	120.211
5	N(36)-C(2)-O(40)	129.827	129.274	36	C(5)-C(6)-H(19)	119.359	119.145
6	O(40)-C(2)-N(38)	128.971	128.729	37	H(19)-C(6)-C(7)	119.097	119.390
7	N(38)-C(1)-C(13)	123.870	123.923	38	C(4)-C(9)-C(8)	120.835	120.871
8	N(37)-C(1)-C(13)	124.812	124.890	39	C(9)-C(8)-C(7)	121.013	120.897
9	C(1)-C(13)-C(14)	113.599	113.099	40	C(7)-C(6)-C(5)	121.544	121.465
10	C(1)-C(13)-H(29)	109.009	108.911	41	H(20)-C(8)-C(7)	119.886	120.157
11	C(1)-C(13)-H(30)	106.787	106.559	42	H(20)-C(8)-C(9)	119.101	118.946
12	H(29)-C(13)-H(30)	107.832	108.059	43	H(21)-C(9)-C(8)	119.827	119.470
13	H(29)-C(13)-C(14)	109.354	109.943	44	C(8)-C(7)-C(6)	117.839	117.889
14	H(30)-C(13)-C(14)	110.082	110.100	45	C(8)-C(7)-C(10)	121.500	121.637
15	C(13)-C(14)-H(31)	108.908	109.419	46	C(6)-C(7)-C(10)	120.661	120.474
16	C(13)-C(14)-H(32)	108.832	108.859	47	C(7)-C(10)-C(11)	111.760	111.883
17	H(31)-C(14)-H(32)	106.894	107.041	48	C(7)-C(10)-H(22)	106.966	106.927

18	H(31)-C(14)-C(15)	109.959	109.742	49	H(22)-C(10)-C(11)	107.440	107.309
19	H(32)-C(14)-C(15)	109.948	109.747	50	H(22)-C(10)-C(12)	107.440	107.310
20	C(14)-C(15)-H(33)	111.261	111.191	51	H(23)-C(11)-H(24)	108.184	108.130
21	C(14)-C(15)-H(34)	111.096	110.896	52	H(23)-C(11)-H(25)	107.738	107.847
22	C(14)-C(15)-H(35)	111.350	111.287	53	H(24)-C(11)-H(25)	107.644	107.689
23	N(36)-C(2)-N(38)	101.202	101.997	54	C(10)-C(11)-H(23)	111.261	111.111
24	C(2)-N(38)-C(1)	108.404	108.136	55	C(10)-C(11)-H(24)	110.576	110.446
25	C(2)-N(38)-N(39)	130.279	130.638	56	C(10)-C(11)-H(25)	111.290	111.474
26	C(1)-N(38)-N(39)	121.275	121.164	57	C(10)-C(12)-H(26)	110.561	110.447
27	N(38)-N(39)-C(3)	118.758	119.749	58	C(10)-C(12)-H(27)	111.311	111.471
28	N(39)-C(3)-H(17)	121.903	122.174	59	C(10)-C(12)-H(28)	111.279	111.110
29	H(17)-C(3)-C(4)	117.840	117.292	60	H(26)-C(12)-H(27)	107.634	107.693
30	N(39)-C(3)-C(4)	120.257	120.535	61	H(26)-C(12)-H(27)	108.172	107.693
31	C(3)-C(4)-C(5)	122.871	122.809	62	H(27)-C(12)-H(28)	107.735	107.845

3.2. Spektroskopik Özellikleri

3.2.1. NMR Analizi

¹H ve ¹³C NMR kimyasal kayma değerleri gaz ortamında ve DMSO çözücülü ortamda DFT(B3LYP)/ HF metodları ve 6-31G(d,p) temel seti kullanılarak hesaplanmıştır. Hesaplama sonucunda elde edilen kimyasal kayma değerleri deneysel değerler ile mukayese edilerek regrasyon analizleri yapılmış ve R² değerleri elde edilmiştir (Tablo 3). Bu veriler kullanılarak regrasyon grafikleri oluşturulmuştur (Şekil 2). Gaz ve çözücü (DMSO) faz ortamında ¹³C-NMR sonuçlarına göre R² değerleri 0.993/ 0.996 iken ¹H-NMR verilerine göre R² değerleri 0.802/ 0.920'dir.

Tablo 3. Molekülün ¹³C/ ¹H-NMR deneysel ve teorik (B3LYP, HF, B3LYP (DMSO) ve HF (DMSO)) kimyasal kayma değerleri (δ/ppm)

No	Donovcol	R3I VD	Fork	B3LYP/	Fark/	HF	Fork	HF/	Fark/
110	Deneysei	DSLII	I al K	DMSO	DMSO	ш	I'di K	DMSO	DMSO
C1	153.73	152.13	1.60	153.51	0.22	146.60	-145.00	148.54	5.19
C2	151.34	152.30	-0.96	153.04	-1.70	146.01	-146.97	146.75	4.59
C3	152.15	154.33	-2.18	155.08	-2.93	148.76	-150.94	149.73	2.42
C4	131.27	137.27	-6.00	136.28	-5.01	126.66	-132.66	125.59	5.68
C5	127.71	127.78	-0.07	127.36	0.35	123.14	-123.21	122.74	4.97
C6	126.94	132.17	-5.23	132.49	-5.55	123.34	-128.57	123.45	3.49
C7	146.86	154.62	-7.76	156.58	-9.72	148.00	-155.76	149.69	-2.83
C8	126.94	128.73	-1.79	129.36	-2.42	120.70	-122.49	121.06	5.88
С9	127.71	136.23	-8.52	136.53	-8.82	130.22	-138.74	130.59	-2.88
C10	33.44	47.63	-14.19	47.44	-14.00	29.47	-43.66	29.22	4.22
C11	23.54	33.16	-9.62	32.73	-9.19	20.27	-29.89	19.80	3.74
C12	23.54	33.06	-9.52	32.63	-9.09	20.28	-29.80	19.82	3.72
C13	26.75	38.73	-11.98	38.57	-11.82	24.38	-36.36	24.25	2.50
C14	18.94	33.16	-14.22	33.32	-14.38	17.35	-31.57	17.40	1.54
C15	13.47	24.14	-10.67	23.75	-10.28	12.25	-22.92	11.84	1.63
H16	11.85	7.94	3.91	8.41	3.44	7.17	-3.26	7.60	4.25
H17	9.69	11.08	-1.39	11.02	-1.33	10.28	-11.67	10.24	-0.55
H18	7.74	9.10	-1.36	9.14	-1.40	8.85	-10.21	8.91	-1.17
H19	7.38	8.08	-0.70	8.27	-0.89	7.74	-8.44	7.95	-0.57
H20	7.38	8.34	-0.96	8.54	-1.16	7.89	-8.85	8.10	-0.72
H21	7.74	8.22	-0.48	8.35	-0.61	8.05	-8.53	8.22	-0.48
H22	2.95	3.57	-0.62	3.71	-0.76	2.75	-3.37	2.92	0.03
H23	1.22	2.10	-0.88	2.06	-0.84	1.47	-2.35	1.41	-0.19
H24	1.22	2.10	-0.88	2.17	-0.95	1.48	-2.36	1.56	-0.34
H25	1.22	2.14	-0.92	2.18	-0.96	1.55	-2.47	1.60	-0.38
H26	1.22	2.09	-0.87	2.16	-0.94	1.48	-2.35	1.55	-0.33
H27	1.22	2.15	-0.93	2.20	-0.98	1.55	-2.48	1.60	-0.38
H28	1.22	2.11	-0.89	2.06	-0.84	1.48	-2.37	1.41	-0.19
H29	2.64	3.67	-1.03	3.77	-1.13	2.84	-3.87	2.98	-0.34
H30	2.64	3.18	-0.54	3.24	-0.60	2.50	-3.04	2.56	0.08

H31	1.69	2.99	-1.30	2.94	-1.25	2.20	-3.50	2.16	-0.47
H32	1.69	2.34	-0.65	2.37	-0.68	1.65	-2.30	1.66	0.03
Н33	0.96	1.90	-0.94	1.97	-1.01	1.34	-2.28	1.43	-0.47
H34	0.96	2.05	-1.09	2.07	-1.11	1.51	-2.60	1.52	-0.56
H35	0.96	1.84	-0.88	1.89	-0.93	1.29	-2.17	1.34	-0.38

Şekil 2. Molekülün gaz fazında ve DMSO çözücüsünde R² değerleri ve regrasyon analiz grafikleri

3.2.2. FT-IR Analizi

Molekülün HF/DFT metodları ve 6-31G(d,p) temel seti ile hesaplanmış titreşim frekans değerlerinin işaretlenmesi Veda4f programında yapılmıştır. Titreşim frekans değerleri sırasıyla B3LYP 6-31G(d,p) için 0.8992 ve HF 6-31G(d,p) için 0.9617 skala değerleri (Merrick, 2007) ile çarpılmış ve skalalı titreşim frekans değerleri elde edilmiştir ve Tablo 4'de verilmiştir. Bu değerler ile teorik IR grafikleri oluşturulmuş ve deneysel grafik ile kıyaslanmıştır (Şekil 3). Deneysel titreşim frekans değerleri 3210 (NH), 1687 (C=O), 1633, 1578 (C=N) cm⁻¹ literatürden alınmıştır ve teorik değerler ile karşılaştırılmıştır. Teorik DFT/HF için N-H piki 3557/3556; C=O piki 1751/1771; C=N piki 1614, 1587/ 1711, 1635 cm⁻¹ olarak hesaplanmıştır. DFT(B3LYP) ile hesaplamalar sonucunda elde edilen IR verileri ile deneysel verilerin daha uyumlu olduğu görülmüştür.

Tablo 4. Molekülün titreşim türleri ve frekansları

	TİTREŞİM TÜRLERİ	skalalı dft	skalalı hf
1	τ NCCC(33), τ CCCC(27)	19	15
2	τ NCNN(22), τ NNCN(15), τ CCCC(11)	31	29
3	δ NCC(17), δ CCC(10), τ CCCN(20)	39	36
4	τ NCCC(21), τ CCCC(22)	48	47
5	τ CNNC(19), τ CCCN(11)	67	66
6	δ CCC(10), τ CCCN(15), τ CNNC(11)	79	76
7	τ HCCN(19), τ CCCN(54)	90	88
8	τ NCNN(16), τ CCCC(11), τ NNCN(12), τ CNNC(14)	99	101
9	δ CCC(10), τ NCCC(17), τ CNNC(23), τ CCCC(17)	142	129
10	δ CNN(14), δ CCC(27)	164	164
11	ν CC(18), δ NNC(10)	171	171
12	δ CCC(16), τ CNNC(45)	199	195
13	τ HCCC(26)	224	212
14	τ HCCC(49)	229	227
15	δ CCC(10), τ HCCC(15), τ NCNN(11)	236	231

16	τ HCCC(17)	245	244
17	τ HCCC(31)	262	261
18	$\frac{\delta \operatorname{CCC}(25)}{\operatorname{CCCC}(25)}$	294	295
19	τ NUNN(13), τ UUUU(10), τ NNUN(12)	299	299
20	$\sigma \text{CCC}(47)$ $\tau \text{NNCN}(19)$	302	303
22	δ CCN(11), δ CCC(10)	363	366
23	τ HCCC(19), τ CCCC(70)	400	410
24	δ NNC(12), δ OCN(13), δ CCC(18)	412	415
25	δ CCC(12), τ CCCC(21)	429	436
26	τ HNNC(28)	454	455
27	τ HNNC(27)	458	459
28	δ CCC(11), τ CCCC(16)	549	550
29	δ CCC(12), τ CCCC(30)	552	561
30	δ OCN(35), CNN(15)	572	582
31	v CC(11), 8 CCC(14)	623	627
32	$\frac{0}{\tau} ONNC(19)$	670	603
34	$\tau ONNC(13)$	695	710
35	$v CC(11), \tau HCCN(16)$	704	730
36	τ HCCN(12), τ CCCC(20)	727	740
37	τ HCCN(22), τ CCCC(11)	728	758
38	ν NN(13), δ NNC(15)	777	784
39	ν NC(18), δ CNN(21)	788	803
40	τ HCCC(38)	820	851
41	τ HCCC(60)	828	857
42	δ HCC(13), τ HCCN(18), τ HCCC(16) SNNC(14), SNCC(14)	849	857
43	0 (NNC(14), 0 (NCC(14)) v CC(54)	866	865
45	$\gamma CC(54)$	800	872
46	δ HCH(11), τ HCCC(43)	900	907
47	$v CC(23), \tau HCCC(15)$	928	933
48	τ HCCC(28)	934	980
49	τ HCCC(46), τ CCCC(15)	945	997
50	τ HCNN(80)	981	997
51	δ CCC(60)	995	1001
52 52	$v CC(35), \delta NNC(13)$	997	1029
53 54	V CC(49) $V CC(13) \neq HCCC(17)$	1014	1030
55	v NC(14) v NN(28)	1038	1045
56	$v CC(20), \delta CCC(14), \tau HCCC(31)$	1073	1081
57	ν CC(47), τ HCCC(10)	1082	1088
58	ν CC(12), δ HCC(25), τ HCCN(12)	1094	1096
59	ν CC(10), δ HCC(25), τ HCCN(12)	1096	1119
60	δ HCC(10), τ HCCC(10)	1134	1123
61	$\frac{\delta \text{HCC}(48)}{MC(1(1) \times \text{NN}(11) \times \text{HCC}(27)}$	1158	1166
62 62	V NC(10), V NN(11), 0 HCC(27)	1108	11/0
03 64	v CC(21), 0 IICC(17)	1209	1213
65	δ HCC(47), τ HCCC(16)	1209	1215
66	$v NN(12), \delta NCN(15), \tau HCCN(16)$	1249	1233
67	δ HCC(23)	1270	1278
68	τ HCCN(35)	1273	1293
69	δ HCC(50)	1283	1299
70	ν CC(31), δ HCC(38)	1294	1321
71	τ HCCC(26)	1299	1321
73	τ HCCN(48)	1340	1343
74	$v NC(15) \delta HNN(49) \delta HCN(11)$	1340	1300
75	δ HNN(16), δ HCN(26), δ HCCN(11)	1358	1384
76	δ HCH(36)	1359	1395
77	δ HCH(38)	1373	1397
78	δ HCH(66)	1379	1400
79	ν CC(27), δ HCC(25)	1404	1420
80	ν NC(14), δ HCN(18)	1416	1442
81 82	0 HCH(27) 8 HCH(27)	1425	1451
04 83	δ HCH(36)	1444	1452
84	δ HCH(44), τ HCCC(12)	1451	1460
85	δ HCH(35), τ HCCC(19)	1455	1463
86	δ HCH(52)	1460	1467
87	δ HCH(60), τ HCCC(10)	1464	1471
88	δ HCH(34)	1465	1472
89	v CC(10), δ HCC(53), δ CCC(12)	1497	1519
90 01	v CC(26), δ CCC(12), δ HCC(13)	1551	1585
91	v NC(54)	158/	1635

92	ν NC(24), ν CC(40), δ HCC(11)	1596	1682
93	v NC(35), v CC(13)	1614	1711
94	v OC(73), v NC(12)	1751	1771
95	v CH(33)	2917	2858
96	v CH(93)	2923	2859
97	$\nu CH(47)$	2924	2863
98	v CH(32)	2927	2870
99	v CH(85)	2931	2874
100	v CH(86)	2944	2896
101	v CH(57)	2968	2904
102	v CH(52)	2987	2917
103	v CH(49)	2990	2922
104	v CH(47)	2995	2924
105	v CH(90)	2997	2925
106	v CH(43)	3001	2927
107	v CH(62)	3001	2930
108	v CH(44)	3002	2946
109	v CH(28)	3051	3003
110	v CH(85)	3054	301
111	v CH(63)	3056	3022
112	v CH(49)	3072	3036
113	v CH(26)	3092	3043
114	v NH(100)	3557	3556

v: Gerilme, δ : Düzlemsel eğilme, τ : Bükülme

Şekil 3. Molekülün IR spektrumları (cm⁻¹)

3.2.3. UV-vis Analizi

Molekülün elektron absorpsiyon spektroskopisi etanol çözücüsünde DFT (B3LYP)/HF metodları ve 6-31G(d,p) temel seti ile teorik olarak çalışılmıştır. UV-vis teorik grafikleri çizilerek deneysel grafik ile mukayese edilmiştir (Şekil 4). Ayrıca absorpsiyon dalga boyları hesaplanarak deneysel değerler ile kıyaslanmıştır ve uyarılma enerjileri hesaplanmıştır.

Şekil 4. Molekülün deneysel ve teorik (B3LYP, HF) UV-vis spektrumları ve değerleri

3.3. HOMO-LUMO Enejileri ve Elektronik Özellikleri

"HOMO" yüksek enerjili dolu moleküler orbitalin enerjisini ifade ederken, "LUMO" düşük enerjili boş moleküler orbitalin enerjisini ifade eder. Bu iki orbitalin enerjileri iki metod ve temel set ile hesaplanarak aralarındaki enerji farkı " Δ Eg" değeri bulunmuştur. Δ Eg değeri molekülün kararlılığını ifade eder ne oranda düşükse o kadar kararlıdır. Bu değer B3LYP 6-

31G(d,p) için 4.38 eV ; HF 6-31G(d,p) için 10.82'dir (Şekil 5). Ayrıca, HOMO- LUMO enerji değerlerinden yararlanarak molekülün bazı elektronik özellikleri elektron ilgisi (A), iyonlaşma potansiyeli (I), elektronegativite (χ), kimyasal potansiyel (Pi), elektrofilik indeks (ω), nükleofilik indeks (IP), moleküler yumuşaklık (S), moleküler sertlik (η) hesaplanmıştır ve Tablo 5'de verilmiştir.

Şekil 5. Bileşiğin B3LYP, HF 6-31G(d,p) seviyesine göre HOMO-LUMO enerjileri

Tablo 5. Bileşiğin B3LYP, HF 6-31G(d,p) temel setleri ile hesaplanmış elektronik özellikleri

		Hartree	ev	kcal/mol	KJ/mol
	LUMO	-0,05441	-1,48053	-34,1424	-142,853
	НОМО	-0,21537	-5,86037	-135,145	-565,454
Α	Elektron ilgisi	0,05441	1,48053	34,1424	142,853
Ι	İyonlaşma potansiyeli	0,21537	5,86037	135,145	565,454
ΔΕ	Enerji farkı	0,16096	4,37983	101,003	422,6
χ	Elektronegativite	0,13489	3,67045	84,6439	354,154
Pi	Kimyasal potansiyel	-0,13489	-3,67045	-84,6439	-354,154
ω	Elektrofilik indeks	0,000732179	0,01992	0,45944	1,92234
IP	Nükleofilik indeks	-0,01085595	-0,2954	-6,81214	-28,5023
S	Moleküler yumuşaklık	12,4254	338,105	7797,01	32623
η	Moleküler sertlik	0,08048	2,18992	50,5014	211,3

3.4. Mulliken Yük, Dipol Moment ve Toplam Enerji

Molekülün sahip olduğu atomların mulliken yük değerleri HF/ B3LYP 6-31G(d,p)' de hesaplanmıştır. Görülmüştür ki, etrafi elektronegatif atomlar ile çevrili olan C1, C2, C3, C4 atomları pozitif yüklü iken, diğer karbon atomları negatif yüklüdür. Molekülde bulunan hidrojen atomları pozitif (H16-H35) yüklüdür. Elektronegatif atomlar olan N36-N39 ve O40

atomlar negatif yüklüdür. (Tablo 6). Ayrıca molekülün toplam enerjisi ve dipol moment değerleri de hesaplanmıştır (Tablo 7).

Tablo 6. Bileşiğin B3LYP/HF 6-31G(d,p) temel setleri ile hesaplanmış mulliken yük değerleri

	DFT	HF		DFT	HF
C1	0.522	0.601	H21	0.095	0.164
C2	0.815	1.051	H22	0.090	0.124
C3	0.111	0.178	H23	0.109	0.122
C4	0.084	-0.085	H24	0.102	0.114
C5	-0.097	-0.112	H25	0.102	0.110
C6	-0.141	-0.176	H26	0.104	0.114
C7	0.150	0.022	H27	0.104	0.110
C8	-0.128	-0.156	H28	0.110	0.122
С9	-0.127	-0.144	H29	0.124	0.151
C10	-0.131	-0.153	H30	0.125	0.157
C11	-0.305	-0.314	H31	0.120	0.140
C12	-0.305	-0.314	H32	0.107	0.128
C13	-0.212	-0.241	H33	0.105	0.113
C14	-0.184	-0.232	H34	0.106	0.121
C15	-0.320	-0.339	H35	0.106	0.115
H16	0.287	0.338	N36	-0.435	-0.567
H17	0.157	0.228	N37	-0.342	-0.353
H18	0.104	0.176	N38	-0.418	-0.627
H19	0.083	0.149	N39	-0.323	-0.329
H20	0.085	0.152	O40	-0.542	-0.659

Tablo 7. Bileşiğin B3LYP, HF 6-31G(d,p) temel setleri ile hesaplanmış dipol moment ve toplam enerji değerleri

Dipol Moment (Debye)	B3LYP	HF
μ _x	1.7606	2.2219
μ _y	1.7470	2.0467
μz	1.6259	1.8241
μToplam	2.9657	3.5289
Enerji (a.u.)	-877.892	-872.345

3.5. Yüzey Haritaları

Molekülün toplam yoğunluk, elektrostatik yüzey potansiyeli (ESP), moleküler elektron potansiyeli (MEP) ve elektron yoğunluğu ile elektron potansiyel yoğunluğu gibi kontur haritaları belirlenmiştir. Bu yüzey haritalarından özellikle MEP haritasına bakarak molekülün yük dağılımını ve yük yoğunluğunu, elektronegatif ve pozitif bölgelerini belirlememiz mümkündür. Yapıda bulunan elektronegatif atomların çevresi kırmızı renkte, özellikle N-H protonunun bulunduğu bölge mavi renkte, diğer bölgeler ise sarı veya yeşil renktedir. Yüzey haritalarında ki bu renk farklılıkları moleküldeki nükleofilik ve elektrofilik atomların varlığını gösterir.

Şekil 6. Bileşiğin B3LYP 6-31G(d,p) seviyesine göre yüzey haritaları

4. TARTIŞMA VE SONUÇ

3-(*n*-Propil)-4-(4-izopropilbenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on molekülünün Gaussian 09W programında DFT/HF 6-31G(d,p) yöntemleri ile teorik hesaplamaları yapılmıştır. Bu hesaplamalar sonucunda parametreler değerlendirilmiştir. ¹³C/¹H-NMR hesaplamalarının sonucunda deneysel veriler ile uyumlu olduğu ve ¹³C-NMR gaz ve çözücü (DMSO) fazında ortamında R² değerinin 1'e yakın bir değerde olduğu bulunmuştur bu sonuç da molekülün ¹³C-NMR hesaplamalarında kararlı olduğunu göstermiştir ve regresyon grafiği doğrusaldır. ¹H-NMR regrasyon analiz sonuçlarında ise sapmanın çok az olduğu gözlenmiştir, deneysel olarak N-H protonu 11.85 ppm aralığındayken, teorik olarak hesaplanan değerler B3LYP(vakum)/B3LYP(DMSO) için 7.94/ 8.41 ppm'de, HF(vakum)/ HF(DMSO) için 7.17/ 7.60 ppm'de gözlenmiştir. Bunun sebebi olarak N-H protonunun asidik karakterde olmasını gösterebiliriz. İnfrared analiz hesaplamalarında ise negatif titreşim frekansına rastlanmamıştır bu sonuçta yine molekülün kararlı olduğunu göstermektedir. Ayrıca DFT(B3LYP) metodu ile yapılan IR hesaplamalarından elde edilen titreşim frekans değerlerinin deneysele daha yakın olduğu sonucuna varılmıştır. HOMO-LUMO eneji değerleri ve farkı hesaplanmıştır. Geometrik, elektronik, termodinamik ve yapısal özellikleri incelenmiştir. Yüzey haritalarından elektron dağılımına bakılmıştır. Farklı iki metot DFT ve HF verileri kendi aralarında, literatürden

alınan verilerle mukayese edilmiştir ve daha kapsamlı bir metod olan DFT'nin B3LYP fonksiyonu ile yapılan spektroskopik (¹³C/ H-NMR) hesaplama sonuçlarının literatüre yakınlığının HF'a nazaran fazla olduğu görülmüştür.

TEŞEKKÜR

Bu çalışma, Kafkas Üniversitesi 2016-FM-25 no'lu Bilimsel Araştırma Projesi (2017) ile desteklenmiştir.

KAYNAKLAR

- Asiri A.M., Khan S.A. (2010). Synthesis and Anti-Bacterial Activities of Some Novel Schiff Bases Derived from Aminophenazone. Molecules, 15(10), 6850-6858.
- Beytur M., Yüksek H. (2014). Yeni 3-(3-Klorobenzil)-4-(3-sinnamoiloksibenzilidenamino)-4,5-Dihidro-1H-1,2,4-triazol-5-on Bileşiğinin Gaussian Programı Kullanılarak Spektroskopik Özelliklerinin İncelenmesi. Caucasian Journal of Science, 1(1), 149-166.
- Boraei A.T.A., Gomaa M.S., Ashry S.H., Duerkop A. (2017). Eur. J. Med. Chem. 125, 360-371.
- Dennington R., Keith T., Millam J. (2009). GaussView. Version 5. Semichem Inc. Shawnee Mission KS.
- Ditchfield R. (1972). J. Chem. Phys., 56, 5688-5691.
- El-Sharief A.M., Moussa Z. (2009). Eur. J. Med. Chem., 44, 4315.
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria, G.E., Robb, M.A., Mennucci B., Petersson GA., Nakatsuji H., Caricato M., Li X. et al. (2009). Gaussian 09. Revision C.01. Gaussian. Inc. Wallingford. CT.
- Jamróz M.H. (2004). Vibrational Energy Distribution Analysis. VEDA 4 program. Warsaw.
- Jin R.Y., Zeng C.Y., Liang X.H., Sun X.H., Liu Y.F., Wang Y.Y., Zhou S. (2018). Design, synthesis, biological activities and DFT calculation of novel 1,2,4-triazole Schiff base derivatives. Bioorganic Chemistry. 80, 253-260.
- Kemer G. (2015). Bazı Yeni Heterosiklik Bileşiklerin Sentezi ve Bazı Özelliklerinin İncelenmesi Üzerine Bir Çalışma. Doktora Tezi, Kafkas Üniversitesi, Fen Bilimleri Enstitüsü, Kars.
- Kumar K.S., Ganguly S., Veerasamy R., De Clercq E. (2010). Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4 (3)-H-ones. Eur. J. Med. Chem., 45 (11), 5474-5479.
- Mari S.K., Bantwal S.H., Nalilu S.K., (2008). Eur. J. Med. Chem., 43, 309-314.
- Medetalibeyoğlu H., Özdemir G., Yüksek H. (2018). The Investigation of Spectral and Theoretical Properties of 2-(3-Cyclopropyl-4,5-dihydro-1*H*-1,2,4-triazol-5-on-4-yl-iminomethyl) Benzoic Acid by Using B3LYP/HF 6-31g (d,p) Basis Set. Der Pharma Chemica, 10(8), 157-169.
- Merrick J.P., Moran D., Radom L. (2007). An Evaluation of Harmonic Vibrational Frequency Scale Factors. Journal of Physical Chemistry, 111(45), 11683-11700.
- Ocak N., Çoruh U., Kahveci B., Şaşmaz S., Vazquez-Lopez E.M., Erdönmez A. (2003). 1-Acetyl-3-(pchlorobenzyl)-4-(p-chlorobenzylidenamino)-4,5-dihydro-1*H*-1,2,4- triazol-5-one. Acta Crystallographica Section E, 59(6), 750-752.
- Patel R.V., Park S.W. (2014). Eur. J. Med. Chem., 71, 24-30.

- Ustabas R., Çoruh U., Sancak K., Ünver Y., Vazquez-Lopez E.M. (2007). 1-(benzoylmethyl)-4-[(2,4-dichlorobenzylidene)amino]-3-(2-thienylmethyl)4,5-dihydro-1*H*-1,2,4-triazol-5-one. Acta Crystallographica Section E, 63, 2982- 3051.
- Upmanyu N., Gupta J.K., Shah K., Mishra P. (2011). J. Pharm. Bioallied Sci., 3(2), 259-265.
- Wolinski K., .Hilton J.F., Pulay P.J. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112, 512.
- Yüksek H., Kotan G., Medetalibeyoğlu H., Gürbüz A., Alkan M. (2017). B3LYP ve HF Temel Setleri Kullanılarak Bazı 3-Alkil-4-(2-asetoksi-3-metoksibenzilidenamino)-4,5-dihidro-1*H*-1.2.4-triazol-5-on Bileşiklerinin Deneysel ve Teorik Özelliklerinin İncelenmesi. CBÜ Fen Bil. Dergi, Cilt 13, Sayı 1, 193-204.
- Yüksek H., Gursoy-Kol Ö., Kemer G., Ocak Z., Anıl B. (2011). Synthesis and in-vitro antioxidant evaluation of some novel 4-(4-substituted)benzylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones. Indian J. Heterocy. Chemistry, 20, 325-330.