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Abstract — In this paper a new parameterized three-term conjugate gradient algo-
rithm is suggested, the descent property and global convergence are proved for the
new suggested method. Numerical experiments are employed to demonstrate the effi-
ciency of the algorithm for solving large scale benchmark test problems, particularly
in comparison with the existent state of the art algorithms available in the literature..
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1 Introduction

Consider the non-linear unconstrained optimization problem
min{f(x):xeR"} (1.1)

where f:R"™ — R is continuously differentiable function and bounded from below.

There are many different methods for solving the problem (1.1) see [8, 10, 12, 15]. We
are interested in conjugate gradient (CG) methods, which have low memory requirements
and strong local and global convergence properties [2,13].

For solving the problem (1.1), we consider the CG method, which starts from an initial
point X; € R" and generates a sequence {x,} = R" as follows

X = X + o, d, (1.2)

where o, >0is a step size, received from the line search, and directions d, are given
[2,17] by, d, =-0, and

diys = =04 + BiSy (1.3)
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In the equation (1.3) g, = Vf(X,), S, =X, —X.and g, is the conjugate gradient para-
meter. Various choices of the scalar [, exist which give different performance on non-

quadratic functions, yet they are equivalent for quadratic functions. In order to choose the
parameter /3, for the method in present paper, we mention the following choices:

T T
B =w Fletcher-Reeves [9] B =gk$1—yk
Ok 9k A Yk Hestenses-Stiefel [11]
T T
ﬂPR — gkjlr_l yk ,BLS - _ ykTgk+l LIU-StOI’y[l4]
9¢9¢  polak-Ribiere[16] 9, dy

.
B = —% Dixon [6]
gk d

where yi = gi41 — Ji -
Zhang (Zhang et al., 2006) have proposed the three — term FR, PR and HS conjugate
T
gradient methods. Their methods always satisfy the descent condition di 9 <0 or
sufficient descent condition d;g, =—c|g,[, where c positive constant, these methods

have the following search directions:
1- FR three - term is

d/ g
(1) +
dk+l == 0y +ﬂFde _Hk(l)gkﬂ’ ‘9k = ol

9y 9y (1.4)
2- PR three - term is
.
Ay == G +A7d, _Hk(Z)yk’ 6,” :ng+_1dk (1.5)
Ok 9«
3-HS three - term is
.
(3 _ 9.
HS (3) 19;( - dkTil k (1.5)
dey == 0y +87d =077y, kK Tk
we note that these methods always satisfy:
dlgkz—c||gk||2<0 v k (1.6)

which implies the sufficient descent condition with € =1,
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The standard Wolfe (WC) line search conditions are frequently used in the conjugate
gradient methods, these conditions are given in [18]

f(x +a,d)< f(x)+pa.grd, (1.7)
ngdk Zo-gldk (1.8)

where d, is descent direction ie g/d, <0 and 0< p <o <1. Strong Wolfe (SWC)
conditions consist of (1.7) and the next stronger version of (1.8)

‘g;ﬂdk‘g_o'g;dk (1.9)

2 A New Modified Three-Term Conjugate Gradient (KN2).

In this section we develop a new three term conjugate gradient method (KN2), our idea
is based on the following well-known Zhang's three terms CG-method:

Xea = X + ady (2.1)
-0, if k=0,
dk+l :{ ' DL . } (22)
98 +d\ " & VY tsy ) if k>1,
where
T 3 T
oL gk+1()T/k ts, ) 20 and &, = ng+1dk 2.3)
de Yy d Yy

T —
If exact line search is used then Oiudy = 0 , therefore the method (2.2) reduces to the
classical Liu and Story [14] conjugate gradient method, furthermore if the objective func-
tion is convex quadratic and line search is exact then (2.2) reduces to the DX method[6].

The method defined in (2.2)-(2.3) has some disadvantages for example, the value of t is
DL
unknown, which is crucial for 7k .

To overcome to this disadvantage, we suggest the following search direction:
de o350, + A « —S(Vi—Sy) (2.4)

To find the value of 5, we multiply (2.4) by Y we get:
Al =GVt T & Yim S0 ¥, =0
Bos==0e¥t TRV $ (Vi€ 8=0
=B0Sa Yt Vo Ve (kY (8)=0
then
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gzﬁFRSI yk g-ll<-+1yk

(2.5)
Yi Y= Vi Sk
hence we obtain the following new(KN2) search direction:
FRST
d, frsg, + ™, BUs Y gk+lyk (Y-S, (2.6)
yk yk yk Sk
Some Remarks on The New(KN2) Method:

T —
1- If the line search is exact i.e. O Sk = O,then the search direction in

(2.6) reduces to the following one .

R,
de o5, + k+ﬁ kT8 Vi Ve—S,)
Vi Vit Sk O

2.7)

T _
If the objective function is convex quadratic and line search is exact , Oy 9 =0

S Gy =0 , then
Ve Yi =Yk (Gia —9i)
=YxGa — Ve O
=(9xa 9 9ka (9 —94) 9i
= Ok1 Ok~ 9 G — Gk Ji + 9 Ui

=018+ 9k O
then the search direction defined in (2.6) reduces to the following

R T
q _S LR BTk 8it S aia _s 28
et g g g g, &9

and

Note that we denote the search directions defined in (2.7) and (2.8) as KN2-1 and KN2-2,

respectively.
Now we give the corresponding algorithms.

Algorithm (KN2):

n
Stepl. Initialization: Select the initial point X €R , €>0 and select the

fy

parameters <2 <0 <1 get k = 1. Compute '*, . Set
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o - 1
Kk — T
Ay =0 and set o]

<
Step2. Test for continuation of iterations. If Hng_é‘ , then stop

Step3. Line search. Compute >0 satisfying the standard Wolfe
conditions (1.7) and(1.8) or strong Wolfe (1.7) and (1.9)

and update the variables Xy = X, + o dy

fa G Y =0~ Y gng Sk = X — Xy

, compute

__ pFR T _yT _
Step4. Set B =P and compute S F VY YiSk =0

¢ =0Oglse set Sasin (2.5).
Step5. If the restart criterion is satisfied, then set

d

, then set

1= "9 else compute 4t from (2.6).

0, =0 Hdk H/Hdk+l

Step6. Calculate the initial guess

Step7. Set K=kK+1 goto step 2.

To prove the sufficient descent property to the algorithm KN2 we need the following
theorem.

Theorem 2.1 [1]. If an «, is calculated which satisfies strong Wolfe conditions (1.7) and
(1.9) with o €(0,3] for all k and (g, #0), then the descent property for the Fletcher-
Reeves method holds for all k.

In the following theorem we will show that the search directions generated by equation
(2.6) are descent directions.

Theorem 2.2. Consider the search directions defined by the equation (2.6). Let the step-

size o, satisfies the strong Wolfe conditions (1.7), (1.9) and assume that the condition
FRT

Ve Oea < BraSk Y hold then

dlj+lgk+l S_C||gk+l
Proof: If k=0, then 91= =91 and we get d] g, =-|g,| <0 where c=-1

Suppose d; g, <-¢ ||gl||2 , to prove for k+1 consider the search direction defined in (2.6)
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FR.T

k+1sk yk gk+lyk (yk )
Yk Ye — yk Sk

FR
dk+1 == gk+l +ﬁ

We multiply by g,., then,

BeasSe Ve = 9o Ve
yk yk - y: Sk

ﬂkFﬁ-F;.S-kr yk - ngyk
Yi Vi — Vi Sk
BeiSe Y 1 Oe.r i

0V =S )+t

VeV = YeSe o T Y - Yes,

Since Yy Gy,1 < Sy Yy therefor 9,0y <= 04104, + B GeaSe Which is Fletcher-

T T FR T T
9ndin == 919 B Sk — e (Vi —S¢)

ng(yk -S)

R T
+87 QS —

< _||gk+1 i

= _||gk+1||2 + B ggusk - g;u(yk —S)

Reeves search direction, therefor by theorem (2.1), g, .,d,,, <- (1—ak)||gk+l||2 where
o<1/2

On the other hand the search directions generated by the equation (2.6) are conjugate
directions for all k.

3 Convergence Analysis
At first, we give the following basic assumption on the objective function Assumption 2.1
i-The level s = {x eR"| f(x)< f(xl)} is bounded, where x, is the starting point then
there exists a constant y, > 0. such that:

X< 7 forall xe S (3.1)

ii- In some neighborhood N of continuously differentiable and its gradient is Lipchitz
continuous with Lipchitz constant L>0 j.e

lg()—gw)| < Lju-wj VuweN (3.2)

Assumption (2.1.ii) implies that there exists a positive constant 72 such that
||g(X)||S v, vV xe S (3.3)

Proposition 3.1. Suppose that Assumption (2.1) is satisfied, and consider any conjugate
gradient method, where d, is descent direction and «, is obtained by the Wolfe

conditions. = oothen |im Iang H 0 for prove see [10].

k > o

In the rest of this section, we assumeg, # 0 forall k, otherwise a stationary point

has been found. Under Assumption(2.1) , and Zoutendijk condition we can use the
following theorem to prove the global convergence of the (KN2).
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Theorem 3.1. Suppose that Assumption (2.1) is satisfied. Consider the KN2 method

where dy is descent direction and %« satisfies Wolfe(standard or strong) conditions then
lim infg, |=

k —>

Proof: From equations (2.6), (3.1), (3.2) and (3.3)we have

FRoT
R, _BTUS Y~ e Vi (y, -

d .=
” kl" Ve Vi =S¢ Vi

‘_ gk+1 +ﬂ

< ||gk+l||+‘ﬂFRH|sk”+|ﬂ Sk Vi — U Vi |(||yk _Sk”)
‘ Yk Ye — Sk Y ‘

S
SR PRI S

<7, +71+72—72/1L(|—+1)71 _ 2(y, +71)+2(|—+1)7271L

Let » = max(y,,y,) therefore

o0
2wl
k=1

IA

i47+(L+1)7

k=1

v

ledmll Zl4y+ (L+1)7

Hence by proposition(3.1) |im inf Hng =
k —>

4 Numerical Results

This section presents the performance of FORTRAN implementation of our new three-
terms conjugate gradient (KN2) algorithm on a set of unconstrained optimization test
problems. We selected a number of 72 large-scale unconstrained optimization test prob-
lems in extended or generalized form presented in [3]. For each test function, we have
considered numerical experiments with the number of variables increasing as n=100,
..,1000. The algorithms uses the Wolfe line search conditions (1.7)and (1.8)with cubic

interpolation, p =0.0001 and o =0.9and the same stopping criterion |g, [, <10°°,
where | . |, is the Euclidean norm.

The algorithms we compare in these numerical experiments find the local solutions.
Therefore, the comparisons of algorithms are given in the following context. Let fA-¢*
and f*"°* be the optimal value found by ALG1 and ALG2 for problem i=1,...,720,

respectively. We say that in the particular problem i, the performance of ALG1 was bet-
ter than the performance of AIG2 if:
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Hf_ALel _ f.ALGZH <107

and number of iterations (iter), or the number of function-gradient evaluations (fg), or the
CPU time corresponding to ALG2 respectively. We have compared our algorithm versus
to the following algorithms:

1-Three term Fletcher-Revees (1.4).
2-Three term Hestenes-Stiefel (1.5).

In all these algorithms, the initial step size is o, =1/|g,|| and initial guess for other
[dics 7] D-

The codes are written in double precision FORTRAN (2000) and compiled with F77
default compiler setting. This code originally written by Andrei and we modified it.

iterations i.e. ( k >1 ) IS, = 4(

Figures 1, 2 and 3 show performance of these methods for solving 72 unconstrained
optimization test problems for dimensions n=100,..,1000, relative to the iterations (iter),
function—gradient evaluations (fg) and CPU time, which are evaluated using the profile
of Dolan and More [7]. That is, for each method, we plot the fraction p of problems for
which the method is within a factor 1 of the best (iter) or (fg) or CPU time. The left side
of the figure gives the percentage of the test problems for which a method is the fastest,
the right side gives the percentage of the test problems that are successfully solved by
each of the methods. The top curve is the method that solved the most problems in a (iter,
fg, time) that was within a factor t of the best (iter, fg, time).

1 T T T T T T T

09+
08 i
0.7 .
0.6 .
KN2
= 05F TFR -
04 Total number of iterations for 73 function with .
THS n=100,..,1000
03r .
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TFR 112666
01 .
U | | | | | | |
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X

Figure 1: Performance Based on Number of Iterations
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THS Total number of function-gradient evaluations

04k to the 73 test problems for n=100,._.,1000 dimentions i
KN2 992769
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TFR 1034622

02 —
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Figure 2: Performance Based on Number of Function-Gradient Evaluations
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Figure 3: Performance Based on CPU Time in Seconds
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