
Journal of Multidisciplinary Modeling and Optimization 3(1) (2020), 1-11. 

Cite as: K. K. Abbo and N. H. Hameed, Parameterized Three-Term Conjugate Gradient 
Method,  Journal of Multidisciplinary Modeling and Optimization 3(1) (2020), 1-11. 
 

 
Parameterized Three-Term Conjugate Gradient 

Method  
 

Khalil K. ABBO 1 and Nehal H. HAMEED2 

 
1Department of Mathematics, 

Telafer University, Mosul, Iraq 
kh_196538@yahoo.com 

 
2Department of Mathematics,  
Mosul University, Mosul, Iraq 
Nehalh926@gmail.com 

 
 

Received: 28.12.2019, Accepted: 21.08.2020, Published: 17.09.2020 
 
 

Abstract — In this paper a new parameterized three-term conjugate gradient algo-
rithm is suggested, the descent property and global convergence are proved for the 
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1 Introduction 
Consider the non-linear unconstrained optimization problem 

}  : )({ min nRxxf ∈    (1.1) 

where  RRf n →:  is continuously differentiable function and bounded from below. 
There are many different methods for solving the problem (1.1) see [8, 10, 12, 15]. We 
are interested in conjugate gradient (CG) methods, which have low memory requirements 
and strong local and global convergence properties [2,13]. 
  For solving the problem (1.1), we consider the CG method, which starts from an initial 
point nRx  1∈  and generates a sequence n

k Rx ⊂}{  as follows 

kkkk dxx α+=+1    (1.2) 

 where 0>kα is a step size, received from the line search, and directions kd are given  
[2,17] by,  11 gd −=  and  

kkkk sgd β+−= ++ 11    (1.3) 
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In the equation (1.3) )( kk xfg ∇= , kkk xxs −= +1 and kβ  is the conjugate gradient para-
meter. Various choices of the scalar kβ  exist which give different performance on non- 
quadratic functions, yet they are equivalent for quadratic functions. In order to choose the 
parameter kβ for the method in present paper, we mention the following choices: 

k
T
k

k

gg
g 1

T
1kFR  g

 ++=β   Fletcher-Reeves [9]   

 

T
HS k 1g  y    k

T
k kd y

β +=
Hestenses-Stiefel [11] 

T
PR k 1g  y   k

T
k kg g

β +=
 Polak-Ribiere[16]    

 

k
T
k

k
T
kLS

dg
gy

 1+−=β  Liu-Story[14] 

 

k
T
k

k
T
kDX

dg
gg

 11 ++−=β      Dixon  [6]                       
 

 

where 𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘+1 − 𝑔𝑔𝑘𝑘  . 
    Zhang (Zhang et al., 2006) have proposed the three – term FR, PR and HS conjugate 

gradient methods. Their methods always satisfy the descent condition 0<k
T
k gd  or 

sufficient descent condition kk
T
k gcgd  −= , where c positive constant, these methods 

have the following search directions: 
1- FR three - term is 

2- PR three - term is  

k
)(

kk
PR

kk yθ dβ  g d 2
11 −+−= ++ ,       

k
T
k

k
T
k

k gg
dg 1)2(  +=θ  (1.5) 

        3-HS three - term is  

k
)(

kk
HS

kk yθ dβ  g d 3
11 −+−= ++ ,       

3 1
T

( ) k k
k T

k k

g dθ  
d y

+=
    

(1.5) 

we note that these methods always satisfy: 
2 0T

k k kd g   c g                     k= − < ∀  
(1.6) 

which implies the sufficient descent condition with   1c = . 

1
1

11 +++ −+−= k
)(

kk
FR

kk gθ dβ  g d ,    
k

T
k

k
T
k)(

k gg
gd

 θ 11 +=   
 
(1.4) 
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    The standard Wolfe (WC) line search conditions are frequently used in the conjugate 
gradient methods, these conditions are given in [18] 

k
T
kkkkkk dgxfdxf ραα +≤+ )()(    (1.7) 

k
T
kk

T
k dgdg  1 σ≥+    (1.8) 

where kd is descent direction  ie 0 <k
T
k dg  and 10 <<< σρ . Strong Wolfe (SWC) 

conditions consist of (1.7) and the next stronger version of (1.8) 

k
T
kk

T
k dgdg  1 σ−≤+  

   (1.9) 

  

 2   A New Modified Three–Term Conjugate Gradient (KN2). 
 
   In this section we develop a new three term conjugate gradient method (KN2),  our idea 
is  based on the following well-known Zhang's three terms CG-method: 

     kkkk d α  x  x +=+1   (2.1) 

     

1
1

1

, 0,
- (y -ts ),               if  k 1, k DL

k k k k k k

g                                                  if  k   
d    

g   β d ξ+
+

− =  =  
− + ≥    

 (2.2) 

where   

1 1( )    , 0     and 
T T

DL k k k k k
k kT T

k k k k

g y ts g dβ t
d y d y

ξ+ +−
= ≥ =

 
 (2.3) 

If exact line search is used then 1  0 T
k kg d  + = , therefore  the method (2.2) reduces to the 

classical Liu and Story [14] conjugate gradient method, furthermore if the objective func-
tion is convex  quadratic and line search is exact then (2.2) reduces to the DX method[6]. 
The method defined in (2.2)-(2.3) has some disadvantages for example, the value of t is 

unknown, which is crucial for 
DL
Kβ .  

   To overcome to this disadvantage, we suggest the following search direction: 

1 1 k k(y s )FR
k k kd    gβ s ξ+ += − + − −  (2.4) 

To find the value of ξ , we multiply  (2.4) by 
T
ky we get: 

1 k 1 k k k k ky y y (y s ) y 0T T FR T T
k k kd    gβ s ξ+ += − + − − =   

1 k k k k          y y y s 0T FR T T T
k k k k   gβ s y y ξ ξ+= − + − + =  

           1 k k k ky y ( y s ) 0T FR T T T
k k k k  gβ s y yξ+= − + − − =  

 

then   
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k 1 k

k k

y y
y s

FR T T
k k

T T
k k

β s g       
y y

ξ +−
=

−  
(2.5) 

hence we obtain the following new(KN2) search direction:     

k 1 k
1 1 k k

k k

y y (y s )
y s

FR T T
FR k k

k k k T T
k k

β s gd    gβ s
y y

+
+ +

−
= − + − −

−  
 (2.6) 

Some Remarks on The New(KN2) Method: 

1- If the line search is exact i.e. ,then the search direction in  
( 2.6)  reduces to the following one . 

k 1 k
1 1 k k

k k

y (y s )
y

FR T T
FR k k

k k k T T
k k

β s g gd    gβ s
y s g

+
+ +

+
= − + + −

+  
(2.7) 

 If the  objective function  is convex  quadratic  and  line search is exact , and

, then 

)(y y 1
T
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T
k kk ggy −= +  

         k
T
kk gyg −= +1

T
ky  

         1 k 1 1(  g ) ( )T T
k k k k kg g g g g+ + += − − −   

         k
T
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T
kk

T
k

T
k ggggggg +−−= ++++ 111k1 g     

         1 1
T T
k k k kg g g g+ += +  

    then  the search direction defined in (2.6)  reduces to the following  

k 1 k 1
1 1 k k

1 k 1 k k

(y s )
FR T T

FR k k
k k k T T T

k k k

β s g g gd    gβ s
g g g g s g

+ +
+ +

+ +

+
= − + + −

+ +  
(2.8) 

Note that we denote the search directions defined in (2.7) and (2.8) as KN2-1 and KN2-2, 
respectively. 
Now we give the corresponding algorithms. 
 

 Algorithm (KN2): 

Step1.  Initialization: Select the initial point , , and select the  

             parameters 0 1ρ σ< < < .  Set   1k = . Compute kf , kg . Set  

T
K 1 k s 0g + =

 0  g k
T

1k =+g

 0 g 1k
T
k =+s

n
1 R ∈x 0>ε
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              k kd g= − and set  

1 .k
kg

α =
 

Step2.  Test for continuation of iterations.  If  kg ε≤  , then stop 

Step3.  Line search. Compute 0kα >  satisfying the standard Wolfe  
            conditions (1.7) and(1.8) or strong  Wolfe (1.7) and (1.9) 

            and update the variables   ,  compute  

            1 1,    ,k kf g+ + 1k k ky g g+= − and  1k k ks x x+= −  

Step4. Set 
FR

k kβ β= and compute ξ  . If  0T T
k k k ky y y s− = , then set  

           0ξ = else  set ξ as in (2.5). 
Step5.  If the restart criterion is satisfied, then set 

             1 1k kd g+ += −   else compute  1kd +   from (2.6).    

Step6.  Calculate  the  initial guess 1 1/k k k kd dα α+ +=  

Step7. Set     go to step 2. 
 To prove the sufficient descent property to the algorithm KN2 we need the following 
theorem. 
 

Theorem 2.1 [1]. If an  kα is calculated which satisfies strong Wolfe conditions (1.7) and 
(1.9) with  ](0, 2

1∈σ for all k and )0( ≠kg , then the descent property for the  Fletcher-
Reeves method holds for all k. 
   In the following theorem we will show that the search directions generated by equation 
(2.6) are  descent directions. 
 
Theorem 2.2. Consider the search directions  defined by the equation (2.6). Let the step-
size kα  satisfies the strong Wolfe conditions (1.7), (1.9) and assume that   the  condition

k
T
k

FR
k

T
k ysgy 1k1  ++ ≤ β  hold then 

111   +++ −≤ kk
T
k gcgd  

Proof:  If  k=0, then  11 gd −= and we get 02
111 <−= g gd T  where  1−=c       

Suppose  2
1 gc gd k

T
k −≤ , to prove for k+1 consider the search direction defined in (2.6) 

kkkk dxx α+=+   1

1  += kk
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Since k
T
k

FR
k

T
k ysgy 1k1  ++ ≤ β therefor k

T
k

FR
kk

T
kk

T
k sgggdg 111111   ++++++ +−≤ β  which is Fletcher-

Reeves search direction, therefor by theorem (2.1), 2
111 )1( +++ −−≤ k

k
k

T
k gdg σ  where 

2/1≤σ  . 
  On the other hand  the search directions generated by the equation (2.6) are conjugate 
directions for all k.  

 
3   Convergence Analysis  
At first, we give the following basic assumption on the objective function Assumption 2.1 

i-The level  { })(  )( | 1xfxfRx S n ≤∈=  is bounded, where 1x  is the starting point then 
there exists a constant 0  1 >γ . such that: 

 Sall  x      for            γx ∈≤ 1  (3.1) 

ii- In some neighborhood N  of continuously differentiable and its gradient is Lipchitz 
continuous with Lipchitz constant 0  >L , .i.e 

 N u,w                u-w Lg(w)g(u) ∈∀≤−       (3.2)   

Assumption (2.1.ii) implies that there exists a positive constant   2γ such that 

 S  x                 γg(x) ∈∀≤ 2       (3.3) 

    
Proposition 3.1. Suppose that Assumption (2.1) is satisfied, and consider any conjugate 
gradient method, where  dk is descent direction and  kα is obtained by the Wolfe 

conditions. If ∞=∑
∞

=

  
dk k1

2

1 then 0inflim
 

=
∞→

k
k

g  for prove see [10]. 

    In the rest of this section, we assume kallfor  gk        0≠ , otherwise a stationary point 
has been found. Under Assumption(2.1) , and Zoutendijk condition we can use the 
following theorem to prove the global convergence of the (KN2). 
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Theorem 3.1. Suppose that Assumption (2.1) is satisfied. Consider the KN2 method 

where  dk is descent direction and  kα satisfies Wolfe(standard or strong) conditions then   
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    Hence by proposition(3.1) 0inflim
 

=
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k
k
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4   Numerical Results 
This section presents the performance of  FORTRAN  implementation of our new three-
terms conjugate gradient (KN2) algorithm on a set of unconstrained optimization test 
problems. We selected a number of 72 large-scale unconstrained optimization test prob-
lems in extended or generalized form presented in [3]. For each test function, we have 
considered numerical experiments with the number of variables increasing as n=100, 
…,1000. The algorithms uses the Wolfe line search conditions (1.7)and (1.8)with cubic 
interpolation, 9.0    0001.0 == σρ and and the same stopping criterion  6

2
10−≤kg , 

where 
2

 . is the Euclidean norm. 

 The algorithms we compare in these numerical experiments find the local solutions. 
Therefore, the comparisons of algorithms are given in the following context. Let  1ALG

if  
and 2ALG

if  be the optimal value found by ALG1 and ALG2 for problem i=1,…,720, 
respectively. We say that in the particular problem i , the performance of ALG1 was bet-
ter than the performance of AlG2 if: 
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321 10−<− ALG
i

ALG
i ff

 
and number of iterations (iter), or the number of function-gradient evaluations (fg), or the 
CPU time corresponding to ALG2 respectively. We have compared our algorithm versus 
to the following algorithms: 
1-Three term Fletcher-Revees (1.4).      
2-Three term Hestenes-Stiefel (1.5). 

    In all these algorithms,  the initial step size is 11 /1 g=α   and initial guess for other 
iterations i.e. (  1 >k  ) is )./( 11 kkkk dd ++= αα   

  The codes are written in double precision FORTRAN (2000) and compiled with F77 
default compiler setting. This code originally written by Andrei and we modified it. 
Figures 1, 2 and 3 show performance of these methods for solving 72 unconstrained 
optimization test problems for dimensions n=100,..,1000, relative to the iterations (iter), 
function–gradient evaluations (fg) and  CPU time, which are evaluated using the profile 
of Dolan and More [7]. That is, for each method, we plot the fraction p of problems for 
which the method is within a  factor τ of the best (iter) or (fg) or CPU time. The left side 
of the figure gives the percentage of the test problems for which a method is the fastest, 
the right side gives the percentage of the test problems that are successfully solved by 
each of the methods. The top curve is the method that solved the most problems in a (iter, 
fg, time) that was  within a factor τ of the best (iter, fg, time). 

 
Figure 1: Performance  Based on Number of Iterations 
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Figure 2: Performance Based on Number of Function-Gradient Evaluations 

 
Figure 3: Performance Based on CPU Time in Seconds 
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