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1. Introduction

Assume that the kernel & is defined either on (0, ) or on [0,ec) with complex values and integrable on any finite subinterval.
We define the function K : [0,e0) — C by

{ Jok(s)dsif0<t,
K@) :=

0ifr=0.
As a simple example, if k () = t*~! then for a € (0,1) the function k is defined on (0,0) and K () := ét”‘ fort € [0,00). If
o > 1, then k is defined on [0,00) and K (¢) := ét“ fort € [0,0).

Let g be a strictly increasing function on (a,b) , having a continuous derivative g’ on (a,b) . For the Lebesgue integrable
function f : (a,b) — C, we define the k-g-left-sided fractional integral of f by

Sk.gatf (x) = /axk(g (x) —g(1) g (1) f(t)dt, x € (a,b] (1.1)

and the k-g-right-sided fractional integral of f by

Skgb—f(x) = /xbk(g (1) —g(x)g (t) f(t)dr, x € [a,b). (1.2)
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If we take k (1) = 51", where I is the Gamma function, then
Stearf (0= gy [ 0 =81 ¢ () ()
=17 f(x), a<x<b
and
Sear P00 = o [ 180 —8 W1 @) () (3
=1 f(x), a<x<b,

which are the generalized left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another
function g on [a,b] as defined in [1, p. 100]

For g(¢) =t in (1.3) we have the classical Riemann-Liouville fractional integrals while for the logarithmic function
g (t) = Inr we have the Hadamard fractional integrals [1, p. 111]

1 < x\1%-1 f(r)dt
HY ::7/ [1 (fﬂ 0< <b
a+f(‘x) F(a) g n f P <a<x<
and
1 b N9 f (1) dt
H® f(x) = 7/ [1 (7)} < b.
o f(x) ra s n{- ; ,0<a<x<
One can consider the function g (1) = —t~! and define the ”Harmonic fractional integrals” by
xI=® o f(n)dt
R = / ,0<a<x<b
a+f(x) F(OC) g ()C t)l—ata+1 Sasr=
and

o oy X0 f)dr
Ry_f(x) := F(oc)/x (t—x)'*ata+1’0§a<x<b'

Also, for g (1) =exp (Pr), B > 0, we can consider the ”B-Exponential fractional integrals”
o o ﬁ * a—1
E pf(x) == [ [exp(Bx) —exp(Br)]™ " exp (Br) f (¢)dt,
I'(a) Ja
fora < x <band

b
B p 0= s [ [oxp(B) —exp (B0 exp(Br) ()

fora <x<b.
If we take g (#) = in (1.1) and (1.2), then we can consider the following k-fractional integrals

X
Starf ()= [ k(r=0)f(@)dt, € (a.b] (1.4)
Ja
and
b
So-f ()= [ klt=2)f(0)dt, € [ab). (1.5)
X
In [2], Raina studied a class of functions defined formally by
79, )=y —K_u R, with R 1
T35 (x) '_kgbf‘(pk—&—l) , Jx| <R, withR >0 (1.6)
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for p, A > 0 where the coefficients ¢ (k) generate a bounded sequence of positive real numbers. With the help of (1.6), Raina
defined the following left-sided fractional integral operator

/pfx,a+;wf(X)i=Lx( D FS (wx—0)P) f()dt, x> a (1.7)

where p, A > 0, w € R and f is such that the integral on the right side exists.
In [3], the right-sided fractional operator was also introduced as

Hoap—wf ()= ./);b (t—x)lflygk (w(t—x)P) f(t)dt, x<b (1.8)

where p, A > 0, w € R and f is such that the integral on the right side exists. Several Ostrowski type inequalities were also
established.
We observe that for k (r) = r= 19" (wtP) we re-obtain the definitions of (1.7) and (1.8) from (1.4) and (1.5).

In [4], Kirane and Torebek 1ntroduced the following exponential fractional integrals

1 [ 1-—
TEf (x) ::—/ exp{ a(x—t)}f(t)dt,x>a (1.9)
o Ja o
and
o 1 b l-o
T £ (x) :zf/ expd ——2 -0\ ryar, x<b (1.10)
o Jx o
where o € (0,1).
We observe that for k (1) = éexp ( ) t € R we re-obtain the definitions of (1.9) and (1.10) from (1.4) and (1.5).

Let g be a strictly increasing function o (a b) , having a continuous derivative g’ on (a,b) . We can define the more general
exponential fractional integrals

7800 [0 {16 -0 by 07O x>a
and
50w [ oo {1 w0 -e) b 0 s x<b
where o € (0,1).

Let g be a strictly increasing function on (a,b), having a continuous derivative g’ on (a,b). Assume that & > 0. We can
also define the logarithmic fractional integrals

2870 = [ (6 =) In(g () g (0)¢ () f (),
for0 <a < x<band
28 10= [ 080" In() 5 ()¢ O F ()

for 0 < a < x < b, where a > 0. These are obtained from (1.4) and (1.5) for the kernel k (t) = t*~'Inz, ¢ > 0.
For ox =1 we get

Lyarf (6 /m g()g (0 f()dt, 0<a<x<b

and

Lov—f(x / In(g g(x)g @) ft)dt,0<a<x<b.
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For g (t) =t, we have the simple forms

L0 (x) = /:(x—t)a_lln(x—t)f(t)dt, 0<a<x<b,

L f(x) :/b(t 0 'n(t—x) f(t)dt, 0 <a<x<b,

Lo f (x /lnx Hf@)d,0<a<x<b

and
/lnt x)f(t)dt,0<a<x<b.

In the recent paper [5] we obtained the following Ostrowski and trapezoid type inequalities for the generalized left- and
right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g on [a, ] .

Theorem 1.1. Let f : [a,b] — C be a function of bounded variation on [a,b]. Also let g be a strictly increasing function on
(a,b), having a continuous derivative g’ on (a,b). Then we have

2 of @)+ 12 of () - ﬁ (80— (a)* + (g (6) — ¢ ()] f W
grloo[/:@(r)—g( N dr+/ ! ’<t>\/<f>dr]
<= (a1+ 5 a)*\/ () g(X))“\/(f)]
[%<g<b>—g a +]g x) — Sk %yt ),
L] (@ —s@)® + a6 -2 ™) 7 (v o+ (Vi)
= TlatD)
with p, g > 1, %—Fé:l;
BV + 4 Vi = VE|] (s ) — g (@) +((5) — ()"
and
I o 0+ o ()~ g (69 g(a))“f(aH(g(b)g(x))“f(b)]‘
X t b
< o [ [ 6™ ¢V ar+ [ 60 g g (t)\/(f)dt]
X b
< Tt <g<x>—g(a))“v<f>+(g(b)—g(x))“vm]
[3 (2 b) — g (@) +|g () — L4521
L] @—s@® + e — g™ (v o+ (Vi)
STlatD)
with p, g > 1, %—J—ézl;
VA +5VE = VEW|] (60— g (@) + (8 () ~ g (x)*)

forany x € (a,b).
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For applications to the classical Riemann-Liouville fractional integrals, Hadamard fractional integrals and Harmonic
fractional integrals see [5].

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals see [6]-[21], [22]-[32] and the references
therein.

Motivated by the above results, in this paper we establish some Ostrowski and trapezoid type inequalities for the k-g-
fractional integrals of functions of bounded variation. Applications for mid-point and trapezoid inequalities are provided as
well. Some examples for a general exponential fractional integral are also given.

2. Some identities for the operator S; , .1 ;—
For k and g as at the beginning of Introduction, we consider the mixed operator
Sk,gﬂ—&-.b—f (X)

1
= E [Sk,g,aJrf (x) +Sk,g.hff(x)j|

:;[/:k(g(x)—8(f)>g/(t)f(f)dl—i—/xbk(g(l)—g(x))g’(t)f(t)dt

for the Lebesgue integrable function f : (a,b) — C and x € (a,b).
The following two parameters representation for the operator Sy 4 o+ »— holds:

Lemma 2.1. With the above assumptions for k, g and f we have
1
Skga+p-f () = 5 [YK (g (b) = g (x) + AK (g (x) — g (a))] 2.1
1= ,
5 [ e =g )8 1)1 ()~ Alds

1 b /
3 [ ka0 -8 O 0 e
forany A,y € C.

Proof. We have, by taking the derivative over ¢ and using the chain rule, that

[K(g(x)—g(®)]) =K (g(x)—g (1) (g(x) —g (1)) = —k(g(x) —g (1)) g (¢)

forz € (a,x) and

K (g(r) =g ()] =K' (g (1) =g (x)) (g (1) —g (x)) = k(g (1) — g ())& (¢)

forr € (x,b).
Therefore, for any A, v € C we have
/a k(g (x)—g (1) g (t)[f (t) — A]dt 2.2

— [[Ke) -2 ) ) f a2 [ k(g -5(0)¢ @)as

St (042 [ K (g) g0 dr
= Stqar (A K (8(6) = 8 ()]} = St f (1) = 2K (8() — )

and
/xbk<g<r>—g(x))g’(r)[f(rwwr 3
b
=/xk<g<r>—g<x> r)di - y/ ()8 (1)
= Staa 197 [ K (g() g ()]

= Skgw—f (¥) =V [K (1) — g (0)][2 = Sk g f (x) — YK (g (b) — g (x))
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forx € (a,b).
If we add the equalities (2.2) and (2.3) and divide by 2 then we get the desired result (2.1). ]

Corollary 2.2. With the above assumptions for k, g and f we have the Ostrowski type identity

Stsarsf () = 2 K (g(b) — g (x)) + K (g x) — g (a)] £ () 2.4)

2
+%/ax"<g(x) —g(0))g (1) [f (6)— f ()]t
+%/xhk(g(t) —g(x) g (1) [f(t)— f(x)]dt

and the trapezoid type identity

Skga+p—f (x) = ! [K(g(b) —g(x)) f(b)+K(g(x) —g(a)) f(a)] 2.5)

2
*%/:"(g () =g ()& (0) [f (t) — f (a)] dt
+%/xbk(g(’) —8(x))g" () If (1) = f ()] dt

Sorany x € (a,b).

For x = # we can consider

a+b
Mk,gﬂ+,b—f = Sk,g,a+,b—f ( )

2
1% +b ,
—5 [Tk (e(F) -ew) ¢ ws0a
| a+b ,
#3 fak(s0-5("52) )¢ s 01ar
By (2.4) we have the representation

My g.atp—f

Sl (s0r-s(%57)) o (5(%57) o) [ (57)

o [k (5) - s0) 0 [r0 - (52) ]

o5 k(502 (“52) )¢ 0 |- (457 |
and (2.5) we have

Miga+p—f

e (sm-s () s e (2(452) ~st@) r10)]

a+b

w3 k(e (50) -50) ¢ 00 - s@lar

+;/a;k (g(f) ~8 (T)) g (Of ()= f (b)) dt.

If g is a function which maps an interval I of the real line to the real numbers, and is both continuous and injective then we
can define the g-mean of two numbers a, b € I as

g(a)+g(b)
e sl)

My (a,b) =g (
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If I =R and g(t) =1 is the identity function, then M, (a,b) = A(a,b) := “*b , the arlthmetzc mean. If I = (0,e0) and

g (t) =1Inz, then M, (a,b) = G (a,b) := v ab, the geometric mean. If I = (0,0) and g( )= 1, then M, (a,b) = H (a,b) := %,

s b l/p
the harmonic mean. If I = (0,00) and g (1) =17, p # 0, then M, (a,b) = M, (a,b) := (#) , the power mean with
exponent p. Finally, if I = R and g () = expt, then

M, (a,b) = LME (a,b) :=1n (expa—;epr> ,

the LogMeanExp function.
Using the g-mean of two numbers we can introduce

Pegat b = Skgatn—f (Mg (a,b))
o (a,b)
2 /M (erg(b) g(t)> gt f(t)ar

2 Mg<a,b>k (g 0= z) g () f(t)dt.

Using (2.4) and (2.5) we have the representations

Pk,g,a+,b—f

=K<W>f(Mg (@b))

i /Mg (HEO o)) ¢ 010 o b

*3 o (st 29550 ¢ 017 (01 01, (a0

and

Pk,g,a+,b—f

:K<g(b)—g(a)) f(b)+f(a)

2 2
Mg (a,b)
s [T (HEY ) ¢ 0 - @l
gla)+g(®)\ ,
w53 (50 HED) e 0170 - )
3. Some identities for the dual operator S , .. ;-

Observe that

Seae s )= [ k(g § (0 (1)dr, x € [ab)
and

Staf (@) = [ K(e(0)~g(a)¢ ()F ()dr, x € (a.8].

Define also the mixed operator

Svk,g,a%»,hff ()C)

= 3 [Stgxr F(0) +Stgu £ (@)]

5| [ e -coig 0 r0as [Kew @ 00

for any x € (a,b).
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Lemma 3.1. With the above assumptions for k, g and f we have
o 1
Skga+h-f () = S [AK (g (b) — g (x)) + VK (g (x) —g(a))]
1 X
5 [ ks =g@)e 01 ()~ Aar

1 rb )
+§/x k(g(b)—g ()& (1) [f (1) — Aldt
forany A,y e C.

Proof. We have, by taking the derivative over ¢ and using the chain rule, that

[K(g(b)—g ()] =K' (g(b)—g(1)) (g(b) —g (1)) = —k(g(b) —g (1) g (t)

forz € (x,b) and

)
K (g(r)—g(a)] =K' (s(t) —g(a)) (s(r) —(a)) = k(g (1) —g(a))¢' (1)
)

fort € (a,x
For any A, y € C we have

/xbk(g(b) —g(1)g (1) [f (1) — A]dr

b b
= [ K@) —s)g O fWdr=2 [ k(gb) =g (s

=St )44 [ K (g(0) g (1)
S /(6 AK (2(5) 5 (x))

an

/ k(g O1F (1)~ vids

:/k — dt—y/

_/k (1) f()dt — YK (g (x) — g (a))

forx € (a,b).

If we add the equalities (3.2) and (3.3) and divide by 2 then we get the desired result (3.1).

Corollary 3.2. With the assumptions of Lemma 3.1 we have the Ostrowski type identity
Stgars f () = 1[K<g<b> §(1) +K (g (1) — g (a))] £ ()
+3 [ kG O1F )~ f W)ds
by [ KB 5w W10 - rw]a

and the trapezoid identity
Skgatpo-f () = : 5 [K(8(b) —g(x)) f(b) +K(g(x) —g(a)) f(a)
+3 / k(g O 0~ 1(@]ds
3 [ K@) -5 @) W10 - F@)ar
Sforx € (a,b).

Variation — 316/330

3.

(3.2)

(3.3)

34

(3.5)
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For x = # we can consider

. " a+b
Mk,g,aJr,hff:: Sk,g,aJr,hf( > )

1 /b
=5 [, ke ) =g ) () f (1) dr

13
5 [T ke -gla)g Of 0ar
a
Using the equalities (3.4) and (3.5), we have

My garo-f

A fe(oorms (432 o o550 (2)
+;/aa;bk(g(t)—g(a))g’(t) [f(t)_f(a—;—b)} N

3 ke =5 )8 0|10~ (57 )

and

Mygarn-f
- % [K <g(b) —g <a;b>>f(b)+K(g (a;b) —g(a>> f(a)}

+%/aT k(g(t)—g(a)g (1) [f (1)~ f(a)|ar

1 b
5 [y ke =g 0)g ()17 ()~ f (®)dr.
=
Using the g-mean of two numbers we can introduce

pk,g,a-‘r,b—f = Svk,g,a-&-,b—f (Mg (av b))

L ke - () f () de

2 My (a,b)
1 Mg (a,b) ,

w5 [T ks —gl@)g 07 ()t

Using the equalities (3.4) and (3.5), we have
Pusars s =K (EP 5D o, 00

1 [Mg(ab) ,

+5/a k(g(t)—g(a))g (1)[f (t) — f (Mg (a,b))ldt

x [ e ) g W) (01 (0) (M (a.b))]

t(a,b)

and

ﬁk,g,a-&-,b—f:K
1 [Mg(ab) ,
+§/a k(g(r)—g(a))g (1)[f (1) — f(a)ldt
1 b

k(g(b)—g ()& () [f (1) — f ()] dt.

E Mg (a,b)
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4. Trapezoid functional 7; , ., ;—

We can also introduce the functional

1
Tigavp—f = ) [Sk,g,a+f(b) +Sk.,g,b—f(a)]

1 b
- 5/a [k (g (b) — g (1)) +k(g (1) — g (a)]g (¢) £ (t)dr.

We have:

Lemma 4.1. With the assumption of Lemma 2.1, we have

Trgarb-f=K(g(b)—g(a))d

“.1)
b3 [ R G0) ) () g @) ()7 (1)~ 8]
forany 6 € C.
Proof. Observe that
[ G 0) ~g0) + kg0 - g@)]¢ (0 a
= [k e0)-20)g War+ [ kgn)-g(@)¢ Oar
= [k g ars [ K0 -g@))
——K(g(b)—g()lo+ K (g()—g(a))l,
=K (g(b)—g(a)) +K(g(b) —g(a)) = 2K (g(b) —g(a)).
Therefore
[ a0 g 0) + k(20— (@) ) @)~ B
=1 [ e ) 5 0) + k(s 0) g @) 07 (W)
38 [ Kls(0)~g0) + k() g @)l @)
= Tk,g,aﬁbff_ oK (g (b) _g(a)> )
which proves the desired equality (4.1). O
Corollary 4.2. With the assumptions of Lemma 4.1 we have the Ostrowski type identity
Tiga+b—f (4.2)
=K(g(b)—g(a)) f(x)
b
+%/a [k(g(b) —g (1) +k(g(t) —g(a)]g (t)[f (t) — f (x)]dt
for any x € |a,b] and the trapezoid identity
Tiga+b—f (4.3)
= K(g(0) —gla) 2O
3 [ R G®) -0 kGO s @)]g @ |1 - LD 4
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We observe that for x = “zib we obtain from (4.2) that

Tk,g,a-‘r,b—f

=K(g(b)—g(a))f<a+b>

2

3 [ k) -0 k0 - e 0| 10— (457 ar.

5. Inequalities for functions of bounded variation

We considered the cumulative function K : [0,00) — C by

Jok(s)dsif 0 <t,
K(t):=
0ifr=0.

We also define the function K : [0,0) — [0,0) by

Jolk(s)|dsif 0 <t,
K():=
0ifr =0.

We observe that if k takes nonnegative values on (0, ), as it does in some of the examples in Introduction, then K () = K (¢)
forr € [0,00).

Theorem 5.1. Assume that the kernel k is defined either on (0,0) or on [0,0) with complex values and integrable on any finite
subinterval. Let f : [a,b] — C be a function of bounded variation on [a,b] and g be a strictly increasing function on (a,b),
having a continuous derivative g’ on (a,b) . Then we have the Ostrowski type inequality

1

Skga+s-f () = 5 [K (g (b) — g (x)) + K (g (x) — g (a)] f (x)

t

1 b t X x
Sz[/x Ik(g(t)*g(x))\\/(f)g’(t)dw/a |k(g(x)g(t))V(f)g’(t)dt1

b X
<3 lK(g(b)—g(X))\/(f) +K(g(X)—g(a))\/(f)]
max (K (2 (5) —& () K (¢ (1) £ (@)} V4 (£):
1) K@) K e e (v () )
) withp,q>l,%+$:1; '

[K(g(b) —g(x)) +K(g(x) —g(a))] {%VZ (f)+3

AGEHG
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and the trapezoid type inequality

1 X t b
=2 l/ k(e @) =g NIV (g di+ [ k(g0 =g (I (e

< K 0)- )V () + K e () -6 @)V )
ma (K (5 6)— 9) K (59~ 8 (@)} V2
K (g(b) ~ & (x) + K7 (s(0) ~ g(@)]'”
<! < (Vi =+ (Vi’(f) M

1
with p, g > 1, p+5_1

K(g(b) —g(x) +K(g(x) —g(a))]
AR AGEYAG

foranyx € (a,b).
Proof. Using the equality (2.4) we have

1
2

<3| [ Kew-g0)g 010~ Wl

< %/ax|k(g(x)—g(t))g/(t) [f(f)—f(x)]|dt

%/b\k — () g (O (1) — £ ()]

=3 [ Ke@=gO)1F 0 -7 0l () ds

/ k(g(0) =g @)IIf ()~ £ ()| (1) e
forx € (a,b).

Since f is of bounded variation, then

X

X
I ( \/ \/ Yfora<t<x<b
a

and

t b
L0 =@ <\ () <V () fora<x<i<b.

Sk.g.a+b—f (x) — % [K(g(b) =g (x)) f(b)+K(g(x) —g(a))f(a)]

Skgat+b-f (¥) = 5 [K (g (b) —g(x)) + K (g (x) —g(a))] f (x)

Variation — 320/330

(5.2)
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Therefore
1 y '
B <5 [ k(g® g0V ()¢ (0d
1P '
+3 [ MO =g @IV (¢ O
<V [ K@ -g0)lg 0ar
1\ b
+5 V() | Ik(g (1) =g (x))|g' (1)dr
=:C(x)
forx € (a,b).

We have, by taking the derivative over ¢ and using the chain rule, that
K(g(x)—g(0))] =K' (g(x) —g(1) (g(x) —g () = — |k (g (x) =g (1))| & ()
fort € (a,x) and

K(g(t)—gx)] =K (g(t) —g(x) (g(1) —g(x)) = k(g (t) —g(x))|& (¢)

forr € (x,b).
Then

[ k(e ~g@)lg 00dr = [ K(g )~ g0 dt =K (g () ~ g @)

and

[ 10~ ()18 W) = [ K (1) g (0N dt = K (4) 5 ()

giving that

b X
Cl)=5 [K(g(b)—g(X))\/(f) +K(g(x)—g@)\/ (N

for x € (a,b), which proves the first and the second inequality in (5.1).

The last part of (4.1 is obvious by making use of the elementary Holder type inequalities for positive real numbers c, d, m,
n>0

max {m,n}(c+d);
mc+nd <

(mP +nP)'/P (¢4 +d?)" with p, g > 1, %—&-é =1
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Further, by the identity (2.5) we have, as above,

1

Skga+h-f () = 5 [K (g (b) — g (x)) [ (b) + K (g (x) ~ g (a)) f ()]

which proves (5.2).

The following particular case for the functional
Pk,g,a+,b—f = Sk,g,a+,b—f (Mg (av b))
1 (Melad) (o (b)+g(a
=[BT ) g e
2 Ja 2
1 rb

gb)+g(a)\
5 ) (0 E2E D) e ) ar

is of interest:

Corollary 5.2. With the assumptions of Theorem 5.1 we have

Pegat+o-f—K <g(b);g(a)) I (Mg (a,b))’ <1

2 M(a.b) 2 g(a,b)
1 Mg (a,b) b Mg(a,b) .
e[ (R ) Vg

2 2
and
—8\a a ¢(a,b) a t
pk,g,a+,b_fz<<g<b>2g< ))f(b);rf() s ’ k(g(@;g()g@) o
b a b
;.Mg(a,b) k(g(t)_g(b);g( )) \t/(f)g/(t)dt

b)—g(a)\\’

We have:

(5.3)

(5.4)
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Theorem 5.3. With the assumptions of Theorem 5.1 we have the Ostrowski type inequality

Skt b (X) = % (K (g(b) =g (x))+K(g(x)—g(a))lf(x)

<1 [ e - @IV (D5 O+ [ ka2 )V (1) @
=2 Ja t 2 ) v

b
< % lK(g(b)g(X))\/(f)+K(g(X)g(a))\/(f)]
max {K (g (b) — g (x)) K (g (x) — g (@)} Va (/):

1) K@) K @) (v (i) )
-2 withp,q>1,%—|—$:1; '
[K (g (b) — 8 (x)) + K (g (x) ~ g (a)] [3VA (N + 3 Vi) = VE ()]
and the trapezoid inequality
Sccars ()~ 5K (8 () g (x)) £ (6) + K (8(x) ~ g a) £ a)]
X t b
<5/ k(g(t)g(a))l\a/(f)g’(t)dt+;/xbk(g(b)g(t))l\/(f)g’(t)dt
b X
<3 K<g<b>—g<x>>\/<f>+1<<g<x>—g<a>>\/<f>]
max {K (g (5) — ¢ (+)) K (g () g (@)} V4 (1)
1) K05 () Ko (s @) (i )+ (Vi) ) 56
-2 withp,q>1,%+$=l; '
(K (g(5) ~ g (1)) + K (g(x) g (@)] [3VA () + 5 [V () = V2 ()]

forany x € (a,b).
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Proof. Using the identity (3.4) we have

stkgﬁb,f(x)—1[K(g(b)—g<x>>+1<<g<x>—g<a>>]f<x>

2
<3 [ @ -s@lrO-rwig 0d
b3 [ R ) NI @)~ 18 @)
<3 [ ke () (o) dr
+%/ k(s I\/
< ;\Z/m Lx|k<g<z>—g<a>>|g/<t>dr
V0 [ k) g0l 0

X b
% lK(g(x)—g(a))V(f)+K(g(b)—g(x))\/(f)] :

a X

for any x € (a,b), which proves (5.5).
By the identity (3.5) we have

Skt o () = % [K(g(b) =g (x)) f(b)+K(g(x) —g(a))f(a)]

<3 [ ke -g@IIf o)~ @lg W
3 [ R G®) g e) - 10l ) a
<3 [ ke I\/

=3 | K@ -g@) V() +K(g®) -2 () V()

a X

for any x € (a,b), which proves (5.6). O
Also, we have the particular inequalities for
ﬁk,g,u«hbff = Sk,g,aﬁbff (Mg (Cl, b))

ket 5@ () ey
Mg (a.b)

g(a,b)
by [ e —g@)g 05 @)
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Corollary 5.4. With the assumptions of Theorem 5.1 we have

g(b)—g(a)) f(b)+f(a)
2 2

Pk.g,a-‘r,b—f*K <

¢(a,b)
<2 [ s -g@l V(g 0a
1 b

k(g(®) =gl \/ (g (1)t

+ —
2 JMy(ab)

and

5 8
Pk.,g,aJr,bff_ K (

2 =
1 b -
2 Juy(ap) [k (b)*g(’)”\[/(f)g (t)dt
1 b a b
_2K<g( )2g( )>\b/(f)

Finally, we have the following result for the trapezoid functional
1
Ty gavp—f = 5 [Sk,g,a+f(b) +Sk-,g,b—f(a)]

1 b
=5 [ ks®) =g )+ ke s @)g W) f W) ar
Theorem 5.5. With the assumptions of Theorem 5.1 we have the trapezoid type inequality

IO < Kelo)- @)V ). 5.7

Tk,g,a+,b7f_ K(g (b) -8 (a)) 2

Proof. From the identity (4.3) we have

fla)+f(b) ’
2

Tk,g7a+,b7f —-K (g (b) -8 (Cl))

<5 [ W) - 0) 440 - @) - LETLE)

s%/abuk(g(b)fg<t>)|+|k<g(t>fg(a))” ’f(t)]w
=:D

g (t)dt

g (t)dt

Since f : [a,b] — C is of bounded variation, then for any ¢ € [a,b] we have

fl@+r®)| _|f@)=fla)+f({)—f(b)
2 2

1 1.

lF@) = f@I+1fF B =fOI <5V ()

]f(r) -

Therefore

= % (£ K (g(b) —g(a) +K (g (b) — g ()] = TK(g(b) —g(a) \/ (f),

a a

which proves the desired result (5.7). O
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6. Example for an exponential kernel

The above inequalities may be written for all the particular fractional integrals introduced in the introduction.

L_r=1 where I' is the Gamma function, then we recapture the results for the generalized

If we take, for instance k (1) = o)
left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g on [a,b] as

outlined in [5].
For a, B € R we consider the kernel k(¢) := exp[(a+ Bi)t], t € R. We have

_expl(a+Bi)—1 .
K(t)= (@ Bi) ,ifteR

for a, B #0.

Also, we have

k(s)| :=|exp[(a+ Bi)s]| = exp(as) fors € R

and

4 t)—1
K(t):/ exp(as)ds = SO0 =Lig o p
0

for a # 0.
Let f: [a,b] — C be a function of bounded variation on [a,b] and g be a strictly increasing function on (a,b), having a

continuous derivative g’ on (a,b). We have

@ = [ ewla B (e - g @))g (05 (s

Ja+,b—
8 : ,
+5 [ explla+Bi) (g )—g ()] (0 (0

forx € (a,b).
If g =Inh where h : [a,b] — (0,00) is a strictly increasing function on (a,b), having a continuous derivative /' on (a,b),

then we can consider the following operator as well

Kiabpf (%)

= 13;541;@7](()‘)

_1 < (h(x) a+Bi I (t) b h(r) a+Bi K (1)

_Zl/a (h(t)) h(t)f(t)dH_/X (M> h(t)f(t)dt],
forx € (a,b).

By using the inequality (5.1) we have for x € (a,b) that
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Searsd 09

1[wpKa+ﬁ0@UO—g@DL—L+wpKa+ﬁ0@00—g00ﬂ—l]fu)

2 (a+ i)

1 b t X x
Sztéemwa@OJg@»k%ﬂ\ﬂﬁdr+lem%a@00g@»g%ﬂV(ﬂd%
s;l“““@“gf“m‘lqu+“““@“§‘“m‘lvuﬂ

{(.CXP(OC(g(bBXg(X)B)II)p_i_ (eXp(a(g(xz;g(a)))*l)p}l/p ((Vz (f) + (\/)IZ (f))q)l/q
with p, g > 1, pT = 1;

IA
N1 =

o

[eXP(a(g(h)*A'()C)))f1+exp(a(g(X>fg(a))>fl] [% Vi (f)_,_%

AGEHGI

for o, B € R with o # 0.
By using the inequality (5.2) we also have for x € (a,b) that

EB 1) 1 {(GXP[(OHﬁi) (g(b) —g(x)] = 1) f(b) + (exp[(a + Bi) (g (x) —g(a))] — l)f(a)]
gatb- 2 (a+Bi)
1 M X t b b
<3 /a eXP(a(g(t)—g(x)))g/(t)\/(f)d”r/x eXP(a(g(x)—g(f)))g/(f)\/(f)dt]
- b X
< “““@“Lg“m1vu>+“““@“gg“mlvuﬂ
( max { exp(a(g(0)—4(x) 1. explafela)—gla))-1 } VP ()
[(exp(a(gw)a—g(x)))—l )P N (expm(g(x)a—g(a)))—l )P} 1p
<L) (o (o))
2| withp, g>1, L1 =1
[EXP(a(g(h%g(x)))*1;BXP(a(g(X>fg(a)))*1]
EANERIAGEYRG]|

for o, B € R with o # 0.
If we denote

—atBi i
ggafab*f = gg‘?z:fb—f(Mg (a,b))

=5 [ew @ (BT ) ¢ s 0
43 [ ew|@+p0 (20~ £ D) [y s a
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then by (5.3) and (5.4) we have the simpler results

e op[(t B ] a ,
st - L sonan| g [ ew(a(ew-EEED 0 Vo ar

g.a+.b— (o + Bi) M (a,b) My(ap)
1 M (a,b) b , Mg (a,b)
[ e (B ) o) Ve
(b)—g(a)
pexp(aff —10b
<3 (o _ ) V) ©.1)

and

s exp | (a+ Bi) £Ls@ | p My(ab) u
st -l st o 0 £2389))

N —

o

on(e(22)) - \b/<f> . 62)
b

In particular, if we take in (6.1) and (6.2) g = Int, t € [a,b] C (0,0), then by using the notation G (y,d) := /¥ for the
geometric mean of the positive real numbers ¥, 6 > 0 we have

a-+fi . o t ) o 1 Glab)
P O (k) L[ (st
gy e <5 [ (G AALEET/ ) 7V e
L@ -1y
SE p \b/(f)

and
B L (8000 1 e
L \:/(f),
where
- ) o[ (58
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