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1. Introduction  

The purpose of this paper is to study the following Steklov problem involving the p(x)-Laplacian, 
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where 
NR )2( N  is a bounded with smooth boundary, p is continuous functions on  such 

that   1inf: 




x

xpp , q is continuous functions on  such that   1inf: 




x

xqq , and 

   yqxp  for any  yx , , 
  uudivu
xp

xp 
2

)( :  denotes the  xp Laplace operator, 

RxRf : is a Carathéodory function, 


u
is the outer unit normal derivative on  and  xa is a 

function which satisfies the conditions   210 axaa  where 1a and 2a are positive constants. 

The study of differential equations and variational problems with  xp  growth conditions is 

a new and interesting topic in the last few years. The interest in studying such problems was stimulated 

by their application in mathematical physics, more precisely in elastic mechanics [25], 

electrorheological fluids and stationary thermo-rheological viscous flows of non-Newtonian fluids, 

image processing [8,12,19,20] and the mathematical description of the processes filtration of an idea 

barotropic gas through a porous medium [3,7]. Many results have been obtained on this kind of 

problems, for instance, we here cite [1,4,10,13,14,16,18,21,22]. 

Problems of type (P) has been intensively studied by many authors [2,4,5,6,9,17]. In [24], the 

authors investigated the existence and multiple results by using a variation of the Mountain Pass the  

https://dergipark.org.tr/mejs
mailto:zyucedag@
https://orcid.org/0000-0003-1950-0163


Middle East Journal of Science  (2019) 5(2):146 - 154  

 

147 

 

following )(xp Laplacian with nonlinear boundary conditions in bounded domain   

 

 

 
 

 

where f and g functions satisfies the Ambrosetti-Rabinowitz type condition. We also mention that the 

authors [11] studied de existence result for following class of  Steklov boundary value problems 

involving Laplacian 
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Using the variational method, under suitable conditions fa, and g , they obtained results on the 

existence of solutions. 

This paper is organized as follows. In Section 2, we present some necessary preliminary 

knowledge on variable exponent Lebesgue and Sobolev spaces. In Section 3, using Mountain Pass 

theorem and the variational method we show the existence nontrivial weak solutions of problem (P). 

2.Preliminaries 

In this section, we recall in what follows some definitions and basic properties of variable exponent 

Lebesgue-Sobolev spaces  )(xpL ,  )(,1 xpW  and  )(,1

0

xp
W [22,16,15].  

Set   }. xallfor 1,>p(x) inf ),(Cxp {p;=)(C  
 

For any   )(Cxp  
, we denote   

     



 xppxpp xx sup:inf:1 _
. 

Define the variable exponent Lebesgue space by  
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  dxRuuL
xp

xp xu such that ,measurable is :)(
 

We define a norm, the so-called Luxemburg norm, on this space by the formula 
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Where d is the measure on the boundary. Then  
  xp

xaL is a Banach space. In particular, 

  La ,  
        xpxp

xa LL . 

 

  Proposition 2.1[14,21] If   Lxp , the conjugate space is where

. For any and , we have 

                                    . 

The modular of the space, which is the mapping  
   RL xp

xp :  defined by 

   

Proposition 2.2 [15,24] If  (n=1,2,...) and , we have 
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Remark 2.4.  It is noted that since
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. So every function in has a distributional 

(weak) derivative, and variable exponent Sobolev space is well defined on . 
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321 ,,  and 4 are positive constants independent of u . 
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Definition 2.7 [23]  Let X be Banach spaces and the function  RXCI ,1 . We say that I satisfies 

Palais-Smale condition (PS) in X  if any sequence  nu in X such that  nuI is bounded and 

  0
nuI in 

X as n has a convergent subsequence. 

 

Lemma 2.8 8 (Mountain Pass Theorem) [23]    Let be a Banach space and the function 

 RXCI ,1 satisfies Palais-Smale condition. Assume that   00 I and  
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3. Main Results  
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Lemma 3.3 Suppose that (f1), (f2), (AR) and q are satisfied, then I  satisfies the (PS) condition. 
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subsequence, nu  converges weakly to u  in X . Taking into account (3.1), we have

  0,  uuuI nu . So, we have 
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Using (f1) and Proposition 2.1, it follows 
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where 04 c is constant.  Because    xpx   (Proposition 2.6 (ii)), there exists u such that nu  

converges weakly to u  in .X  Thanks to the compact embedding
   xLX 

, we get   

 

 stronglyuun  in 
 xL

 

 xeauun ..  

So, 

   .0,  dxuuuxf nn  

Similarly, by Proposition 2.1, Proposition 2.6 (iii) and Proposition 3.2, we have 
    0

2
 


duuuu nn

xq

n . 

Thus,  
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
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xp

nnn
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Finally, from Proposition 3.1, we deduce that nu  converges strongly to u X in. Therefore, it 

satisfies the (PS) condition. 

 

 Lemma 3.4 Assume that conditions (f1), (f2), 
  ,pq  and 

  p are fulfilled. Then, there 

exist two positive real numbers   and r such that   ruI  with u . 

Proof: For ,1u  by Proposition 2.5, we have 
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where 7c is constant. Since we have the continuous embeddings
   xqLX  

pLX , and 

   xLX 
 (Proposition 2.6), there exist 5c , 6c and 7c  positive constants such that for all Xu  
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Choose small enough such that  
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76


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 . Using  (f1) and (f2), we have 

             ,  for all .                                                              (3.3) 

 

Thus, using (3.2) and (3.3) for  we get 
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
.  It follows that there exist 0r s and 0  such that with . The 

proof of Lemma 3.4 is completed. 

 

Lemma 3.5 If (f1), (f2) and (AR) hold, there exists X  such that   and   0tI  for .0t  

Proof.  Thanks to (AR), we obtain   
tctxF 8,  for all . Moreover, when 1t  is 

large enough, from Proposition 2.2, we obtain that 
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,

 

 

Since 
 p we conclude that   tI t as. The proof is completed. 

Proof of Theorem 2.9. From Lemma 3.3, Lemma 3.4, Lemma 3.5 and   00 I , I satisfies all 

statements of Lemma 2.8. Therefore, I has at least one nontrivial critical point, i.e., problem (P) has a 

nontrivial weak solution. The proof is completed. 
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