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Abstract

In this paper we studied the behavior of a family of three dimensional cellular
automata under periodic boundary condition by using matrix algebra. We obtained
representation matrix of the this family with the help of polinomal algebra. We gave an

application of obtained block matrices to coding theory over the ternary field.

Keywords: Three dimensional cellular automata, Rule matrix, Error correcting

codes

Hiicresel Doniisiimlerin Bir Kuralinin Matris Temsili ve Kodlama Teorisinde Bir

Uygulamasi
Oz

Bu ¢aligsmada, matris cebiri yardimiyla ti¢ boyutlu bir hiicresel doniisiim ailesinin
periyodik sinir sart1 altinda davranisini inceledik. Polinom cebiri yardimiyla bu ailenin
temsil matrisini elde ettik. Elde edilen blok matrislerin tiglii cisimler {izerinde bir kodlama

teorisi uygulamasini verdik.

Anahtar Kelimeler: Ug boyutlu hiicresel doniisiim, Kural matris, Hata diizelten

kodlar
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1. Introduction and Basics

Three dimensional cellular automata (3D-CA) have been studied a lot recently for
their applications in many areas. The state space of these works are mainly binary field
with two elements 0, 1 and so called as binary 3D-CA. One dimensional cellular automata
(1D-CA) originally was introduced by Ulam and von Neumann in [1] and Wolfram
investigated the complex behavior of 1D-CA rules (see [2]).

For a particular step of time,which we call t, each cell of cellular grid has a state
value and synchronously updates its state at the next time step t + 1 depending on its
neighbors and local rule. If this dependence is formulated by a relation amongst the
neighbors of the cell that is applied to all cells at each time step then these CA are called
regular. Regular CA is model of different physical events or applications. Besides all
these applications, the reversibility problem of CA is studied as a crucial research topic

due to its important role in many applications.

The study of reversibility of CAs have received remarkable attention in the last few
years due to its several applications in many disciplines (e.g., mathematics, physics,
computer science, biology (see [3]), chemistry and so on) with different purposes (e.g.,
simulation of natural phenomena, pseudo-random number generation, image processing,
analysis of universal model of computations, cryptography) (see [4]). For some of these
applications, the inverse of CA are computed (see [5-10]). Most of these works done over

one and two dimensional cellular automata (see [10-16]).

However, lately three dimensional cellular automata hasn’t just much investigated,
Hemmingson studied behavior of 3D-CA in [17]. Tsalides et al. studied the
characterization of 3D-CA with the help of matrix algebra in [18]. They obtained matrix
algebraic formulas concerning some exceptional rules of 3D-CA.Youbin et al.

investigated 3D-CA model for HIV dynamics. in [19].

In this work, we define 3D-CA and then we obtain representation matrix for
characterizing via matrix algebra. Finally we make an application about with coding

theory over the ternary field.
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2. Three Dimensional Cellular Automata

In this section ,we describe of 3D-CAs over the field Z,,, with the aid of some local

rules. Let Z,,, be states set and Z%f is cells spaces. £ is local rule and F' is global transition

function
£:78 — 7, F: 7% — 7L .

For 3D-CA there is some classical type of neighborhoods.In this work, we only
restrict ourselves to the adjacent neighbors which have found in more applications and

they are very common cases. So, we define the (t + 1)*" state of the (i, j, k)" cell as the

following.

) (®) (®) (®)

X(i=1,j-1,k—1) X(i=1,j,k=1)? X (i=1,j k+1)’ X (i=1,j-1,k)’
) ®) ®) ®)

X(i=1,j-1k+1) X(i=1,j,k) X(i-1,j+1,k)’ X (i=1,j+1,k—-1)’
) ®) ®) ®)

X(i=1,j+1,k+1) X(i,j-1,k—1)? X (i,j,k-1)" X (i, ] k+1)’

t+1 (t) () (®) ®)
X(ijk) = X j—1,) X (i, j—1,k+1)" " X (i, k) X(i,j+1,k) (1)

() ®) (®) ®)

X(i,j+1,k=1)" X(i, j+1,k+1)? X(i+1,j-1,k—1)’ X(i+1,j,k—1)’
() () ®) ®)

X(i+1,),k+1) X(i+1,j-1,k) X(i+1,j-1k+1)" X(i+1,j,k)

() (1) )
X(i+1,j+1,k) x(i+1,j+1,k—1),x(i+1,j+1,k+1))

_ (t+1) (t+1) (t+1)
= QoX(i_qj-1k-1) T UX(_1jk-1) Tt a26x(i+1,j+1,k+1)(m0dm)'
The value of each cell for the next state may not depend upon all 27 neighbors.The
linear combination of the neighboring cells on which each cell value determines the rule
number of the 3D-CA.Regarding the neighborhood of the extreme cells, there exist some
approaches (for details see [20]). we can use periodic boundary condition.Now we can

define it as follows:

A Periodic Boundary CA is the one in which the extreme cells are adjacent to each

other.

In this paper, in order to obtain representation matrix for characterizing 3D-CA, we

can use the following local rule,which help of defining the rule matrix:

t+1 (t+1) +b x(t+1)

= (t+1)
X(ijj) = X jk+1) (Lj+1k) TCX )

@iLj-1k)
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(t+1) (t+1) (t+1)
+d.x(i’j,k_1) + €. X(i_1jk) + f. X(i+1),k)

where a,b,c,d, e, f € Z,, —{0}.

In order to characterize 3-D PBCA with the local rules in Eq. (2), we get rule matrix

form,n,s = 3 (m,n,s € Z*) as follows:

Ks Es Os O Os Os K
Fs Ky Es Os Os 05 O
Os ks Ks E; Os 05 O
O, O, F, K, .. O, 0Os O
(Tepdmnsxmns = | © 0 00 T T T
Os O0s O5 O K; E; O
OS OS OS OS F'S KS ES
ES OS OS OS OS F;’ KS
K, E,, O, F; are sXs block matrices where s = mXn.
Their sub matrices are as follows:
S,(c,b) d.I, 0, v Oy a.l,
a.l, S,(c,b) d.I, v Oy 0,
K, = 0, a.l, S,(c,b) .. O, 0,
0, 0, O, v Splc,b) d.I,
d.l, 0, 0, wa.ly Sn(C,b)/ s
el, 0, O, 0, O,
0, el, O, 0, O,
0, O e.l, 0, O,
ES = 5
0, 0, 0, e.l, O,
0, 0, 0, Op el e
f I?’l OTl 01’1 OTl On
0, f.I, O 0, O,
po|0n O flo. o0, O
S s
071 OTl 01’1 f I’l’l On
On On On On f'ITl nsXns
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On Onp Oy On  On

On On Oy On  On

On On O On  On
0 =

On On Op On  On

On O0p On On Oy

nsxns

I, is nXn identity matrix. O, is nXn zero matrix and then S, (c, b) is as follow:

0 b 0 0 0 0 ¢
c 0 b 0 0 0 0
0 ¢ 0 b 0 0 0
s(py=|0 0 ¢ 0 0 0 0
0 0 0 0 0 b 0
0 0 0 0 c 0 b
b 0 0 0 0 ¢ 0

nxn

Example 1. If we take m = 3,n = 3, s = 3, then we get the rule matrix Tzp of
order 27x27. In this situation we have 5 configurations and then we consider a

configuration of size 3X3X3 with periodic boundary condition.

X131 X111 X121 X131 X111
X133 X113 X123 X133 X113
X132 X112 X122 X132 X112,
X131 X111 X121 X131 X111
X133 X113 X123 X133 X113

X331 X311 X321 X331 X311
X333 X313 X323 X333 X313
X332 X312 X322 X332 X312,
X331 X311 X321 X331 X311
X333 X313 X323 X333 X313

X231 X211 X221 X231 X211
X233 X213 X223 X233 X213
X232 X212 X222 X232 X212,
X231 X211 X221 X231 X211
X233 X213 X223 X233 X213
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X131 X111 X121 X131 X111
X133 X113 X123 X133 X113
X132 X112 X122 X132 X112,
X131 X111 X121 X131 X111
X133 X113 X123 X133 X113

X331 X311 X321 X331 X311
X333 X313 X323 X333 X313
X332 X312 X322 X332 X312,
X331 X311 X321 X331 X311
X333 X313 X323 X333 X313

we apply local rule all the cells and than we obtain new configurations is as follow:
b.X323 + d. X312 + €. X333 + Q. X311 + €. X213 + f. X113 = V313
b. X333 + d. X322 + €. X313 + Q. X321 + €. X223 + . X123 = V323
b.x313 + d. X332 + C. X323 + Q. X331 + €. X233 + f. X113 = V333
b.X325 +d. X311 + C. X332 + Q. X313 + €. X212 + f. X112 = V312
b.X332 + d. X321 + C. X312 + Q. X323 + €. X222 + . X122 = Va2
b.x312 +d. X331 + C. X332 + Q. X333 + €. X232 + . X132 = V332
b.X331 +d. X313 + €. X331 + Q. X312 + €. X211 + f. X111 = Y311
b.x331 + d. X323 + €. X311 + Q. X322 + €. X221 + f. X121 = Y321
b.x311 +d. X333 + C. X321 + Q. X332 + €. X231 + f. X131 = Y331
b. X523 + d. X212 + €. X233 + Q. X211 + €. X113 + f. X313 = V213
b. X533 + d. X222 + €. X213 + Q. X221 + €. X123 + f. X323 = V223
b.x513 + d. X332 + €. X223 + Q. X231 + €. X133 + f. X333 = V233
b. X522 +d. X211 + C. X232 + Q. X213 + €. X112 + . X312 = V212
b. X532 +d. X221 + €. X212 + Q. X3 + €. X122 + f. X322 = Va2

b.x312 +d. X331 + €. Xppp + Q. X33 + €. X135 + [ X332 = V32
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b.X521 +d. X213 + €. X231 + Q. X012 + €. X111 + f. X311 = Ya1q
b.Xxp31 + d. X223 + €. X211 + Q. X20 + €. X121 + . X321 = Va1
b.x511 +d. X33 + €. X221 + Q. X35 + €. X131 + . X331 = Y231
b.x123 + d. X115 + €. X133 + A. X111 + €. X313 + f. X213 = Y113
b.x133 + d. X135 + €. X113 + Q. X121 + €. X323 + f. X223 = Y123
b.x113 + d. X135 + €. X123 + A. X131 + €. X333 + f. X233 = Y133
b.x123 + d. X111 + €. X135 + A. X113 + €. X312 + f. X212 = Y112
b.x133 + d. X131 + €. X112 + Q- X123 + €. X320 + [ X220 = V122
b.x112 + d. X131 + €. X122 + A. X133 + €. X332 + f. X232 = Y132
b.x121 +d. X113 + €. X131 + A X115 + €. X311 + f. X211 = Y11a
b.x131 + d. X133 + €. X111 + Q- X195 + €. X321 + f. X221 = Y121
b.x111 +d.Xq33 + €. X131 + Q. X135 + €.X331 + [. X331 = Vi31-

In order to obtain represantation matrix Tzp corresponding to the local rule applied

over al the cells , we evaluate the basis vector as follows:
Trp(E;) = Trp(100000000000000000000000000)"
=0cha00d00OF00000000e00000000)7,
Trp(E5) = Trp(010000000000000000000000000)7
=(b0c0a00d00f00000000e00000000)7.

Transpose of Tgp(E;) and Tgp(E,) compose first and second columns of
represantation matrix Trp.we can similarly obtain the rest of the columns and we get

represantation matrix (Tgp),7x27 as follow:
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1D-CA based bit error correcting binary codes (CA-ECC) were first proposed by

Chowdhury et al. in [21]. This method recently has been generalized to error correcting

codes over non binary fields by Koroglu et al. in [5]. It is also known that CA based error

correcting codes have some advantages compared to the classical ones [5, 21, 22]. In this
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section, we present an application of CA based bit error correcting codes by applying
reversible CA which fall into a 3D-CA family with periodic boundary condition. First we

present the encoding and decoding process that is given in [5]:

Let T be a nXn nonsingular transition matrix. Assume that there exists 1 < k < n,
k € Z* such that G = [I,|T*] (I, nxn identity matrix) generates a linear code that

corrects up to t errors.
Encoding:

Let I = (iq, iy, ", i) € Z% be an information vector, where n is the rank of the

nonsingular transition matrix.Then, the encoded codeword is as follow:
CW = (I, THID) = (i1, iz, -+, bny Cpsts Crazs -oor C2n)s
1.e.,
C = T*[I] = (Cps1, Cnrzs o C2n)
is the check vector.
Now, we present a decoding scheme for ternary CA based error correcting codes.
Decoding:

Now suppose that the codeword CW = (I, T¥[I]) is sent and CW' = (I', T*[I]) =
(i1, 05y, Coits Cogzs oeer Con) = (I D 1, T*[I1 @ C,) (where the operator @
represent modulo 3 addition) is the received word. Here, I, and C, represent the errors
that have occurred in information and check bits respectively. We assume that the sum of
the Hamming weight of I, and C, are less or equal to t i.e. if wy(I,) < iand wy(C,) <

t—i(i=12,...,t), thenwy(,) + wy(C,) < t. The syndrome vector is defined by:
S=2T*[I'| ® C' = 2T*[I,] ® C.. (3)
The syndrome of both the information and check vectors is defined by
Sp=2T[I'l® C’ 4)

and
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Se=Tr[I'l®2C", 6]
respectively.

The example given in the following realizes the encoding-decoding schemes above

by using a 27X27 invertible rule matrix T = Tgp of 3D cellular automata.

Example 2. Let b=c=e=1, a=f=0, d =2 be elements in ternary field
F;.Then we have a 27%27 rule matrix T = Tgp with det(T) = 2 in F;. Thus the matrix
T is non singular and for k = 2 the matrix G = [I,,|T?] generates a [54,27,5]; linear

code with d(C) = 5. It is known that, this code can correct all one and two errors.

Let I=111111111111111111111111111 be information part of a codeword.
Then, the check part is C = T2[I] = 111111111111111111111111111 and so CW =
(I, T2[1]) is a codeword of length 54.

Case 1. Suppose that one error occurs in the information part. For instance, suppose

that the received word is

CW'=211111111111111111111111111111111111111111111111111111
= (I'|C").

Now, we compute the syndrome as
S=2T?[I'l & C' =122200022200000000011000200.
The syndrome of the check part is
S.=T*[I'l @ 2¢’ = 000000000000000000000000000,
as we should expect since the errors are located in the information part as supposed.
S, =S@ S, =122200022200000000011000200.
Therefore,
I, = T2[S,,] = 200000000000000000000000000.

I=I'®l, =211111111111111111111111111
¢ 200000000000000000000000000
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and C = C'. Hence, the error vector is
E =200000000000000000000000000000000000000000000000000000.
Case 2. Suppose that one error occurs in the check part. Let the received word be

CW'=111111111111111111111111111111111111111111111111111110
= (I'|C").

The syndrome of the check part can be computed as
S=T?[I'l @ 2¢’' = 000000000000000000000000001.
The syndromes of the information and the check parts are
S, =000000000000000000000000000
and
S, =000000000000000000000000001,
respectively. Next,
I, = T2[S,,] = 000000000000000000000000000

and

C, =S, =000000000000000000000000001.
Hence,

c=C®C,=111111111111111111111111111.

So, the error vector is

E =200000000000000000000000000000000000000000000000000001.
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4. Conclusion

In this paper, the author studied a family of three dimensional cellular automata.
The algebraic representation of such 3D-CA is established. The author obtained
representation matrice via matrice algebra and then author gave an important application
about coding theory over the ternary field and we conclude by presenting an application

to error correcting codes where reversibility of cellular automata is crucial.
Acknowledgement

The author is grateful for financial support from the Research Fund of Adiyaman

University under grant no. FEF MAP2017-0001.

References

[1] Von Neumann, J., The theory of self-reproducing automata, Edited by A.W.
Burks, Univ. of Illinois Press, Urbana, 1966.

[2] Wolfram, S., Statistical mechanics of cellular automata, Reviews of Modern
Physics, 55 (3),601-644, 1983.

[3] Holden, A.V., Nonlinear science- the impact of biology, Journal of the Franklin
Institute, 334(5-6), 971-1014, 1997.

[4] Kari, J., Reversibility of 2D cellular automata is undecidable, Physica D, 45,
386-395, 1990.

[5] Kéroglu MLE., Siap, 1., Akin, H., Error correcting codes via reversible cellular
automata over finite fields, The Arabian Journal for Science and Engineering, 39, 1881-
1887, 2014.

[6] Adamatzky, A., Nonconstructible blocks in ID cellular automata: minimal
generators and natural systems, Applied Mathematics and Computation, 99, 77-91, 1999.

[7] Akin, H., On the directional entropy of Z* -actions generated by additive
cellular automata, Applied Mathematics and Computation, 170 (1), 339-346, 2005.

[8] Akin, H., Siap, 1., On cellular automata over Galois rings, Information
Processing Letters, 103 (1), 24-27, 2007.

[9] Alvarez, G., Hernandez Encinas, L., Martin del Rey, A., 4 multisecret sharing
scheme for color images based on cellular automata, Information Sciences, 178, 4382-
4395, 2008.

340



[10] Durand, B., Inversion of 2D cellular automata: some complexity results,
Theoretical Computer Science, 134, 387-401, 1994.

[11] Blackburn, S.R., Murphy, S., Peterson, K.G., Comments on theory and
applications of cellular automata in cryptography, IEEE Transactions on Computers, 46,
637-638, 1997.

[12] Dihidar, K., Choudhury, P.P., Matrix algebraic formulae concerning some
exceptional rules of two dimensional cellular automata, Information Sciences, 165, 91-
101, 2004.

[13] Khan, A.R., Choudhury, P.P., Dihidar, K., Mitra, S., Sarkar, P., VLSI
architecture of a cellular automata, Computers and Mathematics with Applications, 33,
79-94, 1997.

[14] Khan, A.R., Choudhury, P.P., Dihidar, Verma, R., Text compression using two
dimensional cellular automata, Computers and Mathematics with Applications, 37, 115-
127, 1999.

[15] Ying, Z., Zhong, Y., Pei-min, D., On behavior of two-dimensional cellular
automata with an exceptional rule, Information Sciences, 179 (5), 613-622, 2009.

[16] Zhai, Y., Yi, Z., Deng, P., On behavior of two-dimensional cellular automata
with an exceptional rule under periodic boundary condition, The Journal of China
Universities of Posts and Telecommunications, 17 (1), 67-72, 2010.

[17] Hemmingsson, J.A., Totalistic three-dimensional cellular automaton with
quasiperiodic behaviour, Physica A: Statistical Mechanics and its Applications, 183(3)
,255-261, 1992.

[18] Tsalides, P., Hicks, P.J., York, T.A., Three-dimensional cellular automata and
VLSI applications, IEEE Proceedings, 136(6), 490 - 495, 1989.

[19] Mo, Y., Ren, B., Yang, W., The 3-dimensional cellular automata for HIV
infection, Physica A: Statistical Mechanics and its Applications, 399, 31-39, 2014.

[20] Siap, 1., Akin, H., Sah, F., Characterization of two dimensional cellular
automata over ternary fields, Journal of The Franklin Institute, 348, 1258-1275, 2011.

[21] Chowdhury, D.R., Basu, S., Gupta, 1.S., and Chaudhuri, P.P., Design of
CAECC-Cellular Automata Based Error Correcting Code, 1EEE Transactions on
Computers, 43, 759-764, 1994.

[22] Siap, 1., Ak, H., Kéroglu, M.E., The reversibility of (2r+1) cyclic rule

cellular automata, TWMS Journal of Pure and Applied Mathematics, 4(2), 215-225,
2013.

341



