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1 Introduction

Linear functionals occupy quite important place in mathematics in terms of both theory and applica-
tion. The weak and weak-star topologies, which are fundamental and substantial subject in functional
analysis, are generated by families of linear functionals. They are important in the theory of di¤eren-
tial equations, potential theory, convexity and control theory [6]. Linear functionals play fundamental
role in characterizing the topological closure of sets and therefore they are important for approxima-
tion theory. They play a very important role in de�ning vector valued analytic functions, generalizing
Cauchy integral theorem and Liouville theorem. Therefore the need arises naturally to construct lin-
ear functionals with certain properties. The construction is usually achieved by de�ning the linear
functional on a subspace of a normed linear space where it is easy to verify the desired properties and
then extending it to the whole space with retaining the properties. This is not always easy in the
case of general normed linear spaces. We specialize to linear functionals de�ned on the subspaces of
a Hilbert space and provide formulas (Theorem 2) both for the operator norms and norm preserving
linear extensions of linear functionals.

We start with basic de�nitions and results and �xed notations that will be used in the sequel. We
denote the �eld of the real numbers R or the �eld of the complex numbers C by F. We denote the
absolute value function by j:j de�ned on the �eld F. So for x 2 R, if x < 0 then jxj = �x and if x � 0
then jxj = x. For z = x + iy 2 C we have jzj =

p
x2 + y2. The complex number z = x � iy is the

complex conjugate of the number z = x+ iy.

De�nition 1.1. Let X be a linear space over the �eld F and k:k : X 7! R be a function. If the
function k:k satis�es the following properties

1. k0k = 0 and kxk > 0 for every x 2 X n f0g (positivity de�niteness);
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2. k�xk = j�j kxk for every � 2 F and x 2 X (homogeneity); and

3. kx+ yk � kxk+ kyk for all x; y 2 X (triangular inequality);

then the function k:k is called a norm on the space X and the pair (X; k:k) is called a normed
linear space.

Example 1.2. Let p 2 [1;1) and Rn = fx = (x1; : : : ; xn) : xj 2 R for j = 1; : : : ; ng. Rn is
a linear (vector) space over the �eld R with componentwise addition and scaler multiplication. For

x = (x1; : : : ; xn) 2 Rn de�ne kxkp =
�Pn

j=1 jxj j
p
�1=p

and kxk1 = maxfjxj j : j = 1; : : : ; ng. Then for
1 � p � 1 the functions k:kp are norms on the space Rn. Hence (Rn; k:kp) is a normed linear spaces
for each p 2 [1;1].

Inner products spaces are very important sources of normed linear spaces.

De�nition 1.3. Let X be a linear space over the �eld F. If the function (:; :) : X�X 7! F satis�es
the following properties

1. (x; x) � 0 for all x 2 X and (x; x) = 0 if and only if x = 0;

2. (x; y) = (y; x) for every x; y 2 X;

3. (x+ y; z) = (x; z) + (y; z) for every x; y; z 2 X; and

4. (�x; y) = �(x; y) for every � 2 F and for every x; y 2 X;

then the function (:; :) is called an inner product on X and the pair (X; (:; :)) is called a inner
product space over the �eld F. The number kxk =

p
(x; x) is called the norm of the vector x 2 X. If

x; y 2 X and (x; y) = 0 then the vectors x and y are called orthogonal vectors.

The inner product generates the most important inequality in mathematics, namely the Cauchy-
Schwarz inequality.

Theorem 1.4. [Cauchy-Schwarz inequality][2, 4] Let (X; (:; :)) be an inner product space over the
�eld F. Then for every x; y 2 X, j(x; y)j �

p
(x; x)

p
(y; y) = kxk kyk. The equality occurs if and only

if the vectors x and y are linearly dependent.

From the Cauchy-Schwarz inequality it follows that the function kxk =
p
(x; x) is a norm on the

space X. This norm is called the norm generated by the inner product function (:; :). If the normed
linear space (X; k:k)) is a Banach space, that is, if every Cauchy sequence in X converges to a point
in X, the inner product space (X; (:; :)) is called a Hilbert space.

Example 1.5. For x = (x1; : : : ; xn); y = (y1; : : : ; yn) 2 Rn the function (:; :) : Rn � Rn 7! R
de�ned by (x; y) =

Pn
j=1 xjyj is an inner product on the space Rn. The norm generated by this inner

product is the Euclidean norm kxk2 =
p
(x; x) =

�Pn
j=1 x

2
j

�1=2
. The inner product space (Rn; k:k) is

a Hilbert space.

On normed linear spaces the primary objects of study are the linear operators and linear functionals
which play central role in functional analysis.

De�nition 1.6. Let (X; k:k) and (Y; k:k0) be normed linear spaces over the same �eld F and
T : X 7! Y be a mapping. If T (�x + �y) = �T (x) + �T (Y ) for all �; � 2 F and x; y 2 X then T is
called a linear operator. A linear operator T is called bounded if there is a real constant M > 0 such
that kT (x)k0 � M kxk for all x 2 X. If T is a bounded linear operator the number kTkop = kTk =
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inf
�
M : kT (x)k0 �M kxk for all x 2 X

	
is called a operator norm of T . The equivalent de�nition of

operator norm is given by the formulas

kTkop = kTk =sup
�
kT (x)k0

kxk : kxk 6= 0
�
= sup

�
kT (x)k0 : kxk � 1

	
=sup

�
kT (x)k0 : kxk = 1

	
The following is a very useful result for the computation of operator norms of linear operators.

Lemma 1.7. [Computation of operator norm] Let (X; k:k) and (Y; k:k0) be normed linear spaces
over the same �eld F, T : X 7! Y be a bounded linear operator and M � 0 be a real constant. If for
every x 2 X, kT (x)k0 � M kxk and kT (x0)k0 = M kx0k for a vector x0 2 X n f0g then the operator
norm of T is kTkop =M .

Proof. If for every x 2 X, kT (x)k0 �M kxk then by the de�nition of operator norm kTkop �M .
On the other hand if for a vector x0 2 X n f0g, kT (x0)k0 =M kx0k then by the de�nition of operator
norm we have M kx0k = kT (x0)k0 � kTkop kx0k so that M � kTkop. Therefore kTkop =M .

Remark 1.8. We note that in the �nite dimensional case the operator norm can be computed by
the method of Lagrange multipliers with constraints.

It is now a classical result that a linear operator is bounded if and only if it is continuous. The set
B(X;Y ) of bounded linear operators is a linear space over F with pointwise addition and scaler multi-
plication and k:kop is a norm on B(X;Y ). If (Y; k:k

0) is a Banach space then the space (B(X;Y ); k:kop)
is a Banach space.

A bounded linear operator f : (X; k:k) 7! (F; j:j) is called a bounded linear functional. The
Banach space (X�; k:kop) of bounded linear functional is called dual or conjugate space of the normed
linear space (X; k:k):

Example 1.9. Let (X; (:; :)) be an inner product space over the �eld F and a 2 X be a �xed
vector. Then f : (X; k:k) 7! (F; j:j); f(x) = (x; a) is a bounded linear functional and kfkop = kak :

Linear functionals are important in terms of generating and characterizing linear subspaces. If
(X; k:k) is a normed linear space over the �eld F and ` : X 7! F is a linear functional then the the
kernel or the null space ker(`) = fx 2 X : `(x) = 0g of the linear functional ` is a linear subspace of
X. It is well-known that a linear functional is continuous if and only if its null space is closed. On
the other hand we have the following simple result which shows the relations between linear subspaces
and linear functionals.

We recall that a linear subspace W of a linear space X is called a codimension one linear subspace
if the dimension of the quotient space X nW is dim(X nW ) = 1.

Lemma 1.10. Let (X; k:k) be normed linear space over the �eld F. Then W is a codimension
one linear subspace of the space X if and only if there is a linear functional ` : X 7! F such that
W = ker(`).

Proof. Since the null space of a linear operator is a linear subspace if W = ker ` for a linear
functional ` : X 7! F, then W is a linear subspace of the space X. Conversely we assume that W is a
codimension one linear subspace of the space X. Let x0 2 X nW be arbitrary and M = f�x0 : � 2 Fg
be the linear subspace of X generated by the vector x0. Then X = W � M . Since each x 2 X
has a unique representation of the form x = wx + �xx0 where wx 2 W and �xx0 2 M the function
` : X 7! F; `(x) = `(wx + �xx0) = �x is a linear functional with ker(`) =W .

There are two fundamental results about bounded linear functionals, namely the Hahn-Banach
theorem and the Riesz representation theorem. The Hahn-Banach theorem, one of the indispensable
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tools of modern analysis, play the central role in the investigation of geometric and analytic properties
of bounded linear functionals. The Riesz representation theorem completely characterizes the bounded
linear functionals on certain normed linear spaces. We state a version of each of these theorems that
we need in what follows.

Theorem 1.11. [Hahn-Banach][2, 1, 7, 3] Let (X; k:k) be normed linear space over the �eld F and
W be a linear subspace of X. If f : (W; k:k) 7! (F; j:j) is a bounded linear functional then there is a
bounded linear functional F : (X; k:k) 7! (F; j:j) such that F jW= f , that is for all x 2W;F (x) = f(x)
and kFkop = kfkop :

Remark 1.12. The linear functional F is called a norm preserving linear functional extension
of the linear functional f . The important and the di¢ cult part of the theorem is to get the norm
preserving linear extension. Otherwise it is well-known that there are many linear extensions of f easy
to construct.

Theorem 1.13. [Riesz representation theorem] [2, 5, 3, 7] Let (X; (:; :)) be a Hilbert space over
the �eld F and k:k be the norm generated by the inner product. Then a function f : (X; k:k) 7! (F; j:j)
is a bounded linear functional if and only if there is a unique vector a 2 X such that f(x) = (x; a) for
all x 2 X . Furthermore, the operator norm of the linear functional f is kfkop = kak.

Remark 1.14. By Lemma 1.10 and the Riesz representation theorem in a Hilbert space (X; (:; :))
a codimension one linear subspace W of the space X is of the form W = fx 2 X : `a(x) = (x; a) = 0g
where a 2 X is a �xed vector.

On �nite dimensional normed linear spaces, the Riesz representation theorem provides more con-
crete information about the structure of linear functionals. In this context, we state a version of
the Riesz representation theorem for the �nite dimensional spaces and give its proof for the sake of
completeness.

Theorem 1.15. [Riesz representation theorem] Let 1 � p; q � 1 and 1
p +

1
q = 1. Then a

function f : (Rn; k:kp) 7! (R; j:j) is a bounded linear functional if and only if there is constant vector
a = (a1; : : : ; an) 2 Rn such that f(x) = (x; a) = a1x1+ � � �+ anxn for every x 2 Rn. Furthermore, the
operator norm of f is kfkop = kakq.

Proof. We �rst assume that for a constant vector a = (a1; : : : ; an) 2 Rn and for every x =
(x1; : : : ; xn) 2 Rn f(x) = (x; a) = a1x1 + � � � + anxn . Since the inner product is a linear functional
with respect to the �rst variable it follows that f is a linear functional. On the other hand we
assume that f : (Rn; k:kp) 7! (R; j:j) is a linear functional. If f � 0 then for the vector a = 0, f
is the required form f(x) = a1x1 + � � � + anxn = (x; a): Therefore we may assume that f 6= 0. For
j = 1; 2; : : : ; n let ej = (0; : : : ; 0; 1

j
; 0 : : : ; 0). The set B = fe1; : : : ; eng is a standard (Hamel) basis of

the space Rn. Hence every vector x 2 Rn has a unique representation of the form x =
Pn
j=1 xjej .

For j = 1; 2; : : : ; n let aj = f(ej). a = (a1; : : : ; an) 2 Rn. Since f is a linear functional we have
f(x) =

Pn
j=1 xjf(ej) =

Pn
j=1 xjaj = a1x1 + � � �+ anxn = (x; a). So f is the required form.

For 1 � p <1 and for each x 2 Rn by the Cauchy-Schwarz inequality we have jf(x)j � kakq kxkp.
If p = 1 then q = 1 and jf(x)j � kak1 kxk1 = kakq kxkp. Hence by the de�nition of operator norm
kfkop � kakq.

For 1 � p < 1, if aj = 0 we de�ne xj(0) = 0, and if aj 6= 0 we de�ne xj(0) =
jaj jq
aj

and let

x(0) = (x1(0); : : : ; xn(0)). Since kx(0)kp = kakq=pq and jf(x(0))j = kakqq = kak
q( 1
p
+ 1
q
)

q = kakq kak
q
p
q =

kakq kx(0)kp from the Lemma1.7 it follows that kfkop = kakq.
For p = 1, if aj � 0 we de�ne xj(0) = 1 and if aj < 0 we de�ne xj(0) = �1 and let x(0) =

(x1(0); : : : ; xn(0)). Since kx(0)k1 = 1 and jf(x(0))j = kak1 = kak1 kx(0)k1 from the Lemma 1.7 it
follows that kfkop = kak1. Therefore we have kfkop = kakq for all 1 � p � 1.
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2 Operator Norms and Extension of Linear Functionals

The Hahn-Banach theorem states that a bounded linear functional on a linear subspace of a normed
linear space can be extended to the whole space without changing its operator norm. On the other
hand, the Riesz representation theorem provides formulas both for the linear functional and its operator
norm on a Hilbert space. But, as far as I know there is no such a formula for the operator norm of a
linear functional de�ned on a linear subspace of a normed linear space.

By analyzing the orthogonal decomposition theorem and the Riesz representation theorem [5],
[7](4.11 Theorem, 4.12 Theorem) we get two methods of the unique norm preserving linear extension
of a linear functional de�ned on a closed linear subspace a Hilbert space. We note and state these
methods without proofs.

Lemma 2.1. Let (X; (:; :)) be a Hilbert space over the �eld F, k:k be the norm generated
by the inner product, W be a closed linear subspace of the space X and f : (W; k:k) 7! (F; j:j)
be a nontrivial bounded linear functional. Let M = ker(f) be the null space of f and M? =
fx 2W : (x; y) = 0 for all y 2Mg be the orthogonal complement of the space M in W . Choose any

vector x0 2M?nf0g and let a = f(x0)

kx0k2
x0. Then f(x) = (x; a) for all x 2W , kfkop = kak and the norm

preserving linear extension of the functional f is the linear functional F : (X; k:k) 7! (F; j:j); F (x) =
(x; a).

Lemma 2.2. Let (X; (:; :)) be a Hilbert space over the �eld F, k:k be the norm generated by the
inner product, W be a closed linear subspace of the space X and f : (W; k:k) 7! (F; j:j) be a bounded
linear functional. Let p : X 7!W be the orthogonal projection of the space X onto the spaceW . Then
F : (X; k:k) 7! (F; j:j); F (x) = f � p(x) = f(p(x)) is the norm preserving linear functional extension of
the functional f .

The applications of these methods, without doubt, requires certain amount of work. In the case
of a bounded linear functional de�ned on a codimension one subspace of a Hilbert space we provide
simple formula both for the operator norm and for the norm preserving linear functional extension.

Theorem 2.3. [Formula for the operator norm and linear extension] Let (X; (:; :)) be a Hilbert
space over the �eld F, k:k be the norm generated by the inner product, a; b 2 X n f0g be �xed vectors,
W = fx 2 X : `b(x) = (x; b) = 0g be a linear subspace of the space X and fa : (W; k:k) 7! (F; j:j),
fa(x) = (x; a) be a linear functional. Then the operator norm of the linear functional fa is kfakop =a� (a;b)

kbk2 b
 = 1

kbk

q
kak2 kbk2 � j(a; b)j2 and the norm preserving extension of the linear functional fa

is the linear functional F : (X; k:k) 7! (F; j:j); F (x) = fa(x)� (a;b)

kbk2 `b(x) =
�
x; a� (a;b)

kbk2 b
�
.

Proof. Since for each x 2W , `b(x) = 0 we have F (x) = fa(x). So the function F is an extension
of the function fa. By the Riesz representation theorems F is a linear functional on the space X and

its operator norm is kFkop =
a� (a;b)

kbk2 b
. Since by the properties of the inner product

kFkop =
a� (a; b)kbk2

b

 =
s�

a� (a; b)
kbk2

b; a� (a; b)
kbk2

b

�

=

s
kak2 � 2 j(a; b)j

2

kbk2
+
j(a; b)j2 kbk2

kbk4

=

s
kak2 � j(a; b)j

2

kbk2
=

1

kbk

q
kak2 kbk2 � j(a; b)j2
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it su¢ ces to show that kfakop =
a� (a;b)

kbk2 b
. Since for x 2 W , `b(x) = 0 by the Cauchy-Schwarz

inequality we have

jfa(x)j =
����fa(x)� (a; b)kbk2

`b(x)

���� = ����(x; a)� (a; b)kbk2
(x; b)

����
=

�����x; a� (a; b)kbk2
b

����� � a� (a; b)kbk2
b

 kxk :
By the de�nition of operator norm kfakop �

a� (a;b)

kbk2 b
. Since the equality holds in Cauchy-Schwarz

inequality when x = a� (a;b)

kbk2 b 2 W and
���fa �a� (a;b)

kbk2 b
���� = a� (a;b)

kbk2 b
2 = a� (a;b)

kbk2 b
 kxk it follows

from the Lemma 1.7 that

kfakop =
a� (a; b)kbk2

b

 = 1

kbk

q
kak2 kbk2 � j(a; b)j2:

Remark 2.4. Since a = (a;b)

kbk2 b + a �
(a;b)

kbk2 b and
�
a� (a;b)

kbk2 b; b
�
= 0, the vector a � (a;b)

kbk2 b is the

component of the vector a orthogonal to the vector b. This observation gives the following results.

Corollary 2.5. In Theorem 2.3, if the vectors a and b are orthogonal, that is (a; b) = 0 then the
operator norm of the linear functional fa is kfakop = kak and its norm preserving extension is the
linear functional F : (X; k:k) 7! (F; j:j); F (x) = fa(x).

Corollary 2.6. In Theorem 2.3., if the vectors a and b are collinear, that is b = ta for a scaler
t 2 F then fa � 0, its operator norm kfakop = 0 and its norm preserving extension is the linear
functional F : (X; k:k) 7! (F; j:j); F (x) = 0.

In the following result we assume that dim(Rn) = n � 2.

Corollary 2.7. Let a = (a1; a2; : : : ; an); b = (b1; b2; : : : ; bn) 2 Rn n f0g be �xed vectors, W =
fx = (x1; x2; : : : ; xn) 2 Rn : `b(x) = (x; b) = b1x1 + b2x2 + � � � + bnxn = 0g be a linear subspace and
fa : (W; k:k2) 7! (R; j:j), fa(x) = (x; a) = a1x1 + a2x2 + � � � + anxn be a linear functional. Then the

operator norm of the linear functional fa is kfakop =
r
kak22 �

(a;b)2

kbk22
= 1

kbk2

q
kak22 kbk

2
2 � (a; b)2 and its

norm preserving extension is the linear functional F : (Rn; k:k2) 7! (R; j:j); F (x) = fa(x)� (a;b)

kbk22
`b(x) =�

x; a� (a;b)

kbk22
b
�
.

Remark 2.8. Since the computation of an operator norm is an extremum value problem we note
that Corollary 2.7 may be used to solve certain type of extremum value problems.

Example 2.9. Let W =
�
x = (x1; x2; x3) 2 R3 : x1 + x2 + x3 = 0

	
be a linear subspace of the

space R3. Find the operator norm of the linear functional f : (W; k:k2) 7! (R; j:j); f(x) = 2x1 + 3x3
and its norm preserving linear functional extension F : (R3; k:k2) 7! (R; j:j).

Solution. For the vectors b = (b1; b2; b3) = (1; 1; 1), a = (a1; a2; a3) = (2; 0; 3) 2 R3 we have
W = fx = (x1; x2; x3) 2 R3 : `b(x) = (x; b) = x1+x2+x3 = 0g and f(x) = fa(x) = (x; a) = 2x1+3x3.
Since (a; b) = 5, kak2 =

p
13 and kbk2 =

p
3 by the Corollary 2.7 the operator norm of the linear

functional f is kfkop = 1p
3

p
39� 25 =

q
14
3 =

p
42
3 and its norm preserving linear functional extension

is F : (R3; k:k2) 7! (R; j:j) F (x) = fa(x)� (a;b)

kbk22
`b(x) = 2x1+3x3� 5

3(x1+x2+x3) =
1
3(x1�5x2+4x3).

We use Lemma 2.1 and Lemma 2.2 to give alternative solutions of this example.
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Alternative solution. (W; k:k2) is a Hilbert space. The kernel or the null space of the linear
functional f is the linear subspace M = ker(f) =

�
�
�
1;�1

3 ;�
2
3

�
: � 2 R

	
and its orthogonal com-

plement in W is the linear subspace M? = f�(1;�5; 4) : � 2 Rg. Choose x0 = (1;�5; 4). and let
a = f(x0)

kx0k22
x0 =

1
3(1;�5; 4). Then by Lemma 2.1 we have f(x) = (x; a) =

1
3(x1�5x2+4x3) for all x 2W .

By the Riesz representation theorem kfkop = kak2 =
p
42
3 and by the uniqueness of extension the norm

preserving linear extension of the linear functional f is the linear functional F : (R3; k:k2) 7! (R; j:j);
F (x) = (x; a) = 1

3(x1 � 5x2 + 4x3).

Alternative solution 2. Since the space W is the kernel of the linear functional ` : R3 7!
R; `(x) = x1+x2+x3 it is a closed codimension one linear subspace of R3 and hence dimW = 2. The
orthogonal projection of the space R3 onto the space W is the bounded linear operator p : R3 7! W;
p(x) =

�
2x1�x2�x3

3 ; 2x2�x1�x33 ; 2x3�x2�x13

�
. So by Lemma 2.2 the norm preserving linear extension of

the linear functional f is the linear functional F : (R3; k:k2) 7! (R; j:j),

F (x) =f(p(x)) = f

�
2x1 � x2 � x3

3
;
2x2 � x1 � x3

3
;
2x3 � x2 � x1

3

�
=2

�
2x1 � x2 � x3

3

�
+ 3

�
2x3 � x2 � x1

3

�
=
1

3
(x1 � 5x2 + 4x3) = ((x1; x2; x3);

1

3
(1;�5; 4)):

By the Riesz representation theorem kfkop = kFkop =
1
3(1;�5; 4)


2
=

p
42
3 :

We give a di¤erent solution of this example which is also important in terms of the method used.

Alternative solution 3. By the de�nition of operator norm combined probably with the method
of Lagrange multipliers we have

kfkop =sup fjf(x)j : x = (x1; x2; x3) 2W; kxk2 = 1g
=sup

�
j2x1 + 3x3j : x = (x1; x2; x3) 2 R3; x1 + x2 + x3 = 0; kxk2 = 1

	
=sup f2x1 + 3x3 : x1; x3 � 0; x1 + x2 + x3 = 0; kxk2 = 1g =

p
42

3
:

By the Hahn-Banach theorem there is at least one norm preserving linear functional extension F of
f to the space (R3; k:k2). By the Riesz representation theorem this extension is of the form F (x) =
(x; a) = a1x1 + a2x2 + a3x3 where a = (a1; a2; a3) 2 R3 is a constant vector and kFkop = kak2. For
x 2 W by solving the linear extension equality 2x1 + 3x3 = f(x) = F (x) = a1x1 + a2x2 + a3x3 and
the operator norm equality

p
42
3 = kfkop = kFkop = kak2 =

p
a21 + a

2
2 + a

2
3 simultaneously we get

a1 =
1
3 ; a2 =

�5
3 and a3 = 4

3 . Therefore the unique norm preserving linear extension of the linear
functional f is the linear functional F (x) = 1

3(x1 � 5x2 + 4x3).

Example 2.10. Let X = P3(R) be the linear space of all real polynomial functions of degree at
most 3. The function (:; :) : X � X 7! R de�ned by (p; q) =

R 1
�1 p(x)q(x)dx is an inner product on

X and it generates the norm kpk =
p
(p; p) =

�R 1
�1(p(x))

2dx
�1=2

. The inner product space (X; (:; :))

is a Hilbert space. Let W = fp 2 X :
R 1
�1(p(x) + xp(x))dx = 0g and ` : (W; k:k) 7! (R; j:j); `(p) =R 1

�1(p(x)+x
2p(x))dx. Show thatW is a linear subspace of X and ` is bounded linear functional. Find

the operator norm of the functional ` and its norm preserving linear extension to the space X.

Solution. For the polynomial functions a : R 7! R; a(x) = 1 + x2 and b : R 7! R; b(x) = 1 + x we
haveW = fp 2 X :

R 1
�1(p(x)+xp(x))dx = 0g = fp 2 X : (p; b) = 0g and `(p) =

R 1
�1(p(x)+x

2p(x))dx =R 1
�1(1+x

2)p(x)dx = (p; a). Since the inner product is a bounded linear functional with respect to the
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�rst variable it follows that W is a closed codimension one linear subspace of the space X and ` is a
bounded linear functional. Since

kbk =
�Z 1

�1
(b(x))2dx

�1=2
=

�Z 1

�1
(1 + x)2dx

�1=2
=

�Z 2

0
t2dt

�1=2
=

r
t3

3
j20 =

2
p
6

3
and

(a; b) =

Z 1

�1
a(x)b(x)dx =

Z 1

�1
(1 + x+ x2 + x3)dx

=

�
x+

x2

2
+
x3

3
+
x4

4

�
j1�1= 2 +

2

3
=
8

3
;

by the Theorem 2.3 the operator norm of the linear functional ` is

k`kop =
a� (a; b)kbk2

b

 = ka� bk = �Z 1

�1
(a(x)� b(x))2dx

�1=2
=

�Z 1

�1
(x2 � x)2dx

�1=2
=

�Z 1

�1
(x4 � 2x3 + x2)dx

�1=2
=

s�
x5

5
� 2x

4

4
+
x3

3

�
j1�1 =

r
2

5
+
2

3
=
4
p
15

15

and its norm preserving linear functional extension is the linear functional L : (X; k:k) 7! (R; j:j)
de�ned by

L(p) =

�
p; a� (a; b)

kbk2
b

�
= (p; a� b)

=

Z 1

�1
(a(x)� b(x))p(x)dx =

Z 1

�1
(x2 � x)p(x)dx:

The following example shows that our formula works not just for �nite dimensional Hilbert spaces
but also works for in�nite dimensional Hilbert spaces.

Example 2.11. Let X = L2([0; 1]) = ff : f : [0; 1] 7! R; Lebesque measurable and kfk2 =�R 1
0 (f(x))

2dx
�1=2

g be the linear space of Lebesque square integrable functions. The function (:; :) :
X � X 7! R de�ned by (f; g) =

R 1
0 f(x)g(x)dx is an inner product on X and it generates the norm

kfk = kfk2. Let W = ff 2 X :
R 1
0 f(x)dx = 0g and ` : (W; k:k) 7! (R; j:j); `(f) =

R 1
0 x

2f(x)dx. Show
that W is a linear subspace of X and ` is bounded linear functional on W . Find the operator norm
of the functional ` and its norm preserving linear extension to the space X.

Solution. For the functions a : [0; 1] 7! R; a(x) = x2 and b : [0; 1] 7! R; b(x) = 1 we have
W = ff 2 X :

R 1
0 f(x)dx = 0g = ff 2 X : (f; b) = 0g and `(f) =

R 1
0 x

2f(x)dx = (f; a). Since the
inner product is a bounded linear functional with respect to the �rst variable it follows that W is a
codimension one linear subspace of the space X and ` is a bounded linear functional. Since kbk =�R 1
0 (b(x))

2dx
�1=2

=
�R 1
0 1

2dx
�1=2

=
p
x j10 = 1 and (a; b) =

R 1
0 a(x)b(x)dx =

R 1
0 x

2dx = x3

3 j
1
0=

1
3 by
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the Theorem 2.3 the operator norm of the linear functional ` is

k`kop =
a� (a; b)kbk2

b

 = a� b

3

 =
 Z 1

0

�
a(x)� b(x)

3

�2
dx

!1=2

=

 Z 1

0

�
x2 � 1

3

�2
dx

!1=2
=

�Z 1

0

�
x4 � 2

3
x2 +

1

9

�
dx

�1=2

=

s�
x5

5
� 2
9
x3 +

1

9
x

�
j10 =

s�
1

5
� 2
9
+
1

9

�
� 0

=

r
9� 5
9 � 5 =

r
4

9 � 5 =
2

3
p
5
=
2
p
5

15

and its norm preserving linear functional extension is the linear functional L : (X; k:k) 7! (R; j:j); L(p) =�
f; a� (a;b)

kbk2 b
�
=
�
p; a� b

3

�
=
R 1
0 (a(x)� b(x))f(x)dx =

R 1
0

�
x2 � 1

3

�
f(x)dx.

We end the paper with the following question.

Question. Can we remove the codimension one hypothesis in Theorem 2.3? Is it possible to
generalize these results to normed linear spaces under some smoothness conditions.
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