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Abstract 

Folded distributions are commonly used for the data set which is obtained without regarding the algebraic 

signs of the measurements. Therefore, they have extensive applications in different fields such as engineering, 

finance, insurance and so on. Folded exponential power (FEP) distribution is a newly proposed distribution 

which has modeling flexibility and easy usage [1]. In this study, we therefore consider different parametric 

methods for estimating the unknown parameters of FEP distribution. Maximum likelihood (ML), ordinary and 

weighted least squares (LS and WLS), Cramer von Mises (CVM) and maximum product of spacings (MPS) 

methods are used during the estimation process. The performances of the considered estimators are compared 

in a Monte-Carlo simulation study via bias and mean squared error (MSE) criteria. Results show that MPS 

method outperforms its rivals. Two real life applications taken from the literature are also considered.   

Keywords: Bias, Efficiency, Estimation, Folded exponential power distribution.    

       

Öz 

Katlanmış üstel güç dağılımının parametrelerinin tahmini için karşılaştırmalı bir çalışma 

Katlanmış dağılımlar, ölçümlerin cebirsel işaretlerinin önemli olmadığı veri setleri için yaygın olarak 

kullanılırlar. Bu nedenle, mühendislik, finans, ekonomi v.b. bir çok alanda kapsamlı uygulamaları vardır. 

Modelleme esnekliği ve kolay kullanımı olan katlanmış üstel güç (FEP) dağılımı yeni önerilmiştir [1]. Bu 

çalışmada bu nedenle, FEP dağılımının bilinmeyen parametrelerinin farklı parametrik yöntemlerle tahmin 

edilmesi ele alınmıştır. En çok olabilirlik (ML), sıradan ve ağırlıklandırılmış en küçük karerler (LS ve WLS), 

Cramer von Mises (CVM) ve aralıkların çarpımının maksimumu (MPS)  metotları tahmin sürecinde 

kullanılmıştır. Ele alınan tahmin edicilerin performansı, Monte-Carlo simülasyon çalışmasında yan ve hata 

kareler ortalaması (MSE) kriterleri kullanılarak karşılaştırılmıştır. Sonuçlar, MPS yönteminin rakiplerinden 

daha iyi bir performansa sahip olduğunu göstermiştir. Literatürden alınan iki gerçek hayat uygulaması ele 

alınmıştır.  

  Anahtar sözcükler: Yan, Etkinlik, Tahmin, Katlanmış üstel güç dağılımı. 
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1. Introduction 

Folded distributions have many applications in different fields of science such as engineering, economics, 

medicine and so on [2 - 6]. Folded distributions are useful when the algebraic signs of the measurements 

are ignored. Some examples for these kind of measurements can be given as differences, deviations, 

lengths and angels. Therefore, the distribution of these measurements are mostly described by folded 

distributions which are defined as the distribution of absolute measurements. 

Suppose that random variable  has probability density function (pdf) and cumulative distribution 

function (cdf)  and , respectively and define . The distribution of  is a folded distribution 

and its pdf and cdf are then given by  

 
(1) 

respectively. If one take  as the pdf of ,  has folded normal (FN) distribution which is 

proposed by Leone et al. [5]. In the same manner, folded t distribution is suggested by Psarakis and 

Panareteos [7]. Cooray et al. [8] introduce folded logistic (FL) distribution. Nadarajah and Bakar [1] also 

consider some folded distributions to model the log-transformed Norwegian data. Among these, they 

originate three new distributions namely folded generalized t, folded Gumbel and folded exponential 

power (FEP) distributions and study some statistical properties and maximum likelihood (ML) estimation 

of the parameters. 

In this study, we consider FEP distribution because of its simplicity and modeling flexibility. The pdf and 

cdf of FEP distribution are given by 

 
(2) 

and  

  

 
(3) 

respectively. Here, , ,  and . It should be mentioned that  stands for the shape 

parameter and ,  have their standard meanings, i.e the former and the latter are location and scale 

parameters, respectively.  is the well-known gamma function and  denotes the incomplete gamma 

function which is defined as  
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(a)  and  (b)  and  

 Figure  1. The pdf plots of FEP distribution for some certain values of the parameters. 

FEP distribution is obtained using exponential power (EP), which is also known as generalized normal 

distribution [9], therefore it inherits properties of EP. For example, FEP distribution is platykurtic when 

 otherwise it is leptokurtic, see Figure 1 in which density plots of FEP distribution are provided for 

some representative values of the parameters. FEP reduces to folded Laplace [10] and folded normal 

distributions for  and , respectively. Furthermore, half exponential power distribution [11] is 

obtained when  and . It is clear that half normal distribution is a special case of FEP 

distribution 
 
if ,  and . We refer to Nadarajah and Bakar [1] for further information about FEP 

distribution. 

As mentioned above, FEP distribution has attractive properties and modelling flexibility. However, there 

are no previous studies concerning different parametric estimation methods for the parameters of FEP 

distribution to the best of our knowledge. We therefore consider least squares (LS), weighted LS, Cramer 

von Mises (CVM) and maximum product of spacings (MPS) methods for estimating the parameters of 

FEP distribution. The performances of these estimation methods are compared using different settings of 

parameter values and sample sizes according to the bias, mean squared error (MSE) and deficiency (Def) 

criteria. We aim to evaluate the best method for estimating the parameters of FEP distibution. There are 

plenty of studies in which performances of the different estimation methods are compared in the context 

of different distributions, see for example [12 - 14]. 

The rest of the paper is organized as follows. Brief descriptions of the estimation methods are given in 

Section 2. Section 3 consists of a Monte-Carlo simulation study and its results. Real life data applications 

are considered in Section 4. The paper is finalized with some concluding remarks. 

2. Methods of estimation 

In this section, brief descriptions of the ML, LS, WLS, CVM and MPS methods are provided.  We first 

provide a common notation which will be used in descriptions of the methods. Let  be a 

random sample drawn from FEP distribution. The order statistics of this sample are then denoted by 

. 
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2.1. ML method 

The ML estimators of the parameters ,  and  are obtained by maximizing the following loglikelihood 

function:  

 

 

(4) 

After taking partial derivatives of the  function with respect to the parameters of interest and setting 

them equal to zero, we obtain the following likelihood equations [1]: 

 

 
 

(5) 

 

 
 

(6) 

 

 

(7) 

where  is the digamma function. 

It is clear that equations (5)-(7) cannot be solved explicitly since they involve nonlinear functions of the 

parameters. Therefore, some numerical methods should be employed to obtain the ML estimates. 

 2.2. LS method 

The LS estimators of the parameters ,  and  are obtained by minimizing the following function with 

respect to the parameters of interest [15]:  
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(8) 

Here,  is the cdf of FEP distribution. LS estimators can also be obtained by solving the following 

equations:  

 
(9) 

 
(10) 

 
(11) 

where  

 

 

(12) 

 

 

(13) 

and  

 

 

 
 

(14) 

Here, ,  and  denote the partial derivatives of incomplete gamma function with respect to 

the parameters ,  and , respectively. 

Equations (9)-(11) include nonlinear functions of the parameters and thus numerical methods should be 

performed.   

2.3. WLS method 

The WLS estimators of the parameters ,  and  are obtained by minimizing the following function:  
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(15) 

 where  denotes the weights which are computed by  

 
 

After incorporating the cdf of FEP distribution into the function  and taking the partial derivatives with 

respect to the parameters of interest, we obtain the following nonlinear equations:  

 
(16) 

 
(17) 

 
(18) 

where ,  and  are given in equations (12), (13) and (14), respectively. Numerical methods should 

be utilized since equations (16)-(18) cannot be solved explicitly. 

2.4. CVM method 

CVM method is based on minimizing the distance between the estimated cdf and empirical distribution 

function. Therefore, CVM estimators are in the class of minimum distance estimators which are also 

known as maximum goodness of fit test, see i.e. [14] and references therein. 

The CVM estimators of the parameters of FEP distribution are obtained by minimizing the following 

function with respect to the parameters ,  and :  

 

(19) 

where  is the cdf of FEP distribution. It is clear that this minimization problem yields following 

nonlinear equations:  

 
(20) 

 
(21) 

 
(22) 

Here, ,  and  are same as given in equations (12), (13) and (14), respectively. As it is clear from 

equations (20)-(22), the explicit solutions cannot be obtained and thus numerical methods should be 

employed. 
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2.5. MPS method 

The MPS method is originated by Cheng and Amin [16] and Ranneby [17]. The MPS estimator is 

obtained by maximizing the geometric mean of spacings. The spacings are defined as follows:  

 (23) 

where  is the cdf of FEP distribution,  and . Then, the MPS estimators of ,  

and  are defined as maximizers of the following function:  

 
(24) 

 The corresponding partial derivatives are obtained as follows:  

 
(25) 

 
(26) 

 
(27) 

See equations (12), (13) and (14) for definitions of ,  and , respectively. It is clear that MPS 

estimators should also be obtained using numerical methods. 

It should also be noted that if there are ties in the data set, i.e. ,  is replaced by the 

corresponding log density [16]. 

3. Simulation study 

This section consists of a Monte-Carlo simulation study to determine the estimator having the best 

performance. The bias and MSE criteria are used to compare the performances of the ML, LS, WLS, 

CVM and MPS estimators. The bias and MSE are respectively formulated as follows:  

 

  

 

Here,  shows true parameter value and stands for ,  or .  denotes the estimator of  obtained based 

on one of the methods given in the previous section. We also compute the joint efficiencies of the 

estimators using deficiency criterion which is formulated by  

  

For further information on Def, see Kantar and Senoglu [13]. 

All computations are done using R software. Since the estimators cannot be obtained explicitly, we use 

“optim” function with “Nelder-Mead” algorithm. Random numbers are generated from FEP distribution 

using the “rpe” function in the “LaplacesDemon” package [18]. Without loss of generality, the true values 

of the parameters are taken as follows:  

(i)  or ,  (ii)  and  (iii) , 1, 

1.5, 2 and 2.5.  
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The sample size is taken to be  and 200. Therefore, we have 20 different simulation schemes. The 

results are tabulated in Table 1 – Table 4.   

 

Conclusions obtained from Table 1:  

All estimators of  and  have negligible biases. In other words, they are almost unbiased. However, 

estimators of , except MPS, have bias. MPS estimator of  have lower bias values. 

The MSE values of ML, LS, WLS, CVM and MPS estimators of  are low and more or less the same. 

This conclusion is also true for those of . Therefore, all of the estimators can be preferred for estimating 

 and . For , we have similar conclusions given for bias. In other words, the MSEs of the estimators of 

 are relatively large compared to those of  and . Furthermore, WLS has the worst performance. MPS 

estimator of  is the best since it has the minimum value of MSE among the others. 

As indicated previously, Def is a measure of joint efficiency. Therefore, it can be seen as total efficiency 

measure for ML, LS, WLS, CVM and MPS methods. From this point of view, MPS outperforms its rivals. 

ML method is following MPS and also giving promising results. 

 

Conclusions obtained from Table 2:  

It is clear from bias values of  given in second column of Table 2 that all estimators are almost unbiased. 

However, it should be noticed that ML method has larger bias values. All estimators of  have relatively 

smaller biases. It should also be mentioned that CVM and MPS underestimates  in most of the cases. We 

have comments similar to those obtained from Table 1 for the estimators of  in terms of bias criterion. 

They have larger biases and LS and WL are more preferable in most of the cases. 

The MSEs of all estimators of  are close to each other and all of them are preferable. Similarly, all 

estimators of  can also be used confidentially. However, we cannot say the same for estimating  since 

the corresponding MSEs are large. Among all estimators, MPS estimator of  is more preferable. 

According to the Def criterion, MPS is the best estimator and it is followed by ML. There are no 

remarkable efficiencies of WLS and CVM but the performance of LS method is promising in some cases, 

i.e. . 

 

Conclusions obtained from Table 3 and Table 4 :  

The conclusions obtained from Table 3 and Table 4 are similar those obtained from Table 1 and Table 2. 

In Table 3 and Table 4, the sample size is increased to 200 therefore all estimators gain efficiency. For 

example, biases, MSEs and therefore Def values decrease as expected. Results show that MPS is more 

preferable to its rivals in most of the cases. ML is the second best and LS presents relatively good results 

in some cases. 

Overall, we recommend to use MPS method used to estimate the parameters of FEP distribution since it 

has the smallest bias, MSE and Def values in most of the cases. 
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Table 1. Simulated biases, MSEs and Def values of the ML, LS, WLS, CVM and MPS estimators for  

,  and . 

Estimation 

Method 
   

Def 
Bias MSE Bias MSE Bias MSE 

 

ML 0.0035 0.0108 -0.0017 0.0225 0.0549 0.0578 0.0911 

LS -0.0084 0.0108 0.0281 0.0240 0.0713 0.0865 0.1214 

WLS -0.0061 0.0119 0.0219 0.0247 0.0670 0.8715 0.9081 

CVM -0.0030 0.0107 0.0072 0.0223 0.0865 0.0979 0.1310 

MPS -0.0041 0.0114 0.0147 0.0232 -0.0198 0.0394 0.0739 

  

ML -0.0049 0.0125 0.0009 0.0184 0.0774 0.1034 0.1342 

LS -0.0170 0.0125 0.0242 0.0192 0.0670 0.1301 0.1618 

WLS -0.0135 0.0131 0.0184 0.0193 0.0685 1.0731 1.1055 

CVM -0.0122 0.0123 0.0047 0.0179 0.0930 0.1484 0.1786 

MPS -0.0130 0.0129 0.0157 0.0190 -0.0303 0.0676 0.0995 

 

ML 0.0003 0.0137 0.0138 0.0178 0.2179 0.6035 0.6351 

LS -0.0098 0.0139 0.0223 0.0173 0.1027 0.5064 0.5376 

WLS -0.0060 0.0134 0.0165 0.0173 0.1188 1.6329 1.6636 

CVM -0.0072 0.0136 0.0072 0.0166 0.1641 0.6004 0.6307 

MPS -0.0072 0.0142 0.0176 0.0173 -0.0047 0.3261 0.3576 

 

ML -0.0044 0.0121 0.0252 0.0172 0.3314 0.9214 0.9508 

LS -0.0095 0.0126 0.0232 0.0150 0.1414 0.9621 0.9897 

WLS -0.0071 0.0118 0.0186 0.0146 0.1702 2.1992 2.2256 

CVM -0.0082 0.0124 0.0117 0.0147 0.2408 1.1537 1.1808 

MPS -0.0095 0.0125 0.0174 0.0146 -0.0045 0.5180 0.5452 

 

ML -0.0059 0.0092 0.0178 0.0171 0.3494 1.1601 1.1865 

LS -0.0060 0.0105 0.0094 0.0138 0.2253 2.4578 2.4821 

WLS -0.0055 0.0094 0.0054 0.0124 0.1919 2.7287 2.7505 

CVM -0.0054 0.0103 0.0003 0.0139 0.3618 2.7212 2.7454 

MPS -0.0077 0.0095 0.0015 0.0123 -0.0586 0.9356 0.9575 
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Table 2. Simulated biases, MSEs and Def values of the ML, LS, WLS, CVM and MPS estimators for  

,  and . 

Estimation 

Method 
   

Def 
Bias MSE Bias MSE Bias MSE 

 

ML -0.0762 0.0099 -0.0092 0.0204 0.0131 0.0338 0.0641 

LS 0.0055 0.0125 0.0229 0.0205 0.0146 0.0485 0.0815 

WLS 0.0064 0.0136 0.0147 0.0204 0.0217 0.8222 0.8562 

CVM 0.0064 0.0126 0.0059 0.0196 0.0431 0.0547 0.0869 

MPS 0.0060 0.0102 0.0018 0.0190 -0.0674 0.0286 0.0577 

 

ML -0.0810 0.0107 -0.0106 0.0183 0.0105 0.0502 0.0792 

LS 0.0024 0.0122 0.0142 0.0177 0.0278 0.0802 0.1101 

WLS 0.0029 0.0127 0.0072 0.0177 0.0334 1.0345 1.0650 

CVM 0.0027 0.0122 -0.0003 0.0174 0.0652 0.0920 0.1216 

MPS 0.0015 0.0117 -0.0049 0.0171 -0.0835 0.0451 0.0738 

 

ML -0.0901 0.0124 0.0059 0.0140 0.1186 0.2061 0.2325 

LS 0.0035 0.0117 0.0075 0.0151 0.0568 0.2770 0.3037 

WLS 0.0028 0.0116 0.0028 0.0145 0.0609 1.5646 1.5908 

CVM 0.0035 0.0117 -0.0037 0.0151 0.1205 0.3272 0.3540 

MPS 0.0043 0.0125 -0.0091 0.0136 -0.1139 0.1162 0.1424 

 

ML -0.0838 0.0111 0.0105 0.0148 0.2480 0.7436 0.7695 

LS -0.0005 0.0117 0.0040 0.0137 0.0943 0.8095 0.8349 

WLS 0.0004 0.0112 0.0006 0.0128 0.0932 2.1019 2.1259 

CVM -0.0005 0.0117 -0.0053 0.0139 0.1936 0.9926 1.0183 

MPS 0.0003 0.0114 -0.0083 0.0119 -0.1309 0.3034 0.3268 

  

ML -0.0733 0.0085 0.0139 0.0152 0.3781 1.8727 1.8965 

LS 0.0008 0.0095 0.0028 0.0155 0.1895 2.4575 2.4825 

WLS 0.0008 0.0085 -0.0006 0.0139 0.1587 2.6839 2.7063 

CVM 0.0007 0.0095 -0.0051 0.0158 0.3405 3.2004 3.2257 

MPS 0.0006 0.0083 -0.0111 0.0124 -0.1708 0.6494 0.6701 
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Table 3. Simulated biases, MSEs and Def values of the ML, LS, WLS, CVM and MPS estimators for  

,  and . 

Estimation 

Method 
   

 Def 
Bias MSE Bias MSE Bias MSE 

 

ML -0.0017 0.0052 -0.0009 0.0125 0.0120 0.0187 0.0364 

LS -0.0077 0.0056 0.0139 0.0129 0.0234 0.0306 0.0491 

WLS -0.0065 0.0061 0.0100 0.0129 0.0181 0.8185 0.8375 

CVM -0.0050 0.0056 0.0033 0.0125 0.0292 0.0322 0.0503 

MPS -0.0050 0.0053 0.0075 0.0127 -0.0292 0.0166 0.0345 

 

ML -0.0014 0.0065 -0.0010 0.0092 0.0429 0.0355 0.0512 

LS -0.0057 0.0064 0.0104 0.0094 0.0530 0.0639 0.0797 

WLS -0.0042 0.0068 0.0071 0.0096 0.0440 1.0459 1.0622 

CVM -0.0034 0.0064 0.0007 0.0091 0.0652 0.0687 0.0842 

MPS -0.0064 0.0066 0.0064 0.0094 -0.0187 0.0283 0.0443 

  

ML 0.0031 0.0059 0.0012 0.0069 0.0802 0.1021 0.1150 

LS -0.0007 0.0059 0.0067 0.0070 0.0393 0.1513 0.1643 

WLS 0.0010 0.0059 0.0040 0.0070 0.0522 1.5549 1.5677 

CVM 0.0004 0.0059 -0.0007 0.0069 0.0675 0.1643 0.1771 

MPS -0.0006 0.0060 0.0019 0.0068 -0.0376 0.0774 0.0902 

 

ML 0.0009 0.0052 0.0100 0.0065 0.1262 0.2496 0.2613 

LS -0.0009 0.0058 0.0081 0.0067 0.0219 0.3589 0.3715 

WLS 0.0001 0.0054 0.0070 0.0064 0.0541 2.0570 2.0688 

CVM -0.0004 0.0058 0.0025 0.0067 0.0661 0.3900 0.4025 

MPS -0.0014 0.0053 0.0042 0.0060 -0.0591 0.1720 0.1833 

  

ML 0.0008 0.0042 0.0052 0.0064 0.1546 0.4281 0.4387 

LS 0.0020 0.0050 0.0028 0.0072 0.0674 0.6629 0.6751 

WLS 0.0018 0.0045 0.0011 0.0066 0.0739 2.5793 2.5904 

CVM 0.0022 0.0050 -0.0015 0.0072 0.1292 0.7253 0.7375 

MPS 0.0000 0.0043 -0.0045 0.0059 -0.0949 0.2915 0.3017 
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Table 4. Simulated biases, MSEs and Def values of the ML, LS, WLS, CVM and MPS estimators for  

,  and . 

Estimation 

Method 
   

 Def 
Bias MSE Bias MSE Bias MSE 

 

ML -0.0538 0.0048 -0.0068 0.0090 0.0054 0.0146 0.0284 

LS -0.0017 0.0062 0.0090 0.0091 0.0019 0.0211 0.0364 

WLS -0.0013 0.0068 0.0055 0.0091 0.0096 0.8097 0.8255 

CVM -0.0013 0.0062 0.0006 0.0089 0.0152 0.0222 0.0373 

MPS 0.0008 0.0047 -0.0022 0.0088 -0.0439 0.0144 0.0279 

  

ML -0.0631 0.0062 -0.0057 0.0086 0.0032 0.0253 0.0401 

LS 0.0009 0.0068 0.0049 0.0084 0.0063 0.0385 0.0537 

WLS 0.0008 0.0072 0.0019 0.0083 0.0140 1.0142 1.0296 

CVM 0.0010 0.0068 -0.0024 0.0083 0.0236 0.0409 0.0560 

MPS 0.0020 0.0063 -0.0058 0.0082 -0.0545 0.0245 0.0389 

  

ML -0.0643 0.0065 0.0010 0.0072 0.0509 0.0580 0.0718 

LS -0.0003 0.0062 0.0052 0.0078 0.0320 0.1262 0.1402 

WLS -0.0004 0.0061 0.0032 0.0074 0.0381 1.5396 1.5531 

CVM -0.0003 0.0062 -0.0005 0.0078 0.0613 0.1368 0.1507 

MPS -0.0004 0.0062 -0.0057 0.0069 -0.0740 0.0519 0.0651 

 

ML -0.0584 0.0055 0.0048 0.0059 0.0984 0.1578 0.1692 

LS -0.0007 0.0058 0.0039 0.0072 0.0435 0.3222 0.3352 

WLS -0.0013 0.0054 0.0028 0.0066 0.0498 2.0523 2.0643 

CVM -0.0007 0.0058 -0.0008 0.0073 0.0869 0.3524 0.3655 

MPS -0.0018 0.0053 -0.0068 0.0060 -0.1061 0.1184 0.1297 

 

ML -0.0510 0.0041 -0.0005 0.0059 0.1202 0.2914 0.3015 

LS 0.0008 0.0051 -0.0054 0.0070 0.0309 0.5913 0.6034 

WLS 0.0006 0.0046 -0.0063 0.0063 0.0368 2.5381 2.5490 

CVM 0.0008 0.0051 -0.0095 0.0071 0.0900 0.6484 0.6606 

MPS 0.0009 0.0043 -0.0156 0.0058 -0.1685 0.2196 0.2297 
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4. Applications 

In this section two real life data set taken from the literature is analyzed. It should be mentioned that we 

use ML and MPS methods in this section since they are more preferable in terms of efficiency, see Table 1 

- Table 4. In applications, we also conduct Kolmogorov-Simornov tests. Therefore, test statistic (KS) and 

corresponding values obtained from Kolmogrov-Smirnov test are also provided. The method having 

smaller (larger) KS ( ) value is more desirable.   

4.1. Lead wires data 

This application is taken from Leone et al. [5] in which FN distribution is used. The data consists of 

camber of 497 lead wires which are used in manufacture of miniature radio tubes. The full data set and 

more explanation are available in Leone et al. [5]. See also Cooray et al. [8] in which FL distribution is 

considered for modelling purposes. Different from these studies, we here use FEP distribution to model 

lead wires data. Parameter estimates based on FEP, FN and FL distributions and corresponding KS test 

results are given in Table 5. It should be noted that parameter estimates are obtained using the ML and 

MPS methods for FEP distibution. On the other hand, results for FN and FL distributions are based on the 

ML method. It is clear from Table 5 that the ML is more desirable according to KS and  values for 

FEP distribution. It should be recognized that the fitting performances of the ML and MPS methods are 

similar, see Figure 2 in which histogram of data is given along with fitted densities based on ML and MPS 

estimates. Cooray et al. [8] show that FL distribution is more appropriate than FN distribution for 

modelling this data. Results given in Table 5 provide that the FEP distribution can also be considered as 

an alternative to FL distribution. 

Table 5. Parameter estimates, KS and values for lead wires data. 

Distribution 
Estimation 

Method    KS value 

FEP 
ML 13.1291 7.7628 1.4488 0.0612 0.0482 

MPS 13.0694 7.7759 1.3951 0.0632 0.0375 

FN ML 13.6120 8.4626 - 0.0709 0.0135 

FL ML 13.2860 4.8400 - 0.0611 0.0487 
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Figure 2. The histogram and fitted densities for lead wires data. 
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4.2. Log-Norwegian fire claim data 

Brazauskas and Kleefeld [2] use this data in the context of insurance claims distributional modeling. The 

full data set is available at the following web site with name NORWEGIANFIRE.TXT: 

http://lstat.kuleuven.be/Wiley/. It should be noted that log-Norwegian fire claim data is obtained by taking 

logarithm of original data divided by 500 and is for the year 1988. 

Nadarajah and Bakar [1] consider different folded distributions, including FEP, to model log-Norwegian 

fire claim data. They show that FEP is the best distribution modeling log-Norwegian fire claim by using 

ML estimates. In addition to ML, we use MPS method to estimate the parameters of FEP distribution in 

the current study. Results are given in Table 6. It is clear that MPS method is more preferable for this data 

set. See also Figure 3 in which histogram and fitted densities are provided. 

Table 6. Parameter estimates, KS and values for log-Norwegian fire claim data. 

Dsitribution 
Estimation 

Method    KS value 

FEP 
ML 0.6109 0.9322 1.1282 0.0213 0.8475 

MPS 0.6109 0.9259 1.0981 0.0211 0.8566 
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Figure 3. The histogram and fitted densities log-Norwegian fire claim data. 

5. Conclusion 

In this study, we consider the ML, LS, WLS, CVM and MPS methods to estimate the unknown 

parameters of FEP distribution. As far as we know, LS, WLS, CVM and MPS methods have not been 

used for FEP distribution previously. We aim to investigate the most efficient estimator in terms of some 

criteria such as bias, MSE and Def. Results of the simulation study show that MPS is slightly better than 

the other estimators. It should be noticed that the ML estimator has also a remarkable performance since it 

is the second best estimator. Two real life examples taken from literature are considered in the application, 

i.e. Lead wires and log Norwegian data. They are modelled using FEP distribution and the corresponding 

parameter estimates are obtained based on ML and MPS methods. KS test results show that these methods 

are desirable for modelling the data sets. 
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