N-SPACES

ATILLA AKPINAR

Abstract

In this paper, we introduce n-spaces constructed over an local ring with the maximal ideal (of non-unit elements). So, we give the example of an octonion n-space. Finally, we give two collineations of quaternion n-space.

1. Introduction and Preliminaries

In the early 1930s, P. Jordan, who is a physicist, has began to study with Jordan algebras. The algebra $\mathbf{H}\left(\mathbf{O}_{3}\right)$ is firstly used by Jordan, to define an octonion plane (over real octonion division algebra) [10]. Freudenthal, in [8], gave the same construction in [10]. Later, Springer, in [12], extended the construction given by Jordan and Freudenthal to the octonion (or Cayley) division algebras defined over a field whose characteristic is different from 2 and 3.

In [3], Bix deals with $\mathbf{J}=\mathbf{H}\left(\mathbf{O}_{3}, J \gamma\right)$, the set of 3 by 3 matrices with entries in an octonion algebra \mathbf{O} defined over a local ring R with the maximal ideal I (of non-unit elements), that are symmetric with respect to the canonical involution $J \gamma: X \rightarrow \gamma^{-1} \bar{X}^{\mathbf{t}} \gamma$ where the γ_{i} are elements of $R \backslash I$ and $\gamma:=\operatorname{diag}\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$. Hence, any element X of \mathbf{J} is of the form

$$
X=\left(\begin{array}{ccc}
\alpha_{1} & \gamma_{2} a_{3} & \gamma_{3} \overline{a_{2}} \\
\gamma_{1} \overline{a_{3}} & \alpha_{2} & \gamma_{3} a_{1} \\
\gamma_{1} a_{2} & \gamma_{2} \overline{a_{1}} & \alpha_{3}
\end{array}\right) \text { for } \alpha_{i} \in R \text { and } a_{i} \in \mathbf{O}
$$

If it is defined a cubic form N such that $N(X):=\operatorname{det} X$, a quadratic mapping $X \rightarrow X^{\sharp}:=$ adjoint of X, and a basepoint $C:=I_{3}$ on \mathbf{J} are defined, then the triple (\mathbf{J}, N, C) is a quadratic (exceptional) Jordan algebra under the operator $U_{X} Y=$ $T(X, Y) X-2\left(X^{\sharp} \times Y\right)$ [11]. Then, for $X=\left(\begin{array}{ccc}\alpha_{1} & \gamma_{2} a_{3} & \gamma_{3} \overline{a_{2}} \\ \gamma_{1} \overline{a_{3}} & \alpha_{2} & \gamma_{3} a_{1} \\ \gamma_{1} a_{2} & \gamma_{2} \overline{a_{1}} & \alpha_{3}\end{array}\right)$ and $Y=$

Received by the editors: April 01, 2017;Accepted: December 23, 2019.
2010 Mathematics Subject Classification. Primary 51C05; Secondary 51A10.
Key words and phrases. Local ring, projective Klingenberg plane, n-space.
$\left(\begin{array}{ccc}\beta_{1} & \gamma_{2} b_{3} & \gamma_{3} \overline{b_{2}} \\ \gamma_{1} \overline{b_{3}} & \beta_{2} & \gamma_{3} b_{1} \\ \gamma_{1} b_{2} & \gamma_{2} \overline{b_{1}} & \beta_{3}\end{array}\right) \in \mathbf{J}$, we can give the similar results to those given in [11, (3, 7]:
$N(X)=\alpha_{1} \alpha_{2} \alpha_{3}-\alpha_{1} \gamma_{2} \gamma_{3} n\left(a_{1}\right)-\alpha_{2} \gamma_{3} \gamma_{1} n\left(a_{2}\right)-\alpha_{3} \gamma_{1} \gamma_{2} n\left(a_{3}\right)+\gamma_{1} \gamma_{2} \gamma_{3} 2 t\left(\left(a_{1} a_{2}\right) a_{3}\right)$,
$X^{\sharp}=\left(X_{i j}\right)_{3 \times 3}$ for $X_{i i}=\alpha_{j} \alpha_{k}-\gamma_{j} \gamma_{k} n\left(a_{i}\right), x_{i j}=\gamma_{i} \gamma_{k} a_{i} a_{j}-\gamma_{i} \alpha_{k} \overline{a_{k}}$ and $X_{j i}=\overline{X_{i j}}$,
$X \times Y=\left(z_{i j}\right)_{3 \times 3}$ for $\left\{\begin{array}{c}z_{i i}=\frac{1}{2}\left[\alpha_{j} \beta_{k}+\beta_{j} \alpha_{k}-2 \gamma_{j} \gamma_{k} n\left(a_{i}, b_{i}\right)\right], \\ z_{i j}=\frac{1}{2}\left(\gamma_{j}\left[\gamma_{k} \overline{\left(a_{i} b_{j}+b_{i} a_{j}\right)}-\left(\alpha_{k} b_{k}+\beta_{k} a_{k}\right)\right]\right), z_{j i}=\overline{z_{i j}}\end{array}\right.$,
$T(X, Y)=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}+2 \gamma_{2} \gamma_{3} n\left(a_{1}, b_{1}\right)+2 \gamma_{3} \gamma_{1} n\left(a_{2}, b_{2}\right)+2 \gamma_{1} \gamma_{2} n\left(a_{3}, b_{3}\right)$,
where (i, j, k) is a cyclic permutation of $(1,2,3), n$ (defined by $n(x):=x \bar{x})$ is the norm (quadratic) form over \mathbf{O}, t (defined by $t(x):=\frac{1}{2}(x+\bar{x})$) is the trace (linear) form over \mathbf{O} and finally $n(x, y)$ (defined by $\left.n(x, y):=\frac{1}{2}[n(x+y)-n(x)-n(y)]\right)$ is symmetric bilinear norm w.r.t. n.

Let Π denote the set of elements of rank $1 \mathrm{in} \mathbf{J}$. Then,

$$
\Pi=\left\{X \mid X \in \mathbf{J} \backslash I \mathbf{J} \text { and } X \times X=X^{\sharp}=0\right\}
$$

Note that, if $X \in \Pi$ and α is an element in $R \backslash I$, then $\alpha X \in \Pi$. For $X \in \Pi$, let X_{*} and X^{*} be two copies of the set $\{\alpha X \mid \alpha \in R \backslash I\}$.

Now, it is time to give the definition of an octonion plane $\mathbf{P}(\mathbf{J})$ from [3, 6].
Definition 1. The octonion plane $\mathbf{P}(\mathbf{J})=(\mathbf{P}, \mathbf{L}, \mid, \simeq)$ consists of the incidence structure $(\mathbf{P}, \mathbf{L}, \mid)$ (points, lines, and incidence), and the connection relation is defined as follows:
$\mathbf{P}=\left\{X_{*} \mid X \in \Pi\right\}, \mathbf{L}=\left\{X^{*} \mid X \in \Pi\right\}$,
$X_{*} \mid Y^{*}, X_{*}$ is on Y^{*}, if $V_{Y, X}=0$, that is, $V_{Y, X}=:\{1 X Y\}=\{X 1 Y\}=$ $\{X Y 1\}=X \cdot Y=0$ where $X \cdot Y=\frac{1}{2}(X Y+Y X)$ (Jordan multiplication).
$X_{*} \simeq Y_{*}, X_{*}$ is connected to Y_{*} if $X \times Y \in I J$,
$X^{*} \simeq Y^{*}, X^{*}$ is connected to Y^{*} if $X \times Y \in I \mathbf{J}$,
$X_{*} \simeq Y^{*}, X_{*}$ is connected (or near) to Y^{*} if $T(X, Y) \in I$.
Now, we recall some informations on projective Klingenberg and Moufang-Klingenberg planes from [2].
Definition 2. Let $\mathbb{M}=\left(\mathbf{P}, \mathbf{L}, \epsilon^{\prime}, \sim^{\prime}\right)$ consist of an incidence structure $\left(\mathbf{P}, \mathbf{L}, \epsilon^{\prime}\right)$ (points, lines, incidence) and an equivalence relation ' \sim^{\prime} ' (neighbour relation) on \mathbf{P} and on \mathbf{L}. Then \mathbb{M} is called a projective Klingenberg plane (PK-plane), if it satisfies the following axioms:
(PK1) If P, Q are non-neighbour points, then there is a unique line $P Q$ through P and Q.
(PK2) If g, h are non-neighbour lines, then there is a unique point $g \wedge h$ on both g and h.
(PK3) There is a projective plane $\mathbb{M}^{*}=\left(\mathbf{P}^{*}, \mathbf{L}^{*}, \in^{\prime}\right)$ and incidence structure epimorphism $\Psi: \mathbb{M} \rightarrow \mathbb{M}^{*}$, such that the conditions

$$
\Psi(P)=\Psi(Q) \Leftrightarrow P \sim^{\prime} Q, \Psi(g)=\Psi(h) \Longleftrightarrow g \sim^{\prime} h
$$

hold for all $P, Q \in \mathbf{P}, g, h \in \mathbf{L}$.
A point $P \in^{\prime} \mathbf{P}$ is called near a line $g \in^{\prime} \mathbf{L}$ iff there exists a line h such that $P \in^{\prime} h$ for some line $h \sim^{\prime} g$.

An incidence structure automorphism preserving and reflecting the neighbour relation is called a collineation of \mathbb{M}.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane \mathbb{M} that generalizes a Moufang plane, and for which \mathbb{M}^{*} is a Moufang plane (for the details see [2]).

In [9, Chapter III.2, Theorem 1], Jacobson showed that the fact that $\left(\mathbf{D}_{n}, J \gamma\right)$ is a Jordan algebra implies that \mathbf{D} is associative if $n \geq 4$ but alternative with its symmetric elements in the nucleus if $n=3$. Therefore, in [1], in the case of $n \geq 4$ we were able to study the elements of the quaternion division algebra \mathbb{Q} over a field F, which is associative. For this reason, we could not continue studying by elements of an octonion algebra. But, without the need for Jordan matrix algebras, the obtained results in [1] show the existence of the following two possibilities: either the definition of the octonion plane (octonion 2-space) may be extended to an (octonion) n-space or a new geometric structure may be obtained. We need to recall some results in the case $n=4$ from [1] for better understanding of the construction of the new structure which we call n-space.

Consider $\mathcal{A}:=\mathbb{Q}+\mathbb{Q} \varepsilon$ with componentwise addition and multiplication as follows:

$$
\left(a_{1}+a_{2} \varepsilon\right)\left(b_{1}+b_{2} \varepsilon\right)=a_{1} b_{1}+\left(a_{1} b_{2}+a_{2} b_{1}\right) \varepsilon, \quad\left(a_{i}, b_{i} \in \mathbb{Q}, i=1,2\right)
$$

Then \mathcal{A} is a (not commutative) local ring with the maximal ideal $\mathbf{I}=\mathbb{Q} \varepsilon$ of nonunits.
$\mathbf{J}^{\prime}=\mathbf{H}\left(\mathcal{A}_{4}, J \gamma\right)$, the set of 4 by 4 matrices, with entries from \mathcal{A}, that are symmetric with respect to the canonical involution $J \gamma: X \rightarrow \gamma^{-1} \bar{X}^{\mathbf{t}} \gamma$ where the γ_{i} are non-zero elements of F and $\gamma:=\operatorname{diag}\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$. Hence, any element X of \mathbf{J}^{\prime} is of the form

$$
X=\left[x_{i j}\right]=\left(\begin{array}{cccc}
\alpha_{1} & \gamma_{2} a_{12} & \gamma_{3} \overline{a_{13}} & \gamma_{4} a_{14} \\
\gamma_{1} \overline{a_{12}} & \alpha_{2} & \gamma_{3} a_{23} & \gamma_{4} \overline{a_{24}} \\
\gamma_{1} a_{13} & \gamma_{2} \overline{a_{23}} & \alpha_{3} & \gamma_{4} a_{34} \\
\gamma_{1} \overline{a_{14}} & \gamma_{2} a_{24} & \gamma_{3} \overline{a_{34}} & \alpha_{4}
\end{array}\right) \text { for } \alpha_{i} \in F \text { and } a_{i} \in \mathcal{A}
$$

If we take a quartic form N such that $N(X):=\operatorname{det} X$, a cubic mapping $X \rightarrow$ $X^{\sharp}:=$ adjoint of X, and a basepoint $C:=I_{4}$ on \mathbf{J}, then: it is clear that

$$
\begin{aligned}
T(X, Y)= & \alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}+\alpha_{4} \beta_{4} \\
& +2 \gamma_{1} \gamma_{2} n\left(a_{12}, b_{12}\right)+2 \gamma_{1} \gamma_{3} n\left(a_{13}, b_{13}\right)+2 \gamma_{1} \gamma_{4} n\left(a_{14}, b_{14}\right) \\
& +2 \gamma_{2} \gamma_{3} n\left(a_{23}, b_{23}\right)+2 \gamma_{2} \gamma_{4} n\left(a_{24}, b_{24}\right)+2 \gamma_{3} \gamma_{4} n\left(a_{34}, b_{34}\right)
\end{aligned}
$$

as $T(X, Y):=T(X \cdot Y)=\operatorname{trace}(X \cdot Y)$. Moreover, $X \times Y:=\frac{1}{6}\left[(X+Y)^{\#}-X^{\#}-Y^{\#}\right]$ because of $X \times X=X^{\#}$.

So, it is obtained the following results for the quaternion 3 -space $\mathbf{P}\left(\mathbf{J}^{\prime}\right)=(\mathbf{P}, \mathbf{L}, \mid, \simeq)$ where \mathbf{J}^{\prime} is the 56 -dimensional special Jordan matrix algebra:

The set of points \mathbf{P} consists of the following four classes (which we call as points of types $1,2,3$ and 4 , respectively):

$$
\begin{aligned}
& \left\{P_{1}=\left(\begin{array}{cccc}
1 & \gamma_{1}^{-1} \gamma_{2} \overline{x_{2}} & \gamma_{1}^{-1} \gamma_{3} \overline{x_{3}} & \gamma_{1}^{-1} \gamma_{4} \overline{x_{4}} \\
x_{2} & \gamma_{1}^{-1} \gamma_{2} n\left(x_{2}\right) & \gamma_{1}^{-1} \gamma_{3} x_{2} \overline{x_{3}} & \gamma_{1}^{-1} \gamma_{4} x_{2} \overline{x_{4}} \\
x_{3} & \gamma_{1}^{-1} \gamma_{2} x_{3} \overline{x_{2}} & \gamma_{1}^{-1} \gamma_{3} n\left(x_{3}\right) & \gamma_{1}^{-1} \gamma_{4} x_{3} \overline{x_{4}} \\
x_{4} & \gamma_{1}^{-1} \gamma_{2} x_{4} \overline{x_{2}} & \gamma_{1}^{-1} \gamma_{3} x_{4} \overline{x_{3}} & \gamma_{1}^{-1} \gamma_{4} n\left(x_{4}\right)
\end{array}\right)=: \left.\left(\begin{array}{c}
1 \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)^{t} \right\rvert\, x_{i} \in \mathcal{A}\right\} \cup \\
& \left\{P_{2}=\left(\begin{array}{cccc}
\gamma_{2}^{-1} \gamma_{1} n\left(x_{1}\right) & x_{1} & \gamma_{2}^{-1} \gamma_{3} x_{1} \overline{x_{3}} & \gamma_{2}^{-1} \gamma_{4} x_{1} \overline{x_{4}} \\
\gamma_{2}^{-1} \gamma_{1} \overline{x_{1}} & 1 & \gamma_{2}^{-1} \gamma_{3} \overline{x_{3}} & \gamma_{2}^{-1} \gamma_{4} \overline{x_{4}} \\
\gamma_{2}^{-1} \gamma_{1} x_{3} \overline{x_{1}} & x_{3} & \gamma_{2}^{-1} \gamma_{3} n\left(x_{3}\right) & \gamma_{2}^{-1} \gamma_{4} x_{3} \overline{x_{4}} \\
\gamma_{2}^{-1} \gamma_{1} x_{4} \overline{x_{1}} & x_{4} & \gamma_{2}^{-1} \gamma_{3} x_{4} \overline{x_{3}} & \gamma_{2}^{-1} \gamma_{4} n\left(x_{4}\right)
\end{array}\right)=: \left.\left(\begin{array}{c}
x_{1} \\
1 \\
x_{3} \\
x_{4}
\end{array}\right)^{t} \right\rvert\, x_{1} \in \mathbf{I}, x_{3}, x_{4} \in \mathcal{A}\right\} \cup \\
& \left\{P_{3}=\left(\begin{array}{cccc}
\gamma_{3}^{-1} \gamma_{1} n\left(x_{1}\right) & \gamma_{3}^{-1} \gamma_{2} x_{1} \overline{x_{2}} & x_{1} & \gamma_{3}^{-1} \gamma_{4} x_{1} \overline{x_{4}} \\
\gamma_{3}^{-1} \gamma_{1} x_{2} \overline{x_{1}} & \gamma_{3}^{-1} \gamma_{2} n\left(x_{2}\right) & x_{2} & \gamma_{3}^{-1} \gamma_{4} x_{2} \overline{x_{4}} \\
\gamma_{3}^{-1} \gamma_{1} \overline{x_{1}} & \gamma_{3}^{-1} \gamma_{2} \overline{x_{2}} & 1 & \gamma_{3}^{-1} \gamma_{4} \overline{x_{4}} \\
\gamma_{3}^{-1} \gamma_{1} x_{4} \overline{x_{1}} & \gamma_{3}^{-1} \gamma_{2} x_{4} \overline{x_{2}} & x_{4} & \gamma_{3}^{-1} \gamma_{4} n\left(x_{4}\right)
\end{array}\right)=: \left.\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1 \\
x_{4}
\end{array}\right)^{t} \right\rvert\, x_{1}, x_{2} \in \mathbf{I}, x_{4} \in \mathcal{A}\right\} \cup \\
& \left\{P_{4}=\left(\begin{array}{cccc}
\gamma_{4}^{-1} \gamma_{1} n\left(x_{1}\right) & \gamma_{4}^{-1} \gamma_{2} x_{1} \overline{x_{2}} & \gamma_{4}^{-1} \gamma_{3} x_{1} \overline{x_{3}} & x_{1} \\
\gamma_{4}^{-1} \gamma_{1} x_{2} \overline{x_{1}} & \gamma_{4}^{-1} \gamma_{2} n\left(x_{2}\right) & \gamma_{4}^{-1} \gamma_{3} x_{2} \overline{x_{3}} & x_{2} \\
\gamma_{4}^{-1} \gamma_{1} x_{3} \overline{x_{1}} & \gamma_{4}^{-1} \gamma_{2} x_{3} \overline{x_{2}} & \gamma_{4}^{-1} \gamma_{3} n\left(x_{3}\right) & x_{3} \\
\gamma_{4}^{-1} \gamma_{1} \overline{x_{1}} & \gamma_{4}^{-1} \gamma_{2} \overline{x_{2}} & \gamma_{4}^{-1} \gamma_{3} \overline{x_{3}} & 1
\end{array}\right)=: \left.\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
1
\end{array}\right)^{t} \right\rvert\, x_{i} \in \mathbf{I}\right\},
\end{aligned}
$$

the set of lines \mathbf{L} consists of the following four classes (which we call as lines of types $1,2,3$ and 4 , respectively):

$$
\begin{aligned}
& \left\{l_{1}=\left[\begin{array}{cccc}
1 & -m_{2} & -m_{3} & -m_{4} \\
-\gamma_{2}^{-1} \gamma_{1} \overline{m_{2}} & \gamma_{2}^{-1} \gamma_{1} n\left(m_{2}\right) & \gamma_{2}^{-1} \gamma_{1} \overline{m_{2}} m_{3} & \gamma_{2}^{-1} \gamma_{1} \overline{m_{2}} m_{4} \\
-\gamma_{3}^{-1} \gamma_{1} \overline{m_{3}} & \gamma_{3}^{-1} \gamma_{1} \overline{m_{3}} m_{2} & \gamma_{3}^{-1} \gamma_{1} n\left(m_{3}\right) & \gamma_{3}^{-1} \gamma_{1} \overline{m_{3}} m_{4} \\
-\gamma_{4}^{-1} \gamma_{1} \overline{m_{4}} & \gamma_{4}^{-1} \gamma_{1} \overline{m_{4}} m_{2} & \gamma_{4}^{-1} \gamma_{1} \overline{m_{4}} m_{3} & \gamma_{4}^{-1} \gamma_{1} n\left(m_{4}\right)
\end{array}\right]=: \left.\left[\begin{array}{c}
1 \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right]^{t} \right\rvert\, m_{i} \in \mathbf{I}\right\} \cup \\
& \left\{l_{2}=\left[\begin{array}{cccc}
\gamma_{1}^{-1} \gamma_{2} n\left(m_{1}\right) & -\gamma_{1}^{-1} \gamma_{2} \overline{m_{1}} & \gamma_{1}^{-1} \gamma_{2} \overline{m_{1}} m_{3} & \gamma_{1}^{-1} \gamma_{2} \overline{m_{1}} m_{4} \\
-m_{1} & -m_{3} & -m_{4} \\
\gamma_{3}^{-1} \gamma_{2} \overline{m_{3}} m_{1} & -\gamma_{3}^{-1} \gamma_{2} \overline{m_{3}} & \gamma_{3}^{-1} \gamma_{2} n\left(m_{3}\right) & \gamma_{3}^{-1} \gamma_{2} \overline{m_{3}} m_{4} \\
\gamma_{4}^{-1} \gamma_{2} \overline{m_{4}} m_{1} & -\gamma_{4}^{-1} \gamma_{2} \overline{m_{4}} & \gamma_{4}^{-1} \gamma_{2} \overline{m_{4}} m_{3} & \gamma_{4}^{-1} \gamma_{2} n\left(m_{4}\right)
\end{array}\right]=: \left.\left[\begin{array}{c}
m_{1} \\
1 \\
m_{3} \\
m_{4}
\end{array}\right]^{t} \right\rvert\, m_{1} \in \mathcal{A}, m_{3}, m_{4} \in \mathbf{I}\right\} \cup \\
& \left\{l_{3}=\left[\begin{array}{cccc}
\gamma_{1}^{-1} \gamma_{3} n\left(m_{1}\right) & \gamma_{1}^{-1} \gamma_{3} \overline{m_{1}} m_{2} & -\gamma_{1}^{-1} \gamma_{3} \overline{m_{1}} & \gamma_{1}^{-1} \gamma_{3} \overline{m_{1}} m_{4} \\
\gamma_{2}^{-1} \gamma_{3} \overline{m_{2}} m_{1} & \gamma_{2}^{-1} \gamma_{3} n\left(m_{2}\right) & -\gamma_{2}^{-1} \gamma_{3} \overline{m_{2}} & \gamma_{2}^{-1} \gamma_{3} \overline{m_{2}} m_{4} \\
{ }_{-}^{-m_{1}} & m_{4}^{-1} \gamma_{3} \overline{m_{4}} m_{1} & \gamma_{4}^{-1} \gamma_{3} \overline{m_{4}} m_{2} & -\gamma_{4}^{-1} \gamma_{3} \overline{m_{4}} \\
\gamma_{4}^{-1} \gamma_{3} n\left(m_{4}\right)
\end{array}\right]=: \left.\left[\begin{array}{c}
m_{1} \\
m_{2} \\
1 \\
m_{4}
\end{array}\right]^{t} \right\rvert\, m_{1}, m_{2} \in \mathcal{A}, m_{4} \in \mathbf{I}\right\} \cup \\
& \left\{l_{4}=\left[\begin{array}{cccc}
\gamma_{1}^{-1} \gamma_{4} n\left(m_{1}\right) & \gamma_{1}^{-1} \gamma_{4} \overline{m_{1}} m_{2} & \gamma_{1}^{-1} \gamma_{4} \overline{m_{1}} m_{3} & -\gamma_{1}^{-1} \gamma_{4} \overline{m_{1}} \\
\gamma_{2}^{-1} \gamma_{4} \overline{m_{2}} m_{1} & \gamma_{2}^{-1} \gamma_{4} n\left(m_{2}\right) & \gamma_{2}^{-1} \gamma_{4} \overline{m_{2}} m_{3} & -\gamma_{2}^{-1} \gamma_{4} \overline{m_{2}} \\
\gamma_{3}^{-1} \gamma_{4} \overline{m_{3}} m_{1} & \gamma_{3}^{-1} \gamma_{4} \overline{m_{3}} m_{2} & \gamma_{3}^{-1} \gamma_{4} n\left(m_{3}\right) & -\gamma_{3}^{-1} \gamma_{4} \overline{m_{3}} \\
-m_{1} & -m_{2} & -m_{3} & 1
\end{array}\right]=: \left.\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
1
\end{array}\right]^{t} \right\rvert\, m_{i} \in \mathcal{A}\right\} .
\end{aligned}
$$

The incidence relation "| ", equivalent to $X \cdot Y=0$, is obtained as follows:

$$
\begin{aligned}
{\left[1, k_{2}, k_{3}, k_{4}\right]=} & \left\{\left(k_{2}+k_{3} y_{3}+k_{4} y_{4}, 1, y_{3}, y_{4}\right) \mid y_{3}, y_{4} \in \mathcal{A}\right\} \cup \\
& \left\{\left(k_{2} z_{2}+k_{3}+k_{4} z_{4}, z_{2}, 1, z_{4}\right) \mid z_{2} \in \mathbf{I}, z_{4} \in \mathcal{A}\right\} \cup \\
& \left\{\left(k_{2} t_{2}+k_{3} t_{3}+k_{4}, t_{2}, t_{3}, 1\right) \mid t_{2}, t_{3} \in \mathbf{I}\right\}, \\
{\left[l_{1}, 1, l_{3}, l_{4}\right]=} & \left\{\left(1, l_{1}+l_{3} x_{3}+l_{4} x_{4}, x_{3}, x_{4}\right) \mid x_{3}, x_{4} \in \mathcal{A}\right\} \cup \\
& \left\{\left(z_{1}, l_{1} z_{1}+l_{3}+l_{4} z_{4}, 1, z_{4}\right) \mid z_{1} \in \mathbf{I}, z_{4} \in \mathcal{A}\right\} \cup \\
& \left\{\left(t_{1}, l_{1} t_{1}+l_{3} t_{3}+l_{4}, t_{3}, 1\right) \mid t_{1}, t_{3} \in \mathbf{I}\right\},
\end{aligned}
$$

$$
\begin{aligned}
{\left[m_{1}, m_{2}, 1, m_{4}\right]=} & \left\{\left(1, x_{2}, m_{1}+m_{2} x_{2}+m_{4} x_{4}, x_{4}\right) \mid x_{2}, x_{4} \in \mathcal{A}\right\} \cup \\
& \left\{\left(y_{1}, 1, m_{1} y_{1}+m_{2}+m_{4} y_{4}, y_{4}\right) \mid y_{1} \in \mathbf{I}, y_{4} \in \mathcal{A}\right\} \cup \\
& \left\{\left(t_{1}, t_{2}, m_{1} t_{1}+m_{2} t_{2}+m_{4}, 1\right) \mid t_{1}, t_{2} \in \mathbf{I}\right\} \\
{\left[n_{1}, n_{2}, n_{3}, 1\right]=} & \left\{\left(1, x_{2}, x_{3}, n_{1}+n_{2} x_{2}+n_{3} x_{3},\right) \mid x_{2}, x_{3} \in \mathcal{A}\right\} \cup \\
& \left\{\left(y_{1}, 1, y_{3}, n_{1} y_{1}+n_{2}+n_{3} y_{3},\right) \mid y_{1} \in \mathbf{I}, y_{3} \in \mathcal{A}\right\} \cup \\
& \left\{\left(z_{1}, z_{2}, 1, n_{1} z_{1}+n_{2} z_{2}+n_{3}\right) \mid z_{1}, z_{2} \in \mathbf{I}\right\} .
\end{aligned}
$$

Finally; the connection relation " \simeq ", equivalent to $X \times Y \in I \mathbf{J}$, is obtained as follows:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & \simeq\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \Leftrightarrow x_{i}-y_{i} \in \mathbf{I} \text { for } i=1,2,3,4 \\
{\left[k_{1}, k_{2}, k_{3}, k_{4}\right] } & \simeq\left[n_{1}, n_{2}, n_{3}, n_{4}\right] \Leftrightarrow k_{i}-n_{i} \in \mathbf{I} \text { for } i=1,2,3,4
\end{aligned}
$$

Besides, from types of points on lines, it is clear that a point and a line of same type is not connected (near). Moreover, the result is equivalent to $T(X, Y) \notin I=\{0\}$ for a point (or line) X and a line (or point) Y, respectively. In the other cases, we say that they are connected (near).

Now, we are ready to construct the n-space.

2. n-Spaces

Let \mathbf{R} be a local ring with the maximal ideal \mathbf{I} (of non-unit elements). Then $\mathbb{S}_{n}(\mathbf{R})=(\mathbf{P}, \mathbf{L}, \in, \sim)$ is the incidence structure with neighbour relation defined as follows.

The set of points \mathbf{P} consists of the following $n+1$ points (which we call as points of types $1,2,3, \ldots, n+1$; respectively):
$\mathbf{P}=\left\{P_{i}=\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n+1}\right) \mid x_{1}, \ldots, x_{i-1} \in \mathbf{I}\right.$ and $\left.x_{i+1}, \ldots, x_{n+1} \in \mathbf{R}\right\}$.
The set of lines \mathbf{L} consists of the following $n+1$ lines (which we call as lines of types $1,2,3, \ldots, n+1$; respectively):
$\mathbf{L}=\left\{M_{i}=\left[m_{1}, \ldots, m_{i-1}, 1, m_{i+1}, \ldots, m_{n+1}\right] \mid m_{1}, \ldots, m_{i-1} \in \mathbf{R}\right.$ and $\left.m_{i+1}, \ldots, m_{n} \in \mathbf{I}\right\}$.
The incidence relation " \in " is defined as follows:

$$
\begin{aligned}
M_{1}= & {\left[1, m_{2}, m_{3}, m_{4}, m_{5}, \ldots, m_{n-1}, m_{n}, m_{n+1}\right] } \\
= & \left\{\left(m_{2}+m_{3} y_{3}+\cdots+m_{n+1} y_{n+1}, 1, y_{3}, \ldots, y_{n+1}\right) \mid y_{3}, \ldots, y_{n+1} \in \mathbf{R}\right\} \cup \\
& \left\{\begin{array}{c}
\left(m_{2} z_{2}+m_{3}+m_{4} z_{4}+\cdots+m_{n+1} z_{n+1}, z_{2}, 1, z_{4}, \ldots, z_{n+1}\right) \mid \\
z_{2} \in \mathbf{I}, z_{4}, \ldots, z_{n+1} \in \mathbf{R}
\end{array}\right\} \cup \\
& \left\{\begin{array}{c}
\left(m_{2} t_{2}+m_{3} t_{3}+m_{4}+m_{5} t_{5}+\cdots+m_{n+1} t_{n+1}, t_{2}, t_{3}, 1, t_{5}, \ldots, t_{n+1}\right) \mid \\
t_{2}, t_{3} \in \mathbf{I}, t_{5}, \ldots, t_{n+1} \in \mathbf{R}
\end{array}\right\} \cup \\
& \vdots \\
& \left\{\begin{array}{c}
\left(m_{2} k_{2}+\cdots+m_{n-1} k_{n-1}+m_{n}+m_{n+1} k_{n+1}, k_{2}, k_{3}, \ldots, k_{n-1}, 1, k_{n+1}\right) \mid \\
k_{2}, \ldots, k_{n-1} \in \mathbf{I}, k_{n+1} \in \mathbf{R}
\end{array}\right\} \cup \\
& \left\{\left(m_{2} l_{2}+m_{3} l_{3}+\cdots+m_{n} l_{n}+m_{n+1}, l_{2}, l_{3}, l_{4}, \ldots, l_{n}, 1\right) \mid l_{2}, \ldots, l_{n} \in \mathbf{I}\right\},
\end{aligned}
$$

$$
\begin{aligned}
M_{2}= & {\left[m_{1}, 1, m_{3}, m_{4}, m_{5}, \ldots m_{n-1}, m_{n}, m_{n+1}\right] } \\
= & \left\{\left(1, m_{1}+m_{3} y_{3}+\cdots+m_{n+1} y_{n+1}, y_{3}, \ldots, y_{n+1}\right) \mid y_{3}, \ldots, y_{n+1} \in \mathbf{R}\right\} \cup \\
& \left\{\begin{array}{c}
\left(z_{1}, m_{1} z_{1}+m_{3}+m_{4} z_{4}+\cdots+m_{n+1} z_{n+1}, 1, z_{4}, \ldots, z_{n+1}\right) \mid \\
z_{1} \in \mathbf{I}, z_{4}, \ldots, z_{n+1} \in \mathbf{R}
\end{array}\right\} \cup \\
& \left\{\begin{array}{c}
\left(t_{1}, m_{1} t_{1}+m_{3} t_{3}+m_{4}+m_{5} t_{5}+\cdots+m_{n+1} t_{n+1}, t_{3}, 1, t_{5}, \ldots, t_{n+1}\right) \mid \\
t_{1}, t_{3} \in \mathbf{I}, t_{5}, \ldots, t_{n+1} \in \mathbf{R}
\end{array}\right\} \cup \\
& \vdots \\
& \left\{\begin{array}{r}
\left(k_{1}, m_{1} k_{1}+m_{3} k_{3}+\cdots+m_{n-1} k_{n-1}+m_{n}+m_{n+1} k_{n+1}, k_{3}, \ldots, k_{n-1}, 1, k_{n+1}\right) \mid \\
k_{1}, k_{3}, \ldots, k_{n-1} \in \mathbf{I}, k_{n+1} \in \mathbf{R}
\end{array}\right\} \cup \\
& \left\{\left(l_{1}, m_{1} l_{1}+m_{3} l_{3}+\cdots+m_{n} l_{n}+m_{n+1}, l_{3}, l_{4}, \ldots, l_{n}, 1\right) \mid l_{1}, l_{3}, \ldots, l_{n} \in \mathbf{I}\right\},
\end{aligned}
$$

$$
M_{n+1}=\left[m_{1}, m_{2}, m_{3}, m_{4}, \ldots m_{n-1}, m_{n}, 1\right]
$$

$$
=\left\{\left(1, y_{2}, y_{3}, \ldots, y_{n}, m_{1}+m_{2} y_{2}+\cdots+m_{n} y_{n}\right) \mid y_{2}, \ldots, y_{n} \in \mathbf{R}\right\} \cup
$$

$$
\left\{\begin{array}{c}
\left(z_{1}, 1, z_{3}, z_{4}, \ldots, z_{n}, m_{1} z_{1}+m_{2}+m_{3} z_{3}+\cdots+m_{n} z_{n}\right) \mid \\
z_{1} \in \mathbf{I}, z_{3}, \ldots, z_{n} \in \mathbf{R}
\end{array}\right\} \cup
$$

$$
\left\{\begin{array}{c}
\left(t_{1}, t_{2}, 1, t_{4}, \ldots, t_{n}, m_{1} t_{1}+m_{2} t_{2}+m_{3}+m_{4} t_{4}+\cdots+m_{n} t_{n}\right) \mid \\
t_{1}, t_{2} \in \mathbf{I}, t_{4}, \ldots, t_{n} \in \mathbf{R}
\end{array}\right\} \cup
$$

$$
\vdots
$$

$$
\left\{\begin{array}{c}
\left(k_{1}, k_{2}, \ldots, k_{n-2}, 1, k_{n}, m_{1} k_{1}+\cdots+m_{n-2} k_{n-2}+m_{n-1}+m_{n} k_{n}\right) \mid \\
k_{1}, k_{2}, \ldots, k_{n-2} \in \mathbf{I}, k_{n} \in \mathbf{R}
\end{array}\right\} \cup
$$

$$
\left\{\left(l_{1}, l_{2}, \ldots, l_{n-1}, 1, m_{1} l_{1}+m_{2} l_{2}+\cdots+m_{n-1} l_{n-1}+m_{n}\right) \mid l_{1}, l_{2}, \ldots, l_{n-1} \in \mathbf{I}\right\}
$$

The connection relation " \sim " is defined as follows:

$$
\begin{aligned}
P & =\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n+1}\right) \sim\left(y_{1}, \ldots, y_{i-1}, y_{i}, y_{i+1}, \ldots, y_{n+1}\right)=Q \\
& \Longleftrightarrow x_{i}-y_{i} \in \mathbf{I}(1 \leq i \leq n+1), \forall P, Q \in \mathbf{P} ; \\
g & =\left[m_{1}, \ldots, m_{i-1}, m_{i}, m_{i+1}, \ldots, m_{n+1}\right] \sim\left[p_{1}, \ldots, p_{i-1}, p_{i}, p_{i+1}, \ldots, p_{n+1}\right]=h \\
& \Longleftrightarrow m_{i}-p_{i} \in \mathbf{I}(1 \leq i \leq n+1), \forall g, h \in \mathbf{L} .
\end{aligned}
$$

If we more closely examine the case $n=2$, then $\mathbb{S}_{2}(\mathbf{R})=(\mathbf{P}, \mathbf{L}, \in, \sim)$ is obtained as follows:

The set of points \mathbf{P} consists of the following three points (which we call as points of types $1,2,3$; respectively):

$$
\begin{aligned}
\mathbf{P}= & \left\{P_{1}=\left(1, x_{2}, x_{3}\right) \mid x_{2}, x_{3} \in \mathbf{R}\right\} \cup \\
& \left\{P_{2}=\left(x_{1}, 1, x_{3}\right) \mid x_{1} \in \mathbf{I}, x_{3} \in \mathbf{R}\right\} \cup \\
& \left\{P_{3}=\left(x_{1}, x_{2}, 1\right) \mid x_{1}, x_{2} \in \mathbf{I}\right\} .
\end{aligned}
$$

The set of lines \mathbf{L} consists of the following three lines (which we call as lines of types $1,2,3$; respectively):

$$
\begin{aligned}
\mathbf{L}= & \left\{M_{1}=\left[1, m_{2}, m_{3}\right] \mid m_{2}, m_{3} \in \mathbf{I}\right\} \cup \\
& \left\{M_{2}=\left[m_{1}, 1, m_{3},\right] \mid m_{1} \in \mathbf{R}, m_{3} \in \mathbf{I}\right\} \\
& \left\{M_{3}=\left[m_{1}, m_{2}, 1\right] \mid m_{1}, m_{2} \in \mathbf{R}\right\}
\end{aligned}
$$

The incidence relation " \in " is as follows:
$M_{1}=\left[1, m_{2}, m_{3}\right]=\left\{\left(m_{2}+m_{3} y_{3}, 1, y_{3}\right) \mid y_{3} \in \mathbf{R}\right\} \cup\left\{\left(m_{2} z_{2}+m_{3}, z_{2}, 1\right) \mid z_{2} \in \mathbf{I}\right\}$,
$M_{2}=\left[m_{1}, 1, m_{3}\right]=\left\{\left(1, m_{1}+m_{3} y_{3}, y_{3}\right) \mid y_{3} \in \mathbf{R}\right\} \cup\left\{\left(z_{1}, m_{1} z_{1}+m_{3}, 1\right) \mid z_{1} \in \mathbf{I}\right\}$,
$M_{3}=\left[m_{1}, m_{2}, 1\right]=\left\{\left(1, y_{2}, m_{1}+m_{2} y_{2}\right) \mid y_{2} \in \mathbf{R}\right\} \cup\left\{\left(z_{1}, 1, m_{1} z_{1}+m_{2}\right) \mid z_{1} \in \mathbf{I}\right\}$.
The connection relation " \sim " is as follows:
$P=\left(x_{1}, x_{2}, x_{3}\right) \sim\left(y_{1}, y_{2}, y_{3}\right)=Q \Longleftrightarrow x_{i}-y_{i} \in \mathbf{I}(i=1,2,3), \forall P, Q \in \mathbf{P} ;$
$\left.g=\left[m_{1}, m_{2}, m_{3}\right] \sim\left[p_{1}, p_{2}, p_{3}\right]=h \Leftrightarrow m_{i}-p_{i} \in \mathbf{I}(i=1,2,3)\right), \forall g, h \in \mathbf{L}$.
So, we have obtained a PK-plane (2-space), isomorphic to the PK-plane given in [2], in the case $n=2$.

If we take $\mathbf{R}:=\mathbb{O}+\mathbb{O} \varepsilon$ where \mathbb{O} is the Cayley division algebra over a field F and $\varepsilon \notin \mathbb{O}$, then $\mathbb{S}_{2}(\mathbf{R})$ is an octonion plane and also the MK-plane, introduced by Blunck in [4]. Moreover, for $n>2, \mathbb{S}_{n}(\mathbf{R})$ is the example of n-space (or octonion n-space). Note that the (quaternion) n-space $\mathbb{S}_{n}(\mathbb{Q}+\mathbb{Q} \varepsilon)$ is a subspace of the (octonion) n-space $\mathbb{S}_{n}(\mathbb{O}+\mathbb{O} \varepsilon)$. Besides, it is well-known that there is no a projective space constructed over non-associative division rings, and therefore a epimorphism onto an ordinary projective n-space can not exist. This means that the space $\mathbb{S}_{n}(\mathbb{O}+\mathbb{O} \varepsilon)$ for $n>2$ is not a PK structure. For this reason, we tend to construct some collineations of the space $\mathbb{S}_{n}(\mathbb{Q}+\mathbb{Q} \varepsilon)$.

Finally, we would like to complete this paper by giving two collineations of the quaternion n-space $\mathbb{S}_{n}(\mathbb{Q}+\mathbb{Q} \varepsilon)$.

$$
\begin{aligned}
& \mathrm{T}_{a_{2}, 0, \ldots, 0,0}: \\
& \text { for } a_{2} \in \mathbb{Q} \\
&\left(1, x_{2}, x_{3}, \ldots, x_{n}, x_{n+1}\right) \rightarrow\left(1, x_{2}+a_{2}, x_{3}+0, \ldots, x_{n}+0, x_{n+1}+0\right), \\
&\left(x_{1}, 1, x_{3}, \ldots, x_{n+1}\right) \rightarrow\left(x_{1}, 1, x_{3}-\left(x_{3} a_{2}\right) x_{1}, \ldots, x_{n+1}-\left(x_{n+1} a_{2}\right) x_{1}\right), \\
&\left(x_{1}, x_{2}, 1, x_{4}, \ldots, x_{n}, x_{n+1}\right) \rightarrow\left(x_{1}, x_{2}+a_{2} x_{1}, 1, x_{4}, \ldots, x_{n}, x_{n+1}\right), \\
& \vdots \\
&\left(x_{1}, x_{2}, x_{3}, \ldots x_{n-1}, 1, x_{n+1}\right) \rightarrow\left(x_{1}, x_{2}+a_{2} x_{1}, x_{3}, \ldots, x_{n-1}, 1, x_{n+1}\right),
\end{aligned}
$$

$$
\begin{aligned}
&\left(x_{1}, x_{2},, \ldots x_{n-1}, x_{n}, 1\right) \rightarrow\left(x_{1}, x_{2}+a_{2} x_{1}, x_{3}, \ldots, x_{n-1}, x_{n}, 1\right), \\
& {\left[m_{1}, m_{2}, \ldots, m_{n}, 1\right] } \rightarrow\left[m_{1}-m_{2} a_{2}, m_{2}, \ldots, m_{n}, 1\right] \\
& {\left[m_{1}, m_{2}, \ldots, 1, m_{n+1}\right] } \rightarrow\left[m_{1}-m_{2} a_{2}, m_{2}, \ldots, 1, m_{n+1}\right] \\
& \vdots \\
& {\left[m_{1}, m_{2}, 1, m_{4}, \ldots, m_{n}, m_{n+1}\right] } \rightarrow \\
& {\left[m_{1}-m_{2} a_{2}, m_{2}, 1, m_{4}, \ldots, m_{n}, m_{n+1}\right] } \\
& {\left[m_{1}, 1, m_{3}, \ldots, m_{n}, m_{n+1}\right] } \rightarrow\left[m_{1}+a_{2}, 1, m_{3}, \ldots, m_{n}, m_{n+1}\right] \\
& {\left[1, m_{2}, m_{3}, \ldots, m_{n}, m_{n+1}\right] } \rightarrow\left[1, m_{2}, m_{3}, \ldots, m_{n}, m_{n+1}\right]
\end{aligned}
$$

Similarly, the transformation $\mathrm{T}_{0, a_{3}, 0, \ldots, 0}$ can be defined in the following way: for any $a_{3} \in \mathbb{Q}$,

```
    (1,\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\ldots,\mp@subsup{x}{n+1}{})->(1,\mp@subsup{x}{2}{}+0,\mp@subsup{x}{3}{}+\mp@subsup{a}{3}{},\mp@subsup{x}{4}{}+0,\ldots,\mp@subsup{x}{n+1}{}+0)
    (x, 1, \mp@subsup{x}{3}{},\mp@subsup{x}{4}{},\ldots,\mp@subsup{x}{n+1}{})\quad->\quad(\mp@subsup{x}{1}{},1,\mp@subsup{x}{3}{}+\mp@subsup{a}{3}{}\mp@subsup{x}{1}{},\mp@subsup{x}{4}{},\ldots,\mp@subsup{x}{n+1}{}),
    (x, \mp@subsup{x}{2}{},1,\mp@subsup{x}{4}{},\ldots,\mp@subsup{x}{n+1}{})->(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}-(\mp@subsup{x}{2}{}\mp@subsup{a}{3}{})\mp@subsup{x}{1}{},1,\mp@subsup{x}{4}{}-(\mp@subsup{x}{4}{}\mp@subsup{a}{3}{})\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n+1}{}-(\mp@subsup{x}{n+1}{}\mp@subsup{a}{3}{})\mp@subsup{x}{1}{}),
        !
(x, \mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\ldots\mp@subsup{x}{n-1}{},1,\mp@subsup{x}{n+1}{})\quad->\quad(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}+\mp@subsup{a}{3}{}\mp@subsup{x}{1}{},\mp@subsup{x}{4}{},\ldots,\mp@subsup{x}{n-1}{},1,\mp@subsup{x}{n+1}{}),
    (x1,\mp@subsup{x}{2}{},,\ldots,\mp@subsup{x}{n-1}{},\mp@subsup{x}{n}{},1) -> (x , , x2, \mp@subsup{x}{3}{}+\mp@subsup{a}{3}{}\mp@subsup{x}{1}{},\mp@subsup{x}{4}{},\ldots,\mp@subsup{x}{n-1}{},\mp@subsup{x}{n}{},1),
        [m, m},\mp@subsup{m}{2}{},\ldots,\mp@subsup{m}{n}{},1]\quad->\quad[\mp@subsup{m}{1}{}-\mp@subsup{m}{3}{}\mp@subsup{a}{3}{},\mp@subsup{m}{2}{},\ldots,\mp@subsup{m}{n}{},1]
        [m}\mp@subsup{m}{1}{},\mp@subsup{m}{2}{},\ldots,\mp@subsup{m}{n-1}{},1,\mp@subsup{m}{n+1}{}]\quad->\quad[\mp@subsup{m}{1}{}-\mp@subsup{m}{3}{}\mp@subsup{a}{3}{},\mp@subsup{m}{2}{},\ldots,\mp@subsup{m}{n-1}{},1,\mp@subsup{m}{n+1}{}]
        [m, 䄪, 1, m}\mp@subsup{m}{4}{},\ldots,\mp@subsup{m}{n}{},\mp@subsup{m}{n+1}{}]\quad->\quad[\mp@subsup{m}{1}{}+\mp@subsup{a}{3}{},\mp@subsup{m}{2}{},1,\mp@subsup{m}{4}{},\ldots,\mp@subsup{m}{n}{},\mp@subsup{m}{n+1}{}]
        [m, 1,1, m3,\ldots,\mp@subsup{m}{n}{},\mp@subsup{m}{n+1}{}] -> [m, 利 - m}\mp@subsup{\mp@code{3}}{3}{}\mp@subsup{a}{3}{},1,\mp@subsup{m}{3}{},\ldots,\mp@subsup{m}{n}{},\mp@subsup{m}{n+1}{}]
        [1, m},\mp@code{m},\ldots,\mp@subsup{m}{n}{},\mp@subsup{m}{n+1}{}]\quad->\quad[1,\mp@subsup{m}{2}{},\mp@subsup{m}{3}{},\ldots,\mp@subsup{m}{n}{},\mp@subsup{m}{n+1}{}]
```

And, continuing on like this, finally, the transformation $\mathrm{T}_{0,0, \ldots, 0, a_{n+1}}$ can be defined in the following manner: for any $a_{n+1} \in \mathbb{Q}$,

$$
\begin{aligned}
&\left(1, x_{2}, x_{3}, \ldots, x_{n}, x_{n+1}\right) \rightarrow\left(1, x_{2}+0, x_{3}+0, \ldots, x_{n}+0, x_{n+1}+a_{n+1}\right) \\
&\left(x_{1}, 1, x_{3}, \ldots, x_{n}, x_{n+1}\right) \rightarrow\left(x_{1}, 1, x_{3}, \ldots, x_{n}, x_{n+1}+a_{n+1} x_{1}\right) \\
&\left(x_{1}, x_{2}, 1, x_{4}, \ldots, x_{n}, x_{n+1}\right) \rightarrow\left(x_{1}, x_{2}, 1, x_{4}, \ldots, x_{n}, x_{n+1}+a_{n+1} x_{1}\right), \\
& \vdots \\
&\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, 1, x_{n+1}\right) \rightarrow\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, 1, x_{n+1}+a_{n+1} x_{1}\right), \\
&\left(x_{1}, x_{2},, \ldots, x_{n}, 1\right) \rightarrow\left(x_{1}, x_{2}-\left(x_{2} a_{n+1}\right) x_{1}, \ldots, x_{n}-\left(x_{n} a_{n+1}\right) x_{1}, 1\right), \\
& \\
& {\left[m_{1}, m_{2}, \ldots, m_{n}, 1\right] } \rightarrow\left[m_{1}+a_{n+1}, m_{2}, \ldots, m_{n}, 1\right],
\end{aligned}
$$

$$
\begin{aligned}
{\left[m_{1}, m_{2}, \ldots, 1, m_{n+1}\right] \rightarrow } & {\left[m_{1}-m_{n+1} a_{n+1}, m_{2}, \ldots, 1, m_{n+1}\right], } \\
& \vdots \\
{\left[m_{1}, m_{2}, 1, m_{4}, \ldots, m_{n}, m_{n+1}\right] \rightarrow } & {\left[m_{1}-m_{n+1} a_{n+1}, m_{2}, 1, m_{4}, \ldots, m_{n}, m_{n+1}\right], } \\
{\left[m_{1}, 1, m_{3}, \ldots, m_{n}, m_{n+1}\right] \rightarrow } & {\left[m_{1}-m_{n+1} a_{n+1}, 1, m_{3}, \ldots, m_{n}, m_{n+1}\right], } \\
{\left[1, m_{2}, m_{3}, \ldots, m_{n}, m_{n+1}\right] \rightarrow } & {\left[1, m_{2}, m_{3}, \ldots, m_{n}, m_{n+1}\right] . }
\end{aligned}
$$

So, in this case, we have the translation transformation $\mathrm{T}_{a_{2}, a_{3}, \ldots, a_{n-1}, a_{n}, a_{n+1}}$ of $\mathbb{S}_{n}(\mathbb{Q}+\mathbb{Q} \varepsilon)$. The other transformation F_{a} is defined as follows:

$$
\begin{aligned}
& \mathrm{F}_{a}: \text { for } a \notin \mathbb{Q} \varepsilon, \\
&\left(1, x_{2}, x_{3}, \ldots, x_{n}, x_{n+1}\right) \rightarrow\left(1, a x_{2} a, x_{3} a, \ldots, x_{n} a, x_{n+1} a\right) \\
&\left(x_{1}, 1, x_{3}, \ldots, x_{n}, x_{n+1}\right) \rightarrow\left(a^{-1} x_{1} a^{-1}, 1, x_{3} a^{-1}, \ldots, x_{n} a^{-1}, x_{n+1} a^{-1}\right) \\
&\left(x_{1}, x_{2}, 1, x_{4}, \ldots, x_{n}, x_{n+1}\right) \rightarrow\left(a^{-1} x_{1}, a x_{2}, 1, x_{4}, \ldots, x_{n}, x_{n+1}\right) \\
& \vdots \\
&\left(x_{1}, x_{2}, x_{3}, \ldots x_{n-1}, 1, x_{n+1}\right) \rightarrow\left(a^{-1} x_{1}, a x_{2}, x_{3}, \ldots x_{n-1}, 1, x_{n+1}\right) \\
&\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, 1\right) \rightarrow\left(a^{-1} x_{1}, a x_{2}, x_{3}, \ldots, x_{n}, 1\right) \\
& {\left[m_{1}, m_{2}, m_{3}, \ldots, m_{n-1}, 1, m_{n+1}\right] \rightarrow } {\left[m_{1} a, m_{2} a^{-1}, m_{3}, \ldots, m_{n-1}, 1, m_{n+1}\right] } \\
& {[} \vdots \\
& {\left[m_{1}, m_{2}, 1, m_{4}, \ldots, m_{n}, m_{n+1}\right] \rightarrow } {\left[m_{1} a, m_{2} a^{-1}, 1, m_{4}, \ldots, m_{n}, m_{n+1}\right] } \\
& {\left[m_{1}, 1, m_{3}, \ldots, m_{n}, m_{n+1}\right] } \rightarrow\left[a m_{1} a, 1, a m_{3}, \ldots, a m_{n}, a m_{n+1}\right] \\
& {\left[1, m_{2}, m_{3}, \ldots, m_{n}, m_{n+1}\right] } \rightarrow \\
& {\left[1, a^{-1} m_{2} a^{-1}, a^{-1} m_{3}, \ldots, a^{-1} m_{n}, a^{-1} m_{n+1}\right] }
\end{aligned}
$$

To show that the transformations $\mathrm{T}_{a_{2}, 0, \ldots 0,0,0}, \mathrm{~T}_{0, a_{3}, \ldots 0,0,0}, \mathrm{~T}_{0,0, \ldots, 0, a_{n+1}}$ (and as a result, $\mathrm{T}_{a_{2}, a_{3}, \ldots, a_{n-1}, a_{n}, a_{n+1}}$ which is the combination of the all above transformations) and F_{a} are collineations of $\mathbb{S}_{n}(\mathbb{Q}+\mathbb{Q} \varepsilon)$, it is basically enough to prove Lemma 3 given in [5]. And also, we will often need the two results that $\mathbb{Q}+\mathbb{Q} \varepsilon$ is associative and that multiplication of any elements in the ideal $\mathbf{I}=\mathbb{Q} \varepsilon$ is equal to zero. Hence, we obtain that it is possible to study in the spaces by means of the collineations, analogous of the collineations given for showing 4-transitivity on the class of MK-plane in 5].

References

[1] Akpinar, A. and Erdogan, F.O., Dual Quaternionic (n-1)-Spaces Defined by Special Jordan Algebras of Dimension $4 n^{2}-2 \mathrm{n}$, JP Journal of Geometry and Topology, 21(4) (2018), 327-364.
[2] Baker, C.A., Lane N.D. and Lorimer, J.W., A coordinatization for Moufang-Klingenberg Planes, Simon Stevin, 65 (1991), 3-22.
[3] Bix, R., Octonion Planes over Local Rings, Trans. Amer. Math. Soc., 261(2) (1980), 417-438.
[4] Blunck, A., Cross-ratios in Moufang-Klingenberg Planes, Geom. Dedicata, 43 (1992), 93-107.
[5] Celik, B., Akpinar, A. and Ciftci, S., 4-Transitivity and 6-figures in some MoufangKlingenberg planes, Monatshefte für Mathematik, 152(4) (2007), 283-294.
[6] Faulkner, J.R., Octonion Planes Defined by Quadratic Jordan Algebras, Mem. Amer. Math. Soc., 104 (1970), 1-71.
[7] Faulkner, J.R., The Role of Nonassociative Algebra in Projective Geometry, Graduate Studies in Mathematics, Vol. 159, Amer. Math. Soc., Providence, R.I., 2014.
[8] Freudenthal, H., Octaven, Ausnahmegruppen, und Octavengeometrie. Mathematisch Instituut der Rijksuniversiteit te Utrecht, Utrecht, 49, 1951.
[9] Jacobson, N., Structure and Representations of Jordan Algebras, Colloq. Publ. 39, Amer. Math. Soc., Providence, R.I., 1968.
[10] Jordan, P., Über Eine Nicht-Desarguessche Ebene Projektive Geometrie. Abh. Math. Sem. Univ. Hamburg, 16 (1949), 74-76, .
[11] McCrimmon, K., The Freudenthal-Springer-Tits Constructions of Exceptional Jordan Algebras, Trans. of the Amer. Math. Soc., 139 (1969), 495-510, .
[12] Springer, T.A., The Projective Octave Plane. Nederl. Akad. Wetensch. Proc. Ser. A, 63, Indag. Math., 22 (1960), 74-101.
Current address: Atilla AKPINAR: University of Uludag, Faculty of Science and Arts, Department of Mathematics, Gorukle, Bursa, Turkey

E-mail address: aakpinar@uludag.edu.tr
ORCID Address: http://orcid.org/0000-0002-7612-2448

