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N-SPACES

ATILLA AKPINAR

Abstract. In this paper, we introduce n-spaces constructed over an local ring
with the maximal ideal (of non-unit elements). So, we give the example of an
octonion n-space. Finally, we give two collineations of quaternion n-space.

1. Introduction and Preliminaries

In the early 1930s, P. Jordan, who is a physicist, has began to study with Jordan
algebras. The algebra H (O3) is firstly used by Jordan, to define an octonion
plane (over real octonion division algebra) [10]. Freudenthal, in [8], gave the same
construction in [10]. Later, Springer, in [12], extended the construction given by
Jordan and Freudenthal to the octonion (or Cayley) division algebras defined over
a field whose characteristic is different from 2 and 3.
In [3], Bix deals with J = H (O3,Jγ), the set of 3 by 3 matrices with entries

in an octonion algebra O defined over a local ring R with the maximal ideal I (of
non-unit elements), that are symmetric with respect to the canonical involution
Jγ : X → γ−1X

t
γ where the γi are elements of R \ I and γ :=diag{γ1, γ2, γ3}.

Hence, any element X of J is of the form

X =

 α1 γ2a3 γ3a2
γ1a3 α2 γ3a1
γ1a2 γ2a1 α3

 for αi ∈ R and ai ∈ O.

If it is defined a cubic form N such that N(X) := detX, a quadratic mapping
X → X] :=adjoint of X, and a basepoint C := I3 on J are defined, then the triple
(J,N,C) is a quadratic (exceptional) Jordan algebra under the operator UXY =

T (X,Y )X − 2
(
X] × Y

)
[11]. Then, for X =

 α1 γ2a3 γ3a2
γ1a3 α2 γ3a1
γ1a2 γ2a1 α3

 and Y =
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432 ATILLA AKPINAR β1 γ2b3 γ3b2
γ1b3 β2 γ3b1
γ1b2 γ2b1 β3

 ∈ J, we can give the similar results to those given in [11,
3, 7]:

N(X) = α1α2α3−α1γ2γ3n (a1)−α2γ3γ1n (a2)−α3γ1γ2n (a3)+γ1γ2γ32t ((a1a2) a3) ,

X] = (Xij)3×3 for Xii = αjαk−γjγkn (ai) , xij = γiγkaiaj−γiαkak and Xji = Xij ,

X×Y = (zij)3×3 for

{
zii = 1

2

[
αjβk + βjαk − 2γjγkn (ai, bi)

]
,

zij = 1
2

(
γj

[
γk(aibj + biaj)− (αkbk + βkak)

])
, zji = zij

,

T (X,Y ) = α1β1+α2β2+α3β3+2γ2γ3n (a1, b1)+2γ3γ1n (a2, b2)+2γ1γ2n (a3, b3) ,

where (i, j, k) is a cyclic permutation of (1, 2, 3), n (defined by n(x) := xx) is the
norm (quadratic) form over O, t (defined by t(x) := 1

2 (x+ x)) is the trace (linear)
form over O and finally n (x, y) (defined by n (x, y) := 1

2 [n (x+ y)− n (x)− n (y)])
is symmetric bilinear norm w.r.t. n.
Let Π denote the set of elements of rank 1 in J. Then,

Π =
{
X
∣∣X ∈ J \ IJ and X ×X = X] = 0

}
.

Note that, if X ∈ Π and α is an element in R \ I, then αX ∈ Π. For X ∈ Π, let
X∗ and X∗ be two copies of the set {αX | α ∈ R \ I }.
Now, it is time to give the definition of an octonion plane P(J) from [3, 6].

Definition 1. The octonion plane P(J) = (P,L, | ,w) consists of the incidence
structure (P,L, | ) (points, lines, and incidence), and the connection relation is
defined as follows:
P = {X∗ |X ∈ Π}, L = {X∗ |X ∈ Π},
X∗ |Y ∗ , X∗ is on Y ∗, if VY,X = 0, that is, VY,X =: {1XY } = {X1Y } =

{XY 1} = X · Y = 0 where X · Y = 1
2 (XY + Y X) (Jordan multiplication).

X∗ w Y∗, X∗ is connected to Y∗ if X × Y ∈ IJ,
X∗ w Y ∗, X∗ is connected to Y ∗ if X × Y ∈ IJ,
X∗ w Y ∗, X∗ is connected (or near) to Y ∗ if T (X,Y ) ∈ I.

Now, we recall some informations on projective Klingenberg and Moufang-Klingenberg
planes from [2].

Definition 2. LetM = (P,L,∈′,∼′) consist of an incidence structure (P,L,∈′)(points,
lines, incidence) and an equivalence relation ‘∼′’(neighbour relation) on P and on
L. Then M is called a projective Klingenberg plane (PK-plane), if it satisfies the
following axioms:
(PK1) If P,Q are non-neighbour points, then there is a unique line PQ through

P and Q.
(PK2) If g, h are non-neighbour lines, then there is a unique point g ∧ h on

both g and h.
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(PK3) There is a projective plane M∗ = (P∗,L∗,∈′) and incidence structure
epimorphism Ψ : M→M∗, such that the conditions

Ψ(P ) = Ψ(Q)⇔ P ∼′ Q, Ψ(g) = Ψ(h) ⇐⇒ g ∼′ h

hold for all P,Q ∈ P, g, h ∈ L.

A point P ∈′ P is called near a line g ∈′ L iff there exists a line h such that
P ∈′ h for some line h ∼′ g.
An incidence structure automorphism preserving and reflecting the neighbour

relation is called a collineation of M.
A Moufang-Klingenberg plane (MK-plane) is a PK-plane M that generalizes a

Moufang plane, and for which M∗ is a Moufang plane (for the details see [2]).
In [9, Chapter III.2, Theorem 1], Jacobson showed that the fact that (Dn,Jγ)

is a Jordan algebra implies that D is associative if n ≥ 4 but alternative with its
symmetric elements in the nucleus if n = 3. Therefore, in [1], in the case of n ≥ 4
we were able to study the elements of the quaternion division algebra Q over a
field F , which is associative. For this reason, we could not continue studying by
elements of an octonion algebra. But, without the need for Jordan matrix algebras,
the obtained results in [1] show the existence of the following two possibilities:
either the definition of the octonion plane (octonion 2-space) may be extended to
an (octonion) n−space or a new geometric structure may be obtained. We need
to recall some results in the case n = 4 from [1] for better understanding of the
construction of the new structure which we call n-space.
ConsiderA := Q+Qε with componentwise addition and multiplication as follows:

(a1 + a2ε) (b1 + b2ε) = a1b1 + (a1b2 + a2b1) ε, (ai, bi ∈ Q, i = 1, 2)

Then A is a (not commutative) local ring with the maximal ideal I = Qε of non-
units.
J′ = H (A4,Jγ), the set of 4 by 4 matrices, with entries from A, that are

symmetric with respect to the canonical involution Jγ : X → γ−1X
t
γ where the

γi are non-zero elements of F and γ :=diag{γ1, γ2, γ3, γ4}. Hence, any element X
of J′ is of the form

X = [xij ] =


α1 γ2a12 γ3a13 γ4a14

γ1a12 α2 γ3a23 γ4a24
γ1a13 γ2a23 α3 γ4a34
γ1a14 γ2a24 γ3a34 α4

 for αi ∈ F and ai ∈ A.

If we take a quartic form N such that N(X) := detX, a cubic mapping X →
X] :=adjoint of X, and a basepoint C := I4 on J, then: it is clear that

T (X,Y ) = α1β1 + α2β2 + α3β3 + α4β4

+2γ1γ2n (a12, b12) + 2γ1γ3n (a13, b13) + 2γ1γ4n (a14, b14)

+2γ2γ3n (a23, b23) + 2γ2γ4n (a24, b24) + 2γ3γ4n (a34, b34) ,
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as T (X,Y ) := T (X·Y ) =trace(X·Y ). Moreover,X×Y := 1
6

[
(X + Y )

# −X# − Y #
]

because of X ×X = X#.
So, it is obtained the following results for the quaternion 3-spaceP(J

′
) = (P,L, | ,w)

where J′ is the 56−dimensional special Jordan matrix algebra:
The set of points P consists of the following four classes (which we call as points

of types 1,2,3 and 4, respectively):P1 =


1 γ−11 γ2x2 γ−11 γ3x3 γ−11 γ4x4
x2 γ−11 γ2n(x2) γ−11 γ3x2x3 γ−11 γ4x2x4
x3 γ−11 γ2x3x2 γ−11 γ3n(x3) γ−11 γ4x3x4
x4 γ−11 γ2x4x2 γ−11 γ3x4x3 γ−11 γ4n(x4)

 =:


1
x2
x3
x4


t

| xi∈A

∪

P2 =


γ−12 γ1n(x1) x1 γ−12 γ3x1x3 γ−12 γ4x1x4
γ−12 γ1x1 1 γ−12 γ3x3 γ−12 γ4x4
γ−12 γ1x3x1 x3 γ−12 γ3n(x3) γ−12 γ4x3x4
γ−12 γ1x4x1 x4 γ−12 γ3x4x3 γ−12 γ4n(x4)

 =:


x1
1
x3
x4


t

| x1∈ I, x3, x4∈A

∪
P3 =


γ−13 γ1n(x1) γ−13 γ2x1x2 x1 γ−13 γ4x1x4
γ−13 γ1x2x1 γ−13 γ2n(x2) x2 γ−13 γ4x2x4
γ−13 γ1x1 γ−13 γ2x2 1 γ−13 γ4x4
γ−13 γ1x4x1 γ−13 γ2x4x2 x4 γ−13 γ4n(x4)

 =:


x1
x2
1
x4


t

| x1, x2∈ I, x4∈A

∪
P4 =


γ−14 γ1n(x1) γ−14 γ2x1x2 γ−14 γ3x1x3 x1
γ−14 γ1x2x1 γ−14 γ2n(x2) γ−14 γ3x2x3 x2
γ−14 γ1x3x1 γ−14 γ2x3x2 γ−14 γ3n(x3) x3
γ−14 γ1x1 γ−14 γ2x2 γ−14 γ3x3 1

 =:


x1
x2
x3
1


t

| xi∈I

 ,

the set of lines L consists of the following four classes (which we call as lines of
types 1,2,3 and 4, respectively):l1 =


1 −m2 −m3 −m4

−γ−12 γ1m2 γ−12 γ1n(m2) γ−12 γ1m2m3 γ−12 γ1m2m4

−γ−13 γ1m3 γ−13 γ1m3m2 γ−13 γ1n(m3) γ−13 γ1m3m4

−γ−14 γ1m4 γ−14 γ1m4m2 γ−14 γ1m4m3 γ−14 γ1n(m4)

 =:


1
m2
m3
m4


t

| mi∈I

∪
l2 =


γ−11 γ2n(m1) −γ−11 γ2m1 γ−11 γ2m1m3 γ−11 γ2m1m4
−m1 1 −m3 −m4

γ−13 γ2m3m1 −γ−13 γ2m3 γ−13 γ2n(m3) γ−13 γ2m3m4

γ−14 γ2m4m1 −γ−14 γ2m4 γ−14 γ2m4m3 γ−14 γ2n(m4)

 =:

m1
1
m3
m4


t

| m1∈ A, m3,m4∈I

∪l3 =

γ−11 γ3n(m1) γ−11 γ3m1m2 −γ−11 γ3m1 γ−11 γ3m1m4

γ−12 γ3m2m1 γ−12 γ3n(m2) −γ−12 γ3m2 γ−12 γ3m2m4
−m1 −m2 1 −m4

γ−14 γ3m4m1 γ−14 γ3m4m2 −γ−14 γ3m4 γ−14 γ3n(m4)

 =:

m1
m2
1
m4


t

| m1,m2∈ A, m4∈I

∪l4 =

γ−11 γ4n(m1) γ−11 γ4m1m2 γ−11 γ4m1m3 −γ−11 γ4m1

γ−12 γ4m2m1 γ−12 γ4n(m2) γ−12 γ4m2m3 −γ−12 γ4m2

γ−13 γ4m3m1 γ−13 γ4m3m2 γ−13 γ4n(m3) −γ−13 γ4m3
−m1 −m2 −m3 1

 =:

m1
m2
m3
1


t

| mi∈ A

 .

The incidence relation "|", equivalent to X · Y = 0, is obtained as follows:
[1, k2, k3, k4] = { (k2 + k3y3 + k4y4, 1, y3, y4)| y3, y4 ∈ A} ∪

{ (k2z2 + k3 + k4z4, z2, 1, z4)| z2 ∈ I, z4 ∈ A} ∪
{ (k2t2 + k3t3 + k4, t2, t3, 1)| t2, t3 ∈ I} ,

[l1, 1, l3, l4] = { (1, l1 + l3x3 + l4x4, x3, x4)| x3, x4 ∈ A} ∪
{ (z1, l1z1 + l3 + l4z4, 1, z4)| z1 ∈ I, z4 ∈ A} ∪
{ (t1, l1t1 + l3t3 + l4, t3, 1)| t1, t3 ∈ I} ,
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[m1,m2, 1,m4] = { (1, x2,m1 +m2x2 +m4x4, x4)|x2, x4 ∈ A} ∪
{ (y1, 1,m1y1 +m2 +m4y4, y4)| y1 ∈ I, y4 ∈ A} ∪
{ (t1, t2,m1t1 +m2t2 +m4, 1)| t1, t2 ∈ I} ,

[n1, n2, n3, 1] = { (1, x2, x3, n1 + n2x2 + n3x3, )|x2, x3 ∈ A} ∪
{ (y1, 1, y3, n1y1 + n2 + n3y3, )| y1 ∈ I, y3 ∈ A} ∪
{ (z1, z2, 1, n1z1 + n2z2 + n3)| z1, z2 ∈ I} .

Finally; the connection relation "w", equivalent to X × Y ∈ IJ, is obtained as
follows:

(x1, x2, x3, x4) w (y1, y2, y3, y4)⇔ xi − yi ∈ I for i = 1, 2, 3, 4,

[k1, k2, k3, k4] w [n1, n2, n3, n4]⇔ ki − ni ∈ I for i = 1, 2, 3, 4.

Besides, from types of points on lines, it is clear that a point and a line of same type
is not connected (near). Moreover, the result is equivalent to T (X,Y ) /∈ I = {0}
for a point (or line) X and a line (or point) Y , respectively. In the other cases, we
say that they are connected (near).
Now, we are ready to construct the n-space.

2. n-Spaces

Let R be a local ring with the maximal ideal I (of non-unit elements). Then
Sn(R) = (P,L,∈,∼) is the incidence structure with neighbour relation defined as
follows.
The set of points P consists of the following n+1 points (which we call as points

of types 1,2,3,..., n+ 1; respectively):

P = {Pi = (x1, ..., xi−1, 1, xi+1, ..., xn+1) | x1, ..., xi−1 ∈ I and xi+1, ..., xn+1 ∈ R} .
The set of lines L consists of the following n+ 1 lines (which we call as lines of

types 1,2,3,..., n+ 1; respectively):

L = {Mi = [m1, ...,mi−1, 1,mi+1, ...,mn+1] | m1, ...,mi−1 ∈ R and mi+1, ...,mn ∈ I} .
The incidence relation "∈" is defined as follows:

M1 = [1,m2,m3,m4,m5, ...,mn−1,mn,mn+1]

= { (m2 +m3y3 + · · ·+mn+1yn+1, 1, y3, ..., yn+1)| y3, ..., yn+1 ∈ R} ∪{
(m2z2 +m3 +m4z4 + · · ·+mn+1zn+1, z2, 1, z4, ..., zn+1)|

z2 ∈ I, z4, ..., zn+1 ∈ R

}
∪{

(m2t2 +m3t3 +m4 +m5t5 + · · ·+mn+1tn+1, t2, t3, 1, t5, ..., tn+1)|
t2, t3 ∈ I, t5, ..., tn+1 ∈ R

}
∪

...{
(m2k2 + · · ·+mn−1kn−1 +mn +mn+1kn+1, k2, k3, ..., kn−1, 1, kn+1)|

k2, ..., kn−1 ∈ I, kn+1 ∈ R

}
∪

{ (m2l2 +m3l3 + · · ·+mnln +mn+1, l2, l3, l4, ..., ln, 1)| l2, ..., ln ∈ I} ,
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M2 = [m1, 1,m3,m4,m5, ...mn−1,mn,mn+1]

= { (1,m1 +m3y3 + · · ·+mn+1yn+1, y3, ..., yn+1)| y3, ..., yn+1 ∈ R} ∪{
(z1,m1z1 +m3 +m4z4 + · · ·+mn+1zn+1, 1, z4, ..., zn+1)|

z1 ∈ I, z4, ..., zn+1 ∈ R

}
∪{

(t1,m1t1 +m3t3 +m4 +m5t5 + · · ·+mn+1tn+1, t3, 1, t5, ..., tn+1)|
t1, t3 ∈ I, t5, ..., tn+1 ∈ R

}
∪

...{
(k1,m1k1 +m3k3 + · · ·+mn−1kn−1 +mn +mn+1kn+1, k3, ..., kn−1, 1, kn+1)|

k1, k3, ..., kn−1 ∈ I, kn+1 ∈ R

}
∪

{ (l1,m1l1 +m3l3 + · · ·+mnln +mn+1, l3, l4, ..., ln, 1)| l1, l3, ..., ln ∈ I} ,

...

Mn+1 = [m1,m2,m3,m4, ...mn−1,mn, 1]

= { (1, y2, y3, ..., yn,m1 +m2y2 + · · ·+mnyn)| y2, ..., yn ∈ R} ∪{
(z1, 1, z3, z4, ..., zn,m1z1 +m2 +m3z3 + · · ·+mnzn)|

z1 ∈ I, z3, ..., zn ∈ R

}
∪{

(t1, t2, 1, t4, ..., tn,m1t1 +m2t2 +m3 +m4t4 + · · ·+mntn)|
t1, t2 ∈ I, t4, ..., tn ∈ R

}
∪

...{
(k1, k2, ..., kn−2, 1, kn,m1k1 + · · ·+mn−2kn−2 +mn−1 +mnkn)|

k1, k2, ..., kn−2 ∈ I, kn ∈ R

}
∪

{ (l1, l2, ..., ln−1, 1,m1l1 +m2l2 + · · ·+mn−1ln−1 +mn)| l1, l2, ..., ln−1 ∈ I} .

The connection relation "∼" is defined as follows:

P = (x1, ..., xi−1, xi, xi+1, ..., xn+1) ∼ (y1, ..., yi−1, yi, yi+1, ..., yn+1) = Q

⇐⇒ xi − yi ∈ I (1 ≤ i ≤ n+ 1) ,∀P ,Q ∈ P;
g = [m1, ...,mi−1,mi,mi+1, ...,mn+1] ∼ [p1, ..., pi−1, pi, pi+1, ..., pn+1] = h

⇐⇒ mi − pi ∈ I (1 ≤ i ≤ n+ 1) ,∀g,h ∈ L.

If we more closely examine the case n = 2, then S2(R) = (P,L,∈,∼) is obtained
as follows:
The set of points P consists of the following three points (which we call as points

of types 1,2,3; respectively):

P = {P1 = (1, x2, x3) | x2, x3 ∈ R} ∪
{P2 = (x1, 1, x3) | x1 ∈ I, x3 ∈ R} ∪
{P3 = (x1, x2, 1) | x1, x2 ∈ I} .
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The set of lines L consists of the following three lines (which we call as lines of
types 1,2,3; respectively):

L = {M1 = [1,m2,m3] | m2,m3 ∈ I} ∪
{M2 = [m1, 1,m3, ] | m1 ∈ R,m3 ∈ I}
{M3 = [m1,m2, 1] | m1,m2 ∈ R} .

The incidence relation "∈" is as follows:

M1 = [1,m2,m3] = { (m2 +m3y3, 1, y3)| y3 ∈ R} ∪ { (m2z2 +m3, z2, 1)| z2 ∈ I} ,

M2 = [m1, 1,m3] = { (1,m1 +m3y3, y3)| y3 ∈ R} ∪ { (z1,m1z1 +m3, 1)| z1 ∈ I} ,

M3 = [m1,m2, 1] = { (1, y2,m1 +m2y2)| y2 ∈ R} ∪ { (z1, 1,m1z1 +m2)| z1 ∈ I} .
The connection relation "∼" is as follows:

P = (x1, x2, x3) ∼ (y1, y2, y3) = Q ⇐⇒ xi − yi ∈ I (i = 1, 2, 3) ,∀P ,Q ∈ P;
g = [m1,m2,m3] ∼ [p1, p2, p3] = h⇔ mi − pi ∈ I (i = 1, 2, 3)),∀g, h ∈ L.
So, we have obtained a PK-plane (2-space), isomorphic to the PK-plane given

in [2], in the case n = 2.
If we take R :=O + Oε where O is the Cayley division algebra over a field F

and ε /∈ O, then S2(R) is an octonion plane and also the MK-plane, introduced by
Blunck in [4]. Moreover, for n > 2, Sn(R) is the example of n-space (or octonion
n-space). Note that the (quaternion) n-space Sn(Q + Qε) is a subspace of the
(octonion) n-space Sn(O+Oε). Besides, it is well-known that there is no a projective
space constructed over non-associative division rings, and therefore a epimorphism
onto an ordinary projective n-space can not exist. This means that the space
Sn(O+Oε) for n > 2 is not a PK structure. For this reason, we tend to construct
some collineations of the space Sn(Q+Qε).
Finally, we would like to complete this paper by giving two collineations of the

quaternion n-space Sn(Q+Qε).

Ta2,0,...,0,0 : for a2 ∈ Q,
(1, x2, x3, ..., xn, xn+1) → (1, x2 + a2, x3 + 0, ..., xn + 0, xn+1 + 0) ,

(x1, 1, x3, ..., xn+1) → (x1, 1, x3 − (x3a2)x1, ..., xn+1 − (xn+1a2)x1) ,

(x1, x2, 1, x4, ..., xn, xn+1) → (x1, x2 + a2x1, 1, x4, ..., xn, xn+1) ,
...

(x1, x2, x3, ...xn−1, 1, xn+1) → (x1, x2 + a2x1, x3, ..., xn−1, 1, xn+1) ,
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(x1, x2, , ...xn−1, xn, 1) → (x1, x2 + a2x1, x3, ..., xn−1, xn, 1) ,

[m1,m2, ...,mn, 1] → [m1 −m2a2,m2, ...,mn, 1]

[m1,m2, ..., 1,mn+1] → [m1 −m2a2,m2, ..., 1,mn+1]

...

[m1,m2, 1,m4, ...,mn,mn+1] → [m1 −m2a2,m2, 1,m4, ...,mn,mn+1]

[m1, 1,m3, ...,mn,mn+1] → [m1 + a2, 1,m3, ...,mn,mn+1]

[1,m2,m3, ...,mn,mn+1] → [1,m2,m3, ...,mn,mn+1]

Similarly, the transformation T0,a3,0,...,0 can be defined in the following way: for
any a3 ∈ Q,

(1, x2, x3, x4, ..., xn+1) → (1, x2 + 0, x3 + a3, x4 + 0, ..., xn+1 + 0)

(x1, 1, x3, x4, ..., xn+1) → (x1, 1, x3 + a3x1, x4, ..., xn+1) ,

(x1, x2, 1, x4, ..., xn+1) → (x1, x2 − (x2a3)x1, 1, x4 − (x4a3)x1, ..., xn+1 − (xn+1a3)x1) ,
...

(x1, x2, x3, ...xn−1, 1, xn+1) → (x1, x2, x3 + a3x1, x4, ..., xn−1, 1, xn+1) ,

(x1, x2, , ..., xn−1, xn, 1) → (x1, x2, x3 + a3x1, x4, ..., xn−1, xn, 1) ,

[m1,m2, ...,mn, 1] → [m1 −m3a3,m2, ...,mn, 1] ,

[m1,m2, ...,mn−1, 1,mn+1] → [m1 −m3a3,m2, ...,mn−1, 1,mn+1] ,

...

[m1,m2, 1,m4, ...,mn,mn+1] → [m1 + a3,m2, 1,m4, ...,mn,mn+1] ,

[m1, 1,m3, ...,mn,mn+1] → [m1 −m3a3, 1,m3, ...,mn,mn+1] ,

[1,m2,m3, ...,mn,mn+1] → [1,m2,m3, ...,mn,mn+1] .

And, continuing on like this, finally, the transformation T0,0,...,0,an+1 can be defined
in the following manner: for any an+1 ∈ Q,

(1, x2, x3, ..., xn, xn+1) → (1, x2 + 0, x3 + 0, ..., xn + 0, xn+1 + an+1)

(x1, 1, x3, ..., xn, xn+1) → (x1, 1, x3, ..., xn, xn+1 + an+1x1) ,

(x1, x2, 1, x4, ..., xn, xn+1) → (x1, x2, 1, x4, ..., xn, xn+1 + an+1x1) ,
...

(x1, x2, x3, ..., xn−1, 1, xn+1) → (x1, x2, x3, ..., xn−1, 1, xn+1 + an+1x1) ,

(x1, x2, , ..., xn, 1) → (x1, x2 − (x2an+1)x1, ..., xn − (xnan+1)x1, 1) ,

[m1,m2, ...,mn, 1] → [m1 + an+1,m2, ...,mn, 1] ,
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[m1,m2, ..., 1,mn+1] → [m1 −mn+1an+1,m2, ..., 1,mn+1] ,
...

[m1,m2, 1,m4, ...,mn,mn+1] → [m1 −mn+1an+1,m2, 1,m4, ...,mn,mn+1] ,

[m1, 1,m3, ...,mn,mn+1] → [m1 −mn+1an+1, 1,m3, ...,mn,mn+1] ,

[1,m2,m3, ...,mn,mn+1] → [1,m2,m3, ...,mn,mn+1] .

So, in this case, we have the translation transformation Ta2,a3,...,an−1,an,an+1 of
Sn(Q+Qε). The other transformation Fa is defined as follows:

Fa : for a /∈ Qε,
(1, x2, x3, ..., xn, xn+1) → (1, ax2a, x3a, ..., xna, xn+1a)

(x1, 1, x3, ..., xn, xn+1) →
(
a−1x1a

−1, 1, x3a
−1, ..., xna

−1, xn+1a
−1)

(x1, x2, 1, x4, ..., xn, xn+1) →
(
a−1x1, ax2, 1, x4, ..., xn, xn+1

)
...

(x1, x2, x3, ...xn−1, 1, xn+1) →
(
a−1x1, ax2, x3, ...xn−1, 1, xn+1

)
(x1, x2, x3, ..., xn, 1) →

(
a−1x1, ax2, x3, ..., xn, 1

)
[m1,m2,m3, ...,mn, 1] →

[
m1a,m2a

−1,m3, ...,mn, 1
]

[m1,m2,m3, ...,mn−1, 1,mn+1] →
[
m1a,m2a

−1,m3, ...,mn−1, 1,mn+1

]
...

[m1,m2, 1,m4, ...,mn,mn+1] →
[
m1a,m2a

−1, 1,m4, ...,mn,mn+1

]
[m1, 1,m3, ...,mn,mn+1] → [am1a, 1, am3, ..., amn, amn+1]

[1,m2,m3, ...,mn,mn+1] →
[
1, a−1m2a

−1, a−1m3, ..., a
−1mn, a

−1mn+1

]
To show that the transformations Ta2,0,...0,0,0, T0,a3,...0,0,0, T0,0,...,0,an+1 (and as

a result, Ta2,a3,...,an−1,an,an+1 which is the combination of the all above transfor-
mations) and Fa are collineations of Sn(Q + Qε), it is basically enough to prove
Lemma 3 given in [5]. And also, we will often need the two results that Q+Qε is
associative and that multiplication of any elements in the ideal I = Qε is equal to
zero. Hence, we obtain that it is possible to study in the spaces by means of the
collineations, analogous of the collineations given for showing 4-transitivity on the
class of MK-plane in [5].
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