Multiplicative Mappings of Gamma Rings

Bruno L. M. FERREIRA 1*, Ruth N. FERREIRA 1*

1 Federal Technological University of Paraná, Professora Laura Pacheco Bastos Avenue, 800, 85053-510, Guarapuava, Brazil.

Received: 15.07.2019; Accepted: 04.11.2019 http://dx.doi.org/10.17776/csj.592101

Abstract. Let M_i and Γ_i ($i = 1,2$) be abelian groups such that M_i is a Γ_i-ring. An ordered pair (φ, ψ) of mappings is called a multiplicative isomorphism of M_1 onto M_2 if they satisfy the following properties: (i) φ is a bijective mapping from M_1 onto M_2, (ii) ψ is a bijective mapping from Γ_1 onto Γ_2 and (iii) $\varphi(xy) = \varphi(x)\psi(y)$ for every $x, y \in M_1$ and $\gamma \in \Gamma_1$. We say that the ordered pair (φ, ψ) of mappings is additive when $\varphi(x + y) = \varphi(x) + \varphi(y)$, for all $x, y \in M_1$. In this paper we establish conditions on M_1 that assures that (φ, ψ) is additive.

Keywords: Multiplicative mappings, Additivity, Gamma rings.

1. INTRODUCTION AND PRELIMINARIES

N. Nobusawa [1] introduced the concept of a Γ-ring which is called the Γ-ring in the sense of Nobusawa. He obtained an analogue of the Wedderburn’s Theorem for Γ-rings with minimum condition on left ideals. W. E. Barnes [2] gave the definition of a Γ-ring as a generalization of a ring and he also developed some other concepts of Γ-rings such as Γ-homomorphism, prime and primary ideals, m-systems etc. Γ-rings are closely related to others ternary structures as ternary algebras, associative triple systems and associative pairs, which have been extensively studied see [3], [4] and [5].

Let M and Γ be two abelian groups. If there exists a mapping $M \times \Gamma \times M \rightarrow M$ (the image of (x, α, y) is denoted by $x\alpha y$ where $x, y \in M$ and $\alpha \in \Gamma$). We call M a Γ-ring if the following conditions are satisfied:

1. $x\alpha y \in M$
The study of the question of when a multiplicative isomorphism is additive has become an active research area in associating ring theory. In this case, one often tries to establish conditions on the ring...
which assures the additivity of every multiplicative isomorphism defined on it. The first result in this direction is due to Martindale III [8] who obtained a pioneer result in 1969, where in his condition requires that the ring possesses idempotents. In recent papers [9],[10] Ferreira has studied the additivity of elementary maps and multiplicative derivation on Gamma rings. This motivated us in the present paper we investigate the problem of when a multiplicative isomorphism is additive for the class of gamma rings.

Let us state our main theorem.

Theorem 2.1 Let \mathcal{M} be a Γ-ring containing a family $\{e_\alpha | \alpha \in \Lambda\}$ of nontrivial γ_α-idempotents which satisfies:

1. If $x \in \mathcal{M}$ is such that $x \Gamma \mathcal{M} = 0$, then $x = 0$;
2. If $x \in \mathcal{M}$ is such that $e_\alpha \Gamma \mathcal{M} x = 0$ for all $\alpha \in \Lambda$, then $x = 0$ (and hence $\mathcal{M} \Gamma x = 0$ implies $x = 0$);
3. For each $\alpha \in \Lambda$ and $x \in \mathcal{M}$, if $(e_\alpha \gamma_\alpha x \alpha, e_\alpha) \Gamma \mathcal{M} \Gamma (1_\alpha - e_\alpha) = 0$ then $e_\alpha \gamma_\alpha x \alpha, e_\alpha = 0$.

Then any multiplicative isomorphism (φ, ϕ) of \mathcal{M} onto an arbitrary gamma ring is additive.

The following lemmas have the same hypotheses of Theorem 2.1 and we need these lemmas for the proof of this theorem. Thus, let us consider $e_1 \in \{e_\alpha | \alpha \in \Lambda\}$ a nontrivial γ_1-idempotent of \mathcal{M} and \mathcal{N}.

Lemma 2.1 $\varphi(0) = 0$

Proof. Since φ is onto, we can choose $x \in \mathcal{M}$ such that $\varphi(x) = 0$. Thus $\varphi(0) = \varphi(0) = 0$.

Lemma 2.2 $\varphi(x_{ii} + x_{jk}) = \varphi(x_{ii}) + \varphi(x_{jk}), i \neq k$.

Proof. First assume that $i = j = 1$ and $k = 2$. Since φ is onto, let z be an element of \mathcal{M} such that $\varphi(z) = 0$. For arbitrary $y_1 \in \Gamma$ and $a_{1l} \in \mathcal{M}_{1l}$ ($l = 1,2$) we have

$$\varphi(z_1 y_1 e_1 y a_{1l}) = \varphi(z) \varphi(y_1) \varphi(e_1 y a_{1l}) = (\varphi(x_{11}) + \varphi(x_{12})) \varphi(y_1) \varphi(e_1 y a_{1l}) = \varphi(x_{11} y_1 e_1 y a_{1l}) + \varphi(x_{12} y_1 e_1 y a_{1l}) = \varphi((x_{11} + x_{12}) y_1 e_1 y a_{1l}) = \varphi(0) = \varphi(0).$$

Hence $(z - (x_{11} + x_{12})) y_1 e_1 y a_{2l} = 0$. In a similar way, for $a_{2l} \in \mathcal{M}_{2l}$ ($l = 1,2$) we get that $(z - (x_{11} + x_{12})) y_1 e_1 y a_{2l} = 0$. It follows that

$$(z - (x_{11} + x_{12})) y_1 e_1 y a = 0, \quad (1)$$

where $a = a_{11} + a_{12} + a_{21} + a_{22}$. Next, for arbitraries $y \in \Gamma$ and $a_{1l} \in \mathcal{M}_{1l}$ ($l = 1,2$) we have

$$\varphi(z y_1 e_2 y a_{1l}) = \varphi(z) \varphi(y_1) \varphi(e_2 y a_{1l}) = (\varphi(x_{11}) + \varphi(x_{12})) \varphi(y_1) \varphi(e_2 y a_{1l}) = \varphi(x_{11} y_1 e_2 y a_{1l}) + \varphi(x_{12} y_1 e_2 y a_{1l}) = \varphi(0) + \varphi(x_{12} y_1 e_2 y a_{1l}) = \varphi((x_{11} + x_{12}) y_1 e_2 y a_{1l}).$$
which implies \((z - (x_{11} + x_{12}))\gamma_1 e_2 \gamma a_{1l} = 0 \). In a similar way, we get that
\((z - (x_{11} + x_{12}))\gamma_1 e_2 \gamma a_{2l} = 0 \). Hence

\[
(z - (x_{11} + x_{12}))\gamma_1 e_2 \gamma a = 0,
\]

(2)

where \(a = a_{11} + a_{12} + a_{21} + a_{22} \), by condition \((i) \) of the Theorem. From (1) and (2), we have
\((z - (x_{11} + x_{12}))\gamma_1 1 \gamma a = 0, \) where \(a = a_{11} + a_{12} + a_{21} + a_{22} \), which implies
\((z - (x_{11} + x_{12})) \Gamma M = 0 \) and resulting in
\(z = x_{11} + x_{12} \), by condition \((i) \) of the Theorem.

Now assume that \(i = k = 1 \) and \(j = 2 \). Again, we may find an element \(z \) of \(\mathbb{M} \) such that
\(\varphi(z) = \varphi(x_{11}) + \varphi(x_{21}) \). For arbitraries \(\gamma \in \Gamma \) and \(a_{1l} \in \mathbb{M}_{1l} \) \((l = 1,2) \) we have
\[
\varphi(a_{1l} \gamma e_1 \gamma_1 z) = \varphi(a_{1l} \gamma e_1 \gamma_1 \gamma) \varphi(z) = \varphi(a_{1l} \gamma e_1 \gamma_1 \gamma)(\varphi(x_{11}) + \varphi(x_{21})) = \varphi(a_{1l} \gamma e_1 \gamma_1 x_{11}) + \varphi(a_{1l} \gamma e_1 \gamma_1 x_{21}) = \varphi(a_{1l} \gamma e_1 \gamma_1 x_{11}) + \varphi(0) = \varphi(a_{1l} \gamma e_1 \gamma_1 (x_{11} + x_{21})).
\]

It follows that \(a_{1l} \gamma e_1 \gamma_1 (z - (x_{11} + x_{21})) = 0 \). In a similar way, for arbitraries \(\gamma \in \Gamma \) and \(a_{1l} \in \mathbb{M}_{1l} \) \((l = 1,2) \) we get that
\(a_{1l} \gamma e_1 \gamma_1 (z - (x_{11} + x_{21})) = 0 \). This implies

\[
a \gamma e_1 \gamma_1 (z - (x_{11} + x_{21})) = 0,
\]

(3)

where \(a = a_{11} + a_{12} + a_{21} + a_{22} \). Next, for arbitraries \(\gamma \in \Gamma \) and \(a_{1l} \in \mathbb{M}_{1l} \) \((l = 1,2) \) we have
\[
\varphi(a_{1l} \gamma e_2 \gamma_1 z) = \varphi(a_{1l} \gamma e_2 \gamma_1 \gamma) \varphi(z) = \varphi(a_{1l} \gamma e_2 \gamma_1 \gamma)(\varphi(x_{11}) + \varphi(x_{21})) = \varphi(a_{1l} \gamma e_2 \gamma_1 x_{11}) + \varphi(a_{1l} \gamma e_2 \gamma_1 x_{21}) = \varphi(0) + \varphi(a_{1l} \gamma e_2 \gamma_1 x_{11}) = \varphi(e_{1l} \gamma e_2 \gamma_1 (x_{11} + x_{21})).
\]

It follows that \(a_{1l} \gamma e_2 \gamma_1 (z - (x_{11} + x_{21})) = 0 \). In a similar way, for arbitraries \(\gamma \in \Gamma \) and \(a_{1l} \in \mathbb{M}_{1l} \) \((l = 1,2) \) we get that
\(a_{1l} \gamma e_2 \gamma_1 (z - (x_{11} + x_{21})) = 0 \) which implies

\[
a \gamma e_2 \gamma_1 (z - (x_{11} + x_{21})) = 0,
\]

(4)

where \(a = a_{11} + a_{12} + a_{21} + a_{22} \), by condition \((ii) \) of the Theorem. From (3) and (4) we have
\(a \gamma 1 \gamma_1 (z - (x_{11} + x_{21})) = 0 \) which implies \(\mathbb{M} \Gamma (z - (x_{11} + x_{21})) = 0 \) resulting in
\(z = x_{11} + x_{21} \), by condition \((ii) \) of the Theorem.

Similarly, we prove the remaining cases.

Lemma 2.3 \(\varphi(a_{1j} + b_{12} \gamma c_{1l}) = \varphi(a_{1j}) + \varphi(b_{12} \gamma c_{1l}) (j, l = 1,2) \)

Proof. First, let us note that
\[a_{1j} + b_{12} \gamma c_{1l} = (e_1 + b_{12})\gamma_1 (a_{1j} + e_2 \gamma c_{1l}).\]
Hence
\[
\varphi(a_{1l} + b_{12}a_{c1}) = \varphi((e_1 + b_{12})y_1(a_{1j} + e_2y_{c1j})) = \varphi(e_1 + b_{12})\varphi(y_1)\varphi(a_{1j} + e_2y_{c1j}) = \\
(\varphi(e_1) + \varphi(b_{12}))\varphi(y_1)\varphi(a_{1j} + e_2y_{c1j}) = \varphi(e_1)\varphi(y_1)\varphi(a_{1j} + e_2y_{c1j}) + \\
\varphi(b_{12})\varphi(y_1)\varphi(a_{1j} + e_2y_{c1j}) = \varphi(a_{1j}) + \varphi(b_{12}y_{a1j})
\]
, by Lemma 2.2.

Lemma 2.4 \(\varphi\) is additive on \(\mathfrak{M}_{12}\).

Proof. Let \(x_{12}, y_{12} \in \mathfrak{M}_{12}\) and choose \(z \in \mathfrak{M}\) such that \(\varphi(z) = \varphi(x_{12}) + \varphi(y_{12})\), where \(z = z_{11} + z_{12} + z_{21} + z_{22}\). For an arbitrary \(a_{l1} \in \mathfrak{M}_{11}\) \((l = 1,2)\) we have
\[
\varphi(zy_1 e_1 y_{a11}) = \varphi(z)\varphi(y_1)\varphi(e_1 y_{a11}) = (\varphi(x_{12}) + \varphi(y_{12}))\varphi(y_1)\varphi(e_1 y_{a11}) = \\
\varphi(x_{12} y_1 e_1 y_{a11}) + \varphi(y_{12} y_1 e_1 y_{a11}) = \varphi((x_{12} + y_{12}) y_1 e_1 y_{a11}) = 0
\]
which implies \(zy_1 e_1 y_{a11} = 0\). It follows that \((z - (x_{12} + y_{12})) y_1 e_1 y_{a11} = 0\). In a similar way, for an arbitrary \(a_{2l} \in \mathfrak{M}_{2l}\) \((l = 1,2)\) we get that \((z - (x_{12} + y_{12})) y_1 e_1 y_{a2l} = 0\).

Hence
\[
(z - (x_{12} + y_{12})) y_1 e_1 y_{a1l} = 0, \quad \text{(5)}
\]
where \(a = a_{11} + a_{12} + a_{21} + a_{22}\). Now, for an arbitrary element \(a_{2l} \in \mathfrak{M}_{11}\) \((l = 1,2)\) we have
\[
\varphi(z y_1 e_2 y_{a11}) = \varphi(z)\varphi(y_1)\varphi(e_2 y_{a11}) = (\varphi(x_{12}) + \varphi(y_{12}))\varphi(y_1)\varphi(e_2 y_{a11}) = \\
\varphi(x_{12} y_1 e_2 y_{a11}) + \varphi(y_{12} y_1 e_2 y_{a11}) = \varphi((x_{12} + y_{12}) y_1 e_2 y_{a11}) = 0
\]
, by Lemma 2.3. It follows that \((z - (x_{12} + y_{12})) y_1 e_2 y_{a11} = 0\). Next, for an arbitrary element \(a_{2l} \in \mathfrak{M}_{21}\) \((l = 1,2)\) we have
\[
\varphi(z y_1 e_2 y_{a21}) = \varphi(z)\varphi(y_1)\varphi(e_2 y_{a21}) = (\varphi(x_{12}) + \varphi(y_{12}))\varphi(y_1)\varphi(e_2 y_{a21}) = \\
\varphi(x_{12})\varphi(y_1)\varphi(e_2 y_{a21}) + \varphi(y_{12})\varphi(y_1)\varphi(e_2 y_{a21}) = (\varphi(e_1 + x_{12})\varphi(y_1)\varphi(e_2 y_{a21}) + \\
\varphi(y_{12} y_1 e_2 y_{a21}) = \varphi(e_1 + x_{12})\varphi(y_1)\varphi(e_2 y_{a21}) + \varphi(y_{12} y_1 e_2 y_{a21}) = \varphi(e_1 + x_{12}) y_1 (e_2 y_{a21} + \\
y_{12} y_1 e_2 y_{a21}) = \varphi((x_{12} + y_{12}) y_1 e_2 y_{a21})
\]
, by Lemma 2.2. It follows that \((z - (x_{12} + y_{12})) y_1 e_2 y_{a21} = 0\).

Hence
\[
(z - (x_{12} + y_{12})) y_1 e_2 y_{a21} = 0, \quad \text{(6)}
\]
where \(a = a_{11} + a_{12} + a_{21} + a_{22}\), by condition \((i)\) of the Theorem. From (5) and (6) we have \((z - (x_{12} + y_{12})) y_1 y_{a1l} = 0\) which implies \((z - (x_{12} + y_{12})) \Gamma \mathfrak{M} = 0\) and resulting in \(z = x_{12} + y_{12}\), by condition \((i)\) of the Theorem.

Lemma 2.5 \(\varphi\) is additive on \(\mathfrak{M}_{11}\).
Proof. Let $x_{11}, y_{11} \in M_{11}$ and choose $z \in M$ such that $\varphi(z) = \varphi(x_{11}) + \varphi(y_{11})$, where $z = z_{11} + z_{12} + z_{21} + z_{22}$. Firstly, let us note that $\varphi(z) = \varphi(x_{11}y_{1}e_{1}) + \varphi(y_{1}y_{1}e_{1}) = (\varphi(x_{11}) + \varphi(y_{11}))\varphi(y_{1})\varphi(e_{1}) = \varphi(z)\varphi(y_{1})\varphi(e_{1}) = \varphi(z_{11} + z_{21})$

It follows that $z = z_{11} + z_{21}$ which results in $z_{12} = z_{22} = 0$. Similarly, we prove that $z_{21} = 0$.

This implies $z \in M_{11}$ which leads to $z - (x_{11} + y_{11}) \in M_{11}$. Next, for an arbitrary element $a_{ij} \in M_{ij}$ $(i, j = 1, 2)$, applying Lemma 2.4 we get that

$$\varphi(za_{1}y_{1}a_{ij}y_{1}e_{1}e_{2})$$

$$= \varphi(z)\varphi(\alpha)\varphi(e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2})$$

$$= (\varphi(x_{11}) + \varphi(y_{11}))\varphi(\alpha)\varphi(e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2})$$

$$= \varphi(x_{11})\varphi(\alpha)\varphi(e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2}) + \varphi(y_{11})\varphi(\alpha)\varphi(e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2})$$

$$= \varphi(x_{11}\alpha e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2}) + \varphi(y_{11}\alpha e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2})$$

$$= \varphi(x_{11}\alpha e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2} + y_{11}\alpha e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2})$$

$$= \varphi((x_{11} + y_{11})\alpha e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2})$$

$(k, l = 1, 2)$ which implies $za_{1}y_{1}a_{ij}y_{1}e_{1}e_{2} = (x_{11} + y_{11})\alpha e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2}$ and resulting in $(z - (x_{11} + y_{11}))\alpha e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2} = 0$. It follows that

$$z - (x_{11} + y_{11})\alpha e_{k}y_{1}a_{ij}y_{1}e_{1}e_{2} = 0(k, l = 1, 2),$$

$$\text{(7)}$$

where $a = a_{11} + a_{12} + a_{21} + a_{22}$, by condition (i) of the Theorem.

From (7) we have $(z - (x_{11} + y_{11}))\alpha a_{1}y_{1}a_{ij}y_{1}e_{1}e_{2} = 0$ which implies $(z - (x_{11} + y_{11}))\alpha a e_{2} = 0$. It follows that $(z - (x_{11} + y_{11}))\Gamma\mathfrak{M}\Gamma(1_{i} - e_{1}) = 0$, that is,

$$(e_{1}y_{1}(z - (x_{11} + y_{11})y_{1}e_{1})\Gamma\mathfrak{M}\Gamma(1_{i} - e_{1}) = 0.$$

By condition (iii) of the Theorem we conclude that $z = x_{11} + y_{11}$.

Lemma 2.6 φ is additive on $e_{1}\Gamma\mathfrak{M}$.
Proof. Let $x, y \in \mathbb{M}$ and $\lambda, \mu \in \Gamma$ be arbitrary elements and let us write

\[x = x_{11} + x_{12} + x_{21} + x_{22} \quad \text{and} \quad y = y_{11} + y_{12} + y_{21} + y_{22}. \]

It follows that

\[
e_{1,2}\lambda x = e_{1,2}\lambda x_{11} + e_{1,2}\lambda x_{12} + e_{1,2}\lambda x_{21} + e_{1,2}\lambda x_{22}
\]

and

\[
e_{1,2}\mu y = e_{1,2}\mu y_{11} + e_{1,2}\mu y_{12} + e_{1,2}\mu y_{21} + e_{1,2}\mu y_{22}.\]

Hence, by Peirce decomposition properties of \mathbb{M} and making use of the Lemmas 2.2, 2.4 and 2.5, we can see that

\[
\varphi(e_{1,2}\lambda x + e_{1,2}\mu y) = \varphi((e_{1,2}\lambda x_{11} + e_{1,2}\lambda x_{12} + e_{1,2}\lambda x_{21} + e_{1,2}\lambda x_{22})
\]

\[+(e_{1,2}\mu y_{11} + e_{1,2}\mu y_{12} + e_{1,2}\mu y_{21} + e_{1,2}\mu y_{22}))
\]

\[= \varphi((e_{1,2}\lambda x_{11} + e_{1,2}\mu y_{11}) + (e_{1,2}\lambda x_{21} + e_{1,2}\mu y_{21})
\]

\[+(e_{1,2}\lambda x_{12} + e_{1,2}\mu y_{12}) + (e_{1,2}\lambda x_{22} + e_{1,2}\mu y_{22}))
\]

\[= \varphi((e_{1,2}\lambda x_{11} + e_{1,2}\mu y_{11}) + (e_{1,2}\lambda x_{21} + e_{1,2}\mu y_{21}))
\]

\[+\varphi((e_{1,2}\lambda x_{12} + e_{1,2}\mu y_{12}) + (e_{1,2}\lambda x_{22} + e_{1,2}\mu y_{22}))
\]

\[= \varphi(e_{1,2}\lambda x_{11} + e_{1,2}\lambda x_{21}) + \varphi(e_{1,2}\mu y_{11} + e_{1,2}\mu y_{21})
\]

\[+\varphi(e_{1,2}\lambda x_{12} + e_{1,2}\lambda x_{22}) + \varphi(e_{1,2}\mu y_{12} + e_{1,2}\mu y_{22})
\]

\[= \varphi(e_{1,2}\lambda x_{11} + e_{1,2}\lambda x_{21} + e_{1,2}\lambda x_{12} + e_{1,2}\lambda x_{22})
\]

\[+\varphi(e_{1,2}\mu y_{11} + e_{1,2}\mu y_{21} + e_{1,2}\mu y_{12} + e_{1,2}\mu y_{22})
\]

\[= \varphi(e_{1,2}\lambda x) + \varphi(e_{1,2}\mu y)
\]

holds true, as desired.

Proof of Theorem 2.1. Suppose that $x, y \in \mathbb{M}$ and choose $z \in \mathbb{M}$ such that

\[\varphi(z) = \varphi(x) + \varphi(y). \]

Since φ is additive on $e_{\alpha,\beta}\mathbb{M}$ for all $\alpha \in \Lambda$, by Lemma 2.6, then for an arbitrary element $r \in \mathbb{M}$ and elements $\lambda, \mu \in \Gamma$ we have

\[
\varphi(e_{\alpha,\beta}r \mu z) = \varphi(e_{\alpha,\beta})\phi(\lambda)\varphi(r)\phi(\mu)\varphi(z)
\]

\[= \varphi(e_{\alpha,\beta})\phi(\lambda)\varphi(r)\phi(\mu)(\varphi(x) + \varphi(y))
\]

\[= \varphi(e_{\alpha,\beta})\phi(\lambda)\varphi(r)\phi(\mu)\varphi(x) + \varphi(e_{\alpha,\beta})\phi(\lambda)\varphi(r)\phi(\mu)\varphi(y)
\]

\[
\begin{align*}
\varphi(e_\alpha r_\mu x) + \varphi(e_\alpha r_\mu y) \\
= \varphi(\alpha \lambda r_\mu x + e_\alpha \lambda r_\mu y) \\
= \varphi(e_\alpha \lambda r_\mu (x + y)).
\end{align*}
\]

Hence \(e_\alpha \lambda r_\mu z = e_\alpha \lambda r_\mu (x + y)\) which results in

\[
e_\alpha \Gamma M G (z - (x + y)) = 0
\]

for all \(\alpha \in \Delta\). From condition \(\text{(ii)}\) of the Theorem, we conclude that \(z = x + y\). This shows that \(\varphi\) is additive on \(M\).

Corollary 2.1 Let \(M\) be a prime \(\Gamma\)-ring containing a \(\gamma_1\)-idempotent \(e_1\) (\(M\) need not have a \(\gamma_1\)-identity element), where \(\gamma_1 \in \Gamma\). Suppose \(e_2: \Gamma \times M \rightarrow M\), \(e_2': \Gamma \times M \rightarrow M\) two \(M\)-additive maps such that \(e_2(\gamma_1, a) = a - e_1 \gamma_1 a\), \(e_2(\alpha, \gamma_1) = a - \alpha \gamma_1 e_1\), for all \(\alpha \in M\), and if we denote \(e_1 \alpha a = e_2(\alpha, a)\), \(\alpha e_2 = e_2(\alpha, \alpha)\), then \(\alpha \alpha 1_1 = \alpha \alpha e_1 + \alpha e_2\) for all \(\alpha, \beta \in \Gamma\) and \(\alpha, \beta \in M\). Then any multiplicative isomorphism \((\varphi, \phi)\) of \(M\) onto an arbitrary gamma ring is additive.

Proof. The result follows directly from the Theorem 2.1.

Corollary 2.2 Let \(M\) be a prime \(\Gamma\)-ring containing a \(\gamma_1\)-idempotent and a \(\gamma_1\)-unity element, where \(\gamma_1 \in \Gamma\). Then any multiplicative isomorphism \((\varphi, \phi)\) of \(M\) onto an arbitrary gamma ring is additive.

REFERENCES