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A Data Classification Method in Machine Learning Based on 

Normalised Hamming Pseudo-Similarity of Fuzzy 

Parameterized Fuzzy Soft Matrices
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Abstract: In this study, we propose a classification method based on normalised Hamming pseudo-

similarity of fuzzy parameterized fuzzy soft matrices (fpfs-matrices). We then compare the proposed method 

with Fuzzy Soft Set Classifier (FSSC), FussCyier, Fuzzy Soft Set Classification Using Hamming Distance 

(HDFSSC), and Fuzzy k-Nearest Neighbor (Fuzzy kNN) in terms of the performance criterions (accuracy, 

precision, recall, and F-measure) and running time by using four medical data sets in the UCI machine 

learning repository. The results show that the proposed method performs better than FSSC, FussCyier, 

HDFSSC, and Fuzzy kNN for “Breast Cancer Wisconsin (Diagnostic)”, “Immunotherapy”, “Pima Indian 

Diabetes”, and “Statlog Heart”. 
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1. Introduction

Soft sets (Molodtsov, 1999), a standard and 

practical mathematical tool, are often used for 

modelling uncertainties, and a great variety of 

studies have been conducted on this concept 

(Çağman and Deli, 2012a, b; Deli and Çağman, 

2015; Enginoğlu et al., 2015; Şenel, 2016; 

Zorlutuna and Atmaca, 2016; Atmaca, 2017; Çıtak 

and Çağman, 2017; Riaz and Hashmi, 2017; 

Atmaca, 2019; Çıtak, 2018; Riaz and Hashmi, 

2018; Riaz et al., 2018; Şenel 2018a, b;  Jana et al., 

2019; Karaaslan, 2019a, b; Sezgin et al., 2019a, b). 

Fuzzy soft sets (Maji et al., 2001; Çağman et al., 

2011b), fuzzy parameterized soft sets (Çağman et 

al., 2011a), and fuzzy parameterized fuzzy soft sets 

(fpfs-sets) (Çağman et al., 2010) are among known 

general forms of soft sets. Also, studies on the 

matrix representations of these sets have been 

increasingly continued such as soft matrices 

(Çağman and Enginoğlu, 2010), fuzzy soft 

matrices (Çağman and Enginoğlu, 2012), and 

fuzzy parameterized fuzzy soft matrices (fpfs-

matrices) (Enginoğlu, 2012; Enginoğlu and 

Çağman, In Press). Even if parameters and objects 

have uncertainties, fpfs-matrices can successfully 

model such problems.  

The rest of the paper is organised as follows: In 

Section 2, we present definitions of fpfs-sets 

(Çağman et al., 2010; Enginoğlu, 2012), fpfs-

matrices (Enginoğlu, 2012; Enginoğlu and 

Çağman, In Press), and normalised Hamming 

pseudo-similarity of fpfs-matrices. In Section 3, we 

propose Fuzzy Parameterized Fuzzy Soft 

Normalized Hamming Classifier (FPFSNHC) 

using normalised Hamming pseudo-similarity of 

fpfs-matrices. In Section 4, we compare FPFSNHC 

with Fuzzy Soft Set Classifier (FSSC) (Handaga et 

al., 2012), FussCyier (Lashari et al., 2017), Fuzzy 

Soft Set Classification Using Hamming Distance 

(HDFSSC) (Yanto et al., 2018), and Fuzzy k-
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Nearest Neighbor (Fuzzy kNN) (Keller et al., 

1985) in terms of the performance criterions 

(accuracy, precision, recall, and F-measure) and 

running time by using four medical data sets in the 

UCI machine learning repository (Dua and Graff, 

2019). The results show that proposed method 

performs better than FSSC, FussCyier, HDFSSC, 

and Fuzzy kNN for “Breast Cancer Wisconsin 

(Diagnostic)”, “Immunotherapy”, “Pima Indian 

Diabetes”, and “Statlog Heart”. Finally, we discuss 

the need for further research. This study is a part of 

the first author’s PhD dissertation. 

 

2. Preliminaries 

 

In this section, firstly, we present the concept of 

fpfs-matrices (Enginoğlu, 2012; Enginoğlu and 

Çağman, In Press). Throughout this paper, let 𝐸 be 

a parameter set, 𝐹(𝐸) be the set of all fuzzy sets 

over 𝐸, and 𝜇 ∈ 𝐹(𝐸). Here, a fuzzy set is denoted 

by { 𝑥
𝜇(𝑥)

∶ 𝑥 ∈ 𝐸} instead of {(𝑥, 𝜇(𝑥)) ∶ 𝑥 ∈ 𝐸}. 

 

Definition 2.1. (Çağman et al., 2010; Enginoğlu, 

2012) Let 𝑈 be a universal set, 𝜇 ∈ 𝐹(𝐸), and 𝛼 be 

a function from 𝜇 to 𝐹(𝑈). Then, the set 

{(𝜇(𝑥)𝑥, 𝛼(𝜇(𝑥)𝑥)): 𝑥 ∈ 𝐸} being the graphic of 𝛼 

is called a fuzzy parameterized fuzzy soft set (fpfs-

set) parameterized via 𝐸 over 𝑈 (or briefly over 𝑈). 

 

In the present paper, the set of all fpfs-sets over 𝑈 

is denoted by 𝐹𝑃𝐹𝑆𝐸(𝑈). In 𝐹𝑃𝐹𝑆𝐸(𝑈), since the 

𝑔𝑟𝑎𝑝ℎ(𝛼) and 𝛼 generated each other uniquely, 

the notations are interchangeable. Therefore, as 

long as it does not cause any confusion, we denote 

an fpfs-set 𝑔𝑟𝑎𝑝ℎ(𝛼) by 𝛼. 

 

Example 2.1. Let    𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}    and    

𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}. Then, 

𝛼 = {( 𝑥1
0.5 , { 𝑢1

0.7 , 𝑢4
0.3 }), ( 𝑥2

0 , { 𝑢1
0.1 , 𝑢3,

0.8 𝑢5
1 }),  

            ( 𝑥3
0.9 , { 𝑢1

0.4 , 𝑢2
0.2 , 𝑢4

0.7 }), ( 𝑥4
1 , { 𝑢1

0.6 , 𝑢5
0.9 })} 

is an fpfs-set over 𝑈. 

 

Definition 2.2. (Enginoğlu, 2012; Enginoğlu and 

Çağman, In Press) Let 𝛼 ∈ 𝐹𝑃𝐹𝑆𝐸(𝑈). Then, [𝑎𝑖𝑗] 

is called the matrix representation of 𝛼 (or briefly 

fpfs-matrix of 𝛼) and is defined by  

[𝑎𝑖𝑗] ≔

[
 
 
 
 
 
 
𝑎01 𝑎02 𝑎03 … 𝑎0𝑛 …

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ]
 
 
 
 
 
 

 

such that for 𝑖 ∈ {0,1,2,⋯ } and 𝑗 ∈ {1,2,⋯ }, 

𝑎𝑖𝑗 ≔ {
𝜇(𝑥𝑗), 𝑖 = 0

𝛼(𝜇(𝑥𝑗)𝑥𝑗)(𝑢𝑖), 𝑖 ≠ 0
 

Here, if |𝑈| = 𝑚 − 1 and |𝐸| = 𝑛, then [𝑎𝑖𝑗] has 

order 𝑚 × 𝑛. 

 

Throughout this paper, the set of all fpfs-matrices 

parameterized via 𝐸 over 𝑈 is denoted by 

𝐹𝑃𝐹𝑆𝐸[𝑈]. 
 

Example 2.2. The fpfs-matrix of the fpfs-set 𝛼 

provided in Example 2.1 is as follows:  

[𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
 
0.5 0 0.9 1

0.7 0.1 0.4 0.6

0 0 0.2 0

0 0.8 0 0

0.3 0 0.7 0

0 1 0 0.9]
 
 
 
 
 
 
 
 

 

Secondly, we present the normalised Hamming 

pseudo-similarity of fpfs-matrices. 

 

Definition 2.3. Let [𝑎𝑖𝑗], [𝑏𝑖𝑗] ∈ 𝐹𝑃𝐹𝑆𝐸[𝑈]. The 

normalised Hamming pseudo-similarity of [𝑎𝑖𝑗] 

and [𝑏𝑖𝑗] is defined by 

𝑠([𝑎𝑖𝑗], [𝑏𝑖𝑗]) ≔ 1 −
∑ ∑ |𝑎0𝑗𝑎𝑖𝑗 − 𝑏0𝑗𝑏𝑖𝑗|

𝑛
𝑗=1

𝑚−1
𝑖=1

(𝑚 − 1)𝑛
 

 

3. Fuzzy Parameterized Fuzzy Soft Normalized 

Hamming Classifier (FPFSNHC) 

 

In this section, firstly, we give some necessary 

notations. Let 𝑢, 𝑣 ∈ ℝ𝑛. Then, the Pearson 

correlation coefficient between 𝑢 and 𝑣 is defined 

by 

𝑃(𝑢, 𝑣) ≔
𝑛∑ 𝑢𝑖𝑣𝑖

𝑛
𝑖=1 − (∑ 𝑢𝑖

𝑛
𝑖=1 )(∑ 𝑣𝑖

𝑛
𝑖=1 )

√[𝑛∑ 𝑢𝑖
2𝑛

𝑖=1 − (∑ 𝑢𝑖
𝑛
𝑖=1 )2][𝑛∑ 𝑣𝑖

2𝑛
𝑖=1 − (∑ 𝑣𝑖

𝑛
𝑖=1 )2]

 

 

Throughout this paper, let [𝑑𝑚] be a data matrix 

having order 𝑚 × 𝑛, [𝑑�̃�] be the feature 

fuzzification of [𝑑𝑚], the last column of [𝑑�̃�] be 

the class column, [𝑡𝑚] be a training matrix which 

is a submatrix of [𝑑𝑚], [𝑡𝑚𝑟] be a submatrix of 

[𝑡𝑚] whose values of the last column are equal to 

𝑟, and [𝑡𝑚]𝑗 be 𝑗𝑡ℎ column of [𝑡𝑚]. 
 

Secondly, we propose FPFSNHC classification 

algorithm. FPFSNHC’s steps are as follows: 
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FPFSNHC’s Algorithm Steps 

Step 1. Read a nonempty [𝑑𝑚] 
Step 2. Calculate the feature weight vector 
[𝑓𝑤1𝑗] based on the Pearson correlation 

coefficient between feature vectors and class 

vector defined by 

𝑓𝑤1𝑗 ≔ 𝑃([𝑑𝑚]𝑗 , [𝑑𝑚]𝑛), 𝑓𝑜𝑟 𝑗 ∈ {1,2,… , 𝑛 − 1} 

Step 3. Obtain [𝑑�̃�] such that for 𝑖 ∈

{1,2, … ,𝑚} and 𝑗 ∈ {1,2, … , 𝑛}, 

𝑑�̃�𝑖𝑗 ≔ {

𝑑𝑚𝑖𝑗

max
𝑘

𝑑𝑚𝑘𝑗

, 𝑗 ≠ 𝑛

𝑑𝑚𝑖𝑗 , 𝑗 = 𝑛

 

Step 4. Obtain [𝑡𝑚] from the [𝑑�̃�] 
Step 5. Obtain [𝑡𝑚𝑟] for all 𝑟 
Step 6. Calculate the cluster centre matrix [𝑒𝑟𝑗] 
such that for 𝑖 ∈ {1,2, … , 𝑘𝑟} and 𝑗 ∈

{1,2, … , 𝑛 − 1}, 

𝑒𝑟𝑗 ≔
1

𝑘𝑟

∑𝑡𝑚𝑖𝑗
𝑟

𝑘𝑟

𝑖=1

 

Here, 𝑘𝑟 is row number of [𝑡𝑚𝑟]. 
Step 7. Obtain the train fpfs-matrices [𝑎𝑖𝑗

𝑟 ] such 

that for all 𝑟, 𝑎0𝑗
𝑟 = 𝑓𝑤1𝑗 and 𝑎1𝑗

𝑟 = 𝑒𝑟𝑗 

Step 8. Obtain the unknown class data [𝑢1𝑗] 
from the test data 
Step 9. Obtain the test fpfs-matrix [𝑏𝑖𝑗] such 
that 𝑏0𝑗 = 𝑓𝑤1𝑗 and 𝑏1𝑗 = 𝑢1𝑗 
Step 10. Compute 𝑆𝑟 for all 𝑟 defined by 

𝑆𝑟 ≔ 𝑠([𝑎𝑖𝑗
𝑟 ], [𝑏𝑖𝑗]) = 1 −

∑ ∑ |𝑎0𝑗
𝑟 𝑎𝑖𝑗

𝑟 − 𝑏0𝑗𝑏𝑖𝑗|
𝑛
𝑗=1

𝑚−1
𝑖=1

(𝑚 − 1)𝑛
 

Step 11. Obtain 𝑐 such that 𝑐 = argmax
𝑟

𝑆𝑟 

Step 12. Assign the data [𝑢1𝑗] without class to 

class 𝑐 
Step 13. Repeat Step 9-12 for all data [𝑢1𝑗] 
without class in test data 

 

4. Simulation Results 

 

In this section, we first simulate the algorithms 

using “Breast Cancer Wisconsin (Diagnostic)”, 

“Immunotherapy”, “Pima Indian Diabetes”, and 

“Statlog Heart” datasets provided in UCI Machine 

Learning Repository (Dua and Graff, 2019) and 

detailed in Table 1. We then compare the 

performance of the algorithms by using four 

performance criterions: accuracy, precision, recall, 

and F-measure, defined by 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≔
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑅𝑒𝑐𝑎𝑙𝑙 ≔
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ≔
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 ≔
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

where 𝑇𝑃: True positive, 𝐹𝑃: False positive, 𝑇𝑁: 

True negative, and 𝐹𝑁: False negative. 

 

Here, the accuracy of a classifier is calculated by 

dividing the total correctly classified positives and 

negatives by the total number of samples, the 

precision of a classifier is calculated by dividing 

correctly classified positives by the total positive 

count, the recall of a classifier is calculated by 

dividing correctly classified positives by total true 

positive class, and the F-measure of a classifier is 

harmonic mean of precision and recall values. 

 

Table 1. Description of The UCI data sets. 
No. Name Instances Attributes Class 

1 Breast Cancer 569 30 2 
2 Immunotherapy 90 7 2 

3 Pima Diabetes 768 8 2 

4 Statlog Heart 270 13 2 

 

Secondly, we present the performance results of 

the algorithms in Table 2 for “Breast Cancer 

Wisconsin (Diagnostic)”, in Table 3 

“Immunotherapy” data sets, in Table 4 for “Pima 

Indian Diabetes”, and in Table 5 “Statlog Heart” 

data sets. In Figures 1-4, we give the figures of 

Table 2-5. In Table 6 and Figure 5, we give the 

running times of algorithms for all of four medical 

data sets. We use MATLAB R2019a and a 

workstation with I(R) Xeon(R) CPU E5-1620 

v4@3.5 GHz and 64 GB RAM for simulation. All 

simulation results are obtained at random 100 

independent runs. A split of data 80 per cent is a 

training set, and 20 per cent is a testing set. The 

performance results are obtained by averaging the 

performance values of each class. 

 

Table 2. The average accuracy, precision, recall, 

and F-measure results (%) of algorithms for 

“Breast Cancer Wisconsin (Diagnostic)” data set. 
 Breast Cancer Wisconsin (Diagnostic) 

Classifier Accuracy Precision Recall F-Measure 

FSSC 93.54 93.16 92.98 93.00 

FussCyier 93.77 94.40 92.27 93.11 

HDFSSC 92.90 92.90 91.79 92.23 

Fuzzy kNN 91.35 91.05 90.30 90.56 

FPFSNHC 94.10 94.64 92.70 93.48 
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Table 3. The average accuracy, precision, recall, 

and F-measure results (%) of algorithms for 

“Immunotherapy” data set. 
 Immunotherapy 

Classifier Accuracy Precision Recall F-Measure 

FSSC 62.28 61.15 65.84 56.69 

FussCyier 68.00 63.48 68.12 60.99 

HDFSSC 67.89 62.98 68.09 60.78 

Fuzzy kNN 61.33 45.04 45.60 43.18 

FPFSNHC 70.67 66.68 73.16 64.63 

 

Table 4. The average accuracy, precision, recall, 

and F-measure results (%) of algorithms for “Pima 

Indian Diabetes” data set. 
 Pima Indian Diabetes 

Classifier Accuracy Precision Recall F-Measure 

FSSC 70.69 69.97 71.70 69.62 

FussCyier 73.01 70.62 70.91 70.58 

HDFSSC 73.24 71.23 72.28 71.41 

Fuzzy kNN 67.27 64.25 64.22 64.03 

FPFSNHC 73.94 71.51 71.61 71.43 

Table 5. The average accuracy, precision, recall, 

and F-measure results (%) of algorithms for 

“Statlog Heart” data set. 
 Statlog Heart 

Classifier Accuracy Precision Recal

l 

F-Measure 

FSSC 80.78 81.30 81.61 80.49 

FussCyier 82.46 82.54 81.69 81.73 

HDFSSC 79.81 79.50 79.36 79.18 

Fuzzy kNN 58.22 57.84 57.70 57.01 

FPFSNHC 83.39 83.79 82.50 82.62 

 

Table 6. The mean running times of the algorithms 

for the data sets (In Seconds). 

Classifier 
Breast 

Cancer 
Immunotherapy 

Pima 

Indian 

Diabetes 

Statlog 

Heart 

FSSC 0.00113 0.00039 0.00125 0.00063 

FussCyier 0.00077 0.00041 0.00074 0.00050 

HDFSSC 0.00085 0.00036 0.00089 0.00050 

Fuzzy kNN 0.00681 0.00041 0.00557 0.00114 

FPFSNHC 0.00157 0.00053 0.00157 0.00084 

 
Figure 1. The Figure of the average accuracy, precision, recall, and F-measure results (%) of algorithms for 

“Breast Cancer Wisconsin (Diagnostic)” dataset in Table 2 

 

 
Figure 2. The Figure of the average accuracy, precision, recall, and F-measure results (%) of algorithms for 

“Immunotherapy” dataset in Table 3 
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Figure 3. The Figure of the average accuracy, precision, recall, and F-measure results (%) of algorithms for 

“Pima Indian Diabetes” dataset in Table 4 

 

 
 

Figure 4. The Figure of the average accuracy, precision, recall, and F-measure results (%) of algorithms for 

“Statlog Heart” dataset in Table 5 

 

 
 

Figure 5. The Figure of the mean running times of the algorithms for the data sets in Table 6 
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5. Conclusion 

 

In this paper, we have proposed the classification 

method FPFSNHC based on normalised Hamming 

pseudo-similarity of fpfs-matrices. We then 

compare proposed method with FSSC (Handaga et 

al. 2012), FussCyier (Lashari et al. 2017), 

HDFSSC (Yanto et al., 2018), and Fuzzy kNN 

(Keller et al. 1985) in terms of the performance 

criterions (accuracy, precision, recall, and F-

measure) and running times by using four medical 

data sets in the UCI machine learning repository 

(Dua and Graff, 2019). In Immunotherapy data set,  

FPFSNHC (70.67, 66.68, 73.16, 64.63) has 

advantage over  FSSC (62.28, 61.15, 65.84, 56.69), 

FussCyier (68.00, 63.48, 68.12, 60.99), HDFSSC 

(67.89, 62.98, 68.09, 60.78), and Fuzzy kNN 

(61.33, 45.04, 45.60, 43.18) and in Statlog Heart 

data set,  FPFSNHC (83.39, 83.79, 82.50, 82.62) 

has advantage over  FSSC (80.78, 81.30, 81.61, 

80.49), FussCyier (82.46, 82.54, 81.69, 81.73), 

HDFSSC (79.81, 79.50, 79.36, 79.18), and Fuzzy 

kNN (58.22, 57.84, 57.70, 57.01),  concerning 

accuracy, precision, recall, and F-measure results, 

respectively. The results show that the proposed 

method performs better than FSSC, FussCyier, 

HDFSSC, and Fuzzy kNN for the data sets. 

Moreover, fpfs-matrices can model classification 

problems containing uncertainty about which 

parameters being more effective to classify data. 

Therefore, it is worthwhile to study developing 

different classification algorithms by using 

different similarity measures of fpfs-matrices 

because success can be increased by using different 

data sets and membership functions.  

 

Moreover, different classification algorithms also 

can be developed by using soft decision-making 

methods via fpfs-matrices such as (Enginoğlu and 

Memiş, 2018a, b, c, d; Enginoğlu et al., 2018a, b, 

c, d; Enginoğlu and Çağman, In Press). 

Additionally, this study also gives an inspiration 

about how to construct fpfs-matrices for real-life 

problems such as data classification. 
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