Proceedings of International Conference on Mathematics and Mathematics Education (ICMME 2019)

Turk. J. Math. Comput. Sci.

11(Special Issue)((2019)) 81–84

© MatDer

https://dergipark.org.tr/tjmcs

http://tjmcs.matder.org.tr

Total Domination Number of Regular Dendrimer Graph

ÜMMÜGÜLSÜM ŞENER¹, BÜNYAMIN ŞAHIN^{1,*}

¹Department of Mathematics, Faculty of Science, Selçuk University, 42130, Konya, Turkey.

Received: 29-08-2019 • Accepted: 16-12-2019

ABSTRACT. In this paper total domination number is calculated for regular dendrimer graph. New equations are obtained for regular dendrimers by using geometric series properties.

2010 AMS Classification: 05C69.

Keywords: Domination, total domination.

1. Introduction

Let G = (V, E) be a simple connected graph whose vertex set V and the edge set E. For the open neighborhood of a vertex v in a graph G, the notation $N_G(v)$ is used as $N_G(v) = \{u | (u, v) \in E(G)\}$ and the closed neighborhood of V is used as $N_G[v] = N_G(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighborhood of S is $N(S) = \bigcup_{v \in S} N(v)$ and the closed neighborhood of S is $N[S] = N(S) \cup S$.

A subset $D \subseteq V$ is a dominating set, if every vertex in G either is element of D or is adjacent to at least one vertex in D. The domination number of a graph G is denoted with $\gamma(G)$ and it is equal to the minimum cardinality of a dominating set in G. By a similar definition, a subset $D \subseteq V$ is a total dominating set if every vertex of G has a neighbor in D. The total domination number of a graph G is denoted with $\gamma_t(G)$ and it is equal to the minimum cardinality of a total dominating set in G. Fundamental notions of domination theory are outlined in the book [2,3].

The number of papers about domination number of chemical graphs is limited. For example, number of dominating sets of cactus chains is determined in [5] and domination number of some classes of benzenoid chains is studied in [1,4,8,10]. Moreover, domination number of regular dendrimer is studied in [9].

In this paper, we attain total domination number of regular dendrimers.

Dendrimers are highly branched trees [7]. A regular dendrimer $T_{k,d}$ is a tree with a central vertex v. Every non-pendant vertex of $T_{k,d}$ is of degree $d \ge 2$ and the radius is k, distance from v to each pendant vertex. Dendrimers $T_{2,4}$ and $T_{3,4}$ are demonstrated in Figure 1. Some properties of regular dendrimers are denoted in the following lemma [6].

Lemma 1.1. If $T_{k,d}$ is a tree with central vertex v, then

i) The order of
$$T_{k,d}$$
 is $1 + \frac{d[(d-1)^k - 1]}{d-2}$,

Email addresses: sener.ummu8x8@gmail.com (Ü. Şener), bunyamin.sahin@selcuk.edu.tr (B. Şahin),

^{*}Corresponding Author

Total Domination Number 82

Figure 1. Dendrimers $T_{2,4}$ and $T_{3,4}$

- ii) $T_{k,d}$ has d branches,
- iii) Each branch of $T_{k,d}$ has $\frac{(d-1)^k-1}{d-2}$ vertices,
- iv) Each branch of $T_{k,d}$ has $(d-1)^{k-1}$ pendant vertices,
- v) Each branch of $T_{k,d}$ has $\frac{(d-1)^{k-1}-1}{d-2}$ nonpendant vertices,
- vi) The number of vertices on radius k is $d(d-1)^{k-1}$.

2. Main Results

We remind domination number of paths and cycles in the next lemma.

Lemma 2.1 ([2]). Let P_n path and C_n cycle with n vertices,

$$\gamma(P_n) = \gamma(C_n) = \lceil \frac{n}{3} \rceil.$$

Observation 2.2. For every connected graph G, every support vertex is contained by every total dominating set.

Theorem 2.3. If $T_{k,d}$ be a regular dendrimer, then total domination number of a regular dendrimer $T_{k,d}$ is

$$\gamma_t(T_{k,d}) = \begin{cases} 2 + d^2(d-1)\frac{(d-1)^k - 1}{(d-1)^4 - 1}, & k \equiv 0 \ (mod \ 4) \\ 2 + d^2(d-1)^2\frac{(d-1)^{k-1} - 1}{(d-1)^4 - 1}, & k \equiv 1 \ (mod \ 4) \\ 1 + d + d^2(d-1)^3\frac{(d-1)^{k-2} - 1}{(d-1)^4 - 1}, & k \equiv 2 \ (mod \ 4) \\ d^2\frac{(d-1)^{k+1} - 1}{(d-1)^4 - 1}, & k \equiv 3 \ (mod \ 4) \end{cases}.$$

Proof. Let k is a multiple of four. In this case the dominating set of $T_{k,d}$ is consisted of central vertex v, a vertex from first radius and vertices on radius $k = 2, 3, 6, 7, \dots, k - 2, k - 1$. Summation of all vertices is by Lemma 1.1 (vi),

$$\gamma_{t}(T_{k,d}) = 1 + 1 + d(d-1) + d(d-1)^{2} + d(d-1)^{5} + d(d-1)^{6} + \dots + d(d-1)^{k-3} + d(d-1)^{k-2}$$

$$= 2 + d(d-1) + d(d-1)^{5} + \dots + d(d-1)^{k-3} + d(d-1)^{2} + d(d-1)^{6} + \dots + d(d-1)^{k-2}$$

$$= 2 + d(d-1)[1 + (d-1)^{4} + \dots + (d-1)^{k-4}] + d(d-1)^{2}[1 + (d-1)^{4} + \dots + (d-1)^{k-4}]$$

$$= 2 + (d(d-1) + d(d-1)^{2})[1 + (d-1)^{4} + \dots + (d-1)^{k-4}].$$

The second term of the equation is a geometric series such that $r = (d-1)^4$ and then,

$$\gamma_t(T_{k,d}) = 2 + d^2(d-1)\frac{r^{\frac{k-4}{4}+1} - 1}{r-1}$$
$$= 2 + d^2(d-1)\frac{(d-1)^k - 1}{(d-1)^4 - 1}.$$

Now let $k \equiv 1 \pmod{4}$. For this case, the dominating set of $T_{k,d}$ is consisted of central vertex v, a vertex from first radius and vertices on radius $k = 3, 4, 7, 8, \dots, k - 2, k - 1$. Summation of all vertices is,

$$\gamma_{t}(T_{k,d}) = 1 + 1 + d(d-1)^{2} + d(d-1)^{3} + d(d-1)^{6} + d(d-1)^{7} + \dots + d(d-1)^{k-3} + d(d-1)^{k-2}$$

$$= 2 + d(d-1)^{2} + d(d-1)^{6} + \dots + d(d-1)^{k-3} + d(d-1)^{3} + d(d-1)^{7} + \dots + d(d-1)^{k-2}$$

$$= 2 + d(d-1)^{2} [1 + (d-1)^{4} + \dots + (d-1)^{k-5}] + d(d-1)^{3} [1 + (d-1)^{4} + \dots + (d-1)^{k-5}]$$

$$= 2 + (d(d-1)^{2} + d(d-1)^{3}) [1 + (d-1)^{4} + \dots + (d-1)^{k-5}].$$

The second term of the equation is a geometric series such that $r = (d-1)^4$ and then,

$$\gamma_t(T_{k,d}) = 2 + d^2(d-1)^2 \frac{r^{\frac{k-5}{4}+1} - 1}{r-1}$$
$$= 2 + d^2(d-1)^2 \frac{(d-1)^{k-1} - 1}{(d-1)^4 - 1}.$$

Now we assume that $k \equiv 2 \pmod{4}$. For this case, the dominating set of $T_{k,d}$ is consisted of central vertex v, a vertex from first radius and vertices on radius $k = 1, 4, 5, 8, 9, \dots, k - 2, k - 1$. Summation of all vertices is,

$$\gamma_{t}(T_{k,d}) = 1 + d + d(d-1)^{3} + d(d-1)^{4} + d(d-1)^{7} + d(d-1)^{8} + \dots + d(d-1)^{k-3} + d(d-1)^{k-2}$$

$$= 1 + d + d(d-1)^{3} + d(d-1)^{7} + \dots + d(d-1)^{k-3} + d(d-1)^{4} + d(d-1)^{8} + \dots + d(d-1)^{k-2}$$

$$= 1 + d + d(d-1)^{3} [1 + (d-1)^{4} + \dots + (d-1)^{k-6}] + d(d-1)^{4} [1 + (d-1)^{4} + \dots + (d-1)^{k-6}]$$

$$= 1 + d + (d(d-1)^{3} + d(d-1)^{4}) [1 + (d-1)^{4} + \dots + (d-1)^{k-6}].$$

The second term of the equation is a geometric series such that $r = (d-1)^4$ and then,

$$\gamma_t(T_{k,d}) = 1 + d + d^2(d-1)^3 \frac{r^{\frac{k-6}{4}+1} - 1}{r-1}$$
$$= 1 + d + d^2(d-1)^3 \frac{(d-1)^{k-2} - 1}{(d-1)^4 - 1}.$$

Finally, we assume that $k \equiv 3 \pmod{4}$. For this case, the dominating set of $T_{k,d}$ is consisted of vertices on radius $k = 1, 2, 5, 6, 9, 10, \dots, k - 2, k - 1$. Thus,

$$\gamma_{t}(T_{k,d}) = d + d(d-1) + d(d-1)^{4} + d(d-1)^{5} + d(d-1)^{8} + d(d-1)^{9} + \dots + d(d-1)^{k-3} + d(d-1)^{k-2}
= d + d(d-1)^{4} + d(d-1)^{8} + \dots + d(d-1)^{k-3} + d(d-1) + d(d-1)^{5} + d(d-1)^{9} + \dots + d(d-1)^{k-2}
= d[1 + (d-1)^{4} + \dots + (d-1)^{k-3}] + d(d-1)[1 + (d-1)^{4} + \dots + (d-1)^{k-3}]
= (d(d-1) + d)[1 + (d-1)^{4} + \dots + (d-1)^{k-3}].$$

We have $r = (d-1)^4$ and from this,

$$\gamma_t(T_{k,d}) = d^2 \frac{r^{\frac{k-3}{4}+1} - 1}{r-1}$$

$$= d^2 \frac{(d-1)^{k+1} - 1}{(d-1)^4 - 1}.$$

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this article.

REFERENCES

- [1] Gao, Y., Zhu, E., Shao, Z., Gutman, I., Klobucar, A., *Total domination and open packing in some chemical graphs*, Journal of Mathematical Chemistry, **56**(2018), 1481–1492. 1
- [2] Haynes, T.W., Hedetniemi, S.T., Slater, P.J., Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998. 1, 2.1
- [3] Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [4] Hutchinson, L., Kamat, V., Larson, C.E., Mehta, S., Muncy, D., Van Cleemput, N., Automated Conjecturing VI: Domination number of benzenoids, MATCH Commun. Math. Comput. Chem., 80(2018), 821–834. 1

Total Domination Number 84

[5] Majstorovic, S., Doslic, T., Klobucar, A., k-domination on hexagonal cactus chains, Kragujevac Journal of Mathematics, 2(2012), 335–347. 1

- [6] Nagar, A.K., Sriam, S., On eccentric connectivity index of eccentric graph of regular dendrimer, Mathematics in Computer Science, 10(2016), 229–237. 1
- [7] Newkome, G.R., Moorefield, C.N., Vogtle, F., Dendrimers and Dendrons: Concepts, Syntheses, Applications, Wiley-VCH, verlag GmbH and Co.KGaA, 2002. 1
- [8] Quadras, J., Mahizl, A.S.M., Rajasingh, I., Rajan, R.S., Domination in certain chemical graphs, J. Mathematical Chemistry, 53(2015), 207–219. 1
- [9] Şahin, B., Şahin, A., On domination type invariants of regular dendrimer, Journal of Mathematical Nanoscience, 8(1)(2018), 27–31. 1
- [10] Vukicevic, D., Klobucar, A., k-dominating sets on linear benzenoids and on the infinite hexagonal grid, Croatica Chemica Acta, 80(2)(2007), 187–191. 1