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Classification of the Monolithic Columns Produced in Troad 

and Mysia Region Ancient Granite Quarries in Northwestern 

Anatolia via Soft Decision-Making

Serdar Enginoğlu1*, Murat Ay2, Naim Çağman3, Veysel Tolun2 

Abstract: Ay and Tolun [An Archaeometric Approach on the Distribution of Troadic Granite Columns in 

the Western Anatolian Coasts.  Journal of Archaeology & Art, 156, 2017, 119-130 (In Turkish)] have 

analysed the distribution of the monolithic columns produced in the ancient granite quarries, located in 

Troad Region and Mysia Region in Northwestern Anatolia, by archaeometric analyses. Moreover, they 

have achieved some results by interpreting the prominent data obtained therein. In this study, we propose a 

novel soft decision-making method, i.e. Monolithic Columns Classification Method (MCCM), constructed 

via fuzzy parameterized fuzzy soft matrices (fpfs-matrices) and Prevalence Effect Method (PEM). MCCM 

provides an outcome by interpreting all the results of the analyses mentioned above. We then apply the 

method to the problem of monolithic columns classification. Finally, we discuss the need for further 

research. 

Keywords: Ancient Granite Quarries, Classification, fpfs-matrices, Monolithic Columns, Soft Decision-

Making 

1. Introduction

In the Roman Imperial Period, Troad Region and 

Mysia Region are two essential regions contained 

ancient granite quarries (Figure 1. a.) (Galetti et 

al., 1992; Williams-Thorpe and Thorpe, 1993; 

Williams-Thorpe and Henty, 2000) such as Koçali 

(Figure 1. b.), Akçakeçili (Figure 1. c.), and 

Kozak (Figure 1. d.) which known to be produced 

monolithic granite columns in Anatolia. While 

Koçali and Akçakeçili ancient granite quarries in 

Troad Region (Ponti, 1995; Ay, 2017; Ay and 

Tolun, 2017a, b) are located in Ezine/Çanakkale, 

Kozak ancient granite quarry in Mysia Region 

(Williams-Thorpe et al., 2000) is located in 

Bergama/Izmir. 

However, there are not exist a sufficient number 

of an archaeological document about some 

subjects such as the exportation of the columns 

produced in these centres located in Troad and 

Mysia Region.  

For this reason, to locate the source of a column 

considered in an ancient city, the method 

commonly used is to compare some 

archaeological samples taken from this city and 

some geological samples taken from the granite 

quarries by using mineralogical-petrographic and 

geochemical analyses (Williams-Thorpe and 

Thorpe, 1993; Williams-Thorpe and Henty, 2000; 

Williams-Thorpe et al., 2000; Potts, 2002; 

Williams-Thorpe, 2008; Ay, 2017; Ay and Tolun, 

2017b). 

The mineralogical-petrographic analyses are an 

examination of the samples in a microscopic 

environment using their thin sections. These 

analyses carry out to determine the types, 

quantities, sizes, and shapes of the minerals 

forming the rock types, main and secondary 

components of the samples (Galetti et al., 1992; 

Williams-Thorpe, 2008; Ay, 2017; Ay and Tolun, 
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2017b). The geochemical analyses perform in 

determining the type and number of major 

elements contained in the samples (Galetti et al., 

1992; Potts, 2002; Williams-Thorpe, 2008). 

Recently, Ay and Tolun have examined the 

distribution in Northwestern Anatolia of the 

monolithic columns produced in the ancient 

granite quarries, located in Troad Region and 

Mysia Region, by using archaeometric methods 

(Ay, 2017; Ay and Tolun, 2017b). For this aim, 

by using the qualitative mineralogical-

petrographic and geochemical analyses, they have 

compared the geological samples taken from 

Koçali-Akçakeçili ancient quarries in Troad 

Region and Kozak ancient quarry in Mysia 

Region with the archaeological samples taken 

from Smintheion (Smintheion 1, Smintheion 2), 

Pergamon Red Hall/Serapeion, Smyrna Agora 

(Smyrna Agora 1, Smyrna Agora 2), Tlos 

Stadium, Tlos Theatre, and Side Theatre.  

Moreover, Ay and Tolun have divided the 

samples into two groups as ancient granite 

quarries and ancient city (Figure 2). They first 

have compared the results of each group in itself. 

Afterwards, they have compared separately the 

archaeological samples with the geological 

samples and have revealed which archaeological 

samples are more similar to which geological.  

The results show that the granite columns in 

Smintheion 1, Smintheion 2, Smyrna Agora 2, 

Tlos Stadium, and Side Theatre may originate 

from the Koçali-Akçakeçili granite quarries 

located in Troad Region while the others may 

originate from Kozak quarry located in Mysia 

Region. 

a. 

b. 

c. 

d. 

Figure 1. a. Troad and Kozak ancient quarries in 

the Roman period (Williams-Thorpe, 2008) b. 

Akçakeçili quarry c. Koçali quarry d. Kozak 

quarry (De Vecchi et al., 2000)  

The concept of soft sets was introduced by 

Molodtsov (1999) to cope with uncertainty and 

have been applied to many areas from analysis to 

decision-making problems (Maji et al., 2001; 

Çağman and Enginoğlu, 2010; Çağman et al., 

2010; Çağman et al., 2011a; Çağman and Deli, 

2012; Deli and Çağman, 2015; Enginoğlu and 

Demiriz, 2015; Enginoğlu and Dönmez, 2015; 

Enginoğlu et al., 2015; Karaaslan, 2016; Şenel, 

2016; Zorlutuna and Atmaca, 2016; Atmaca, 

2017; Bera et al., 2017; Çıtak and Çağman, 2017; 

Şenel, 2017; Çıtak, 2018; Enginoğlu and Memiş, 
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2018a, b, c, d; Enginoğlu et al., 2018a, b, c, d; 

Gulistan et al., 2018; Mahmood et al., 2018; Riaz 

and Hashmi, 2018; Riaz et al., 2018; Şenel, 2018; 

Ullah et al., 2018). Recently, some soft decision-

making methods constructed by fuzzy 

parameterized fuzzy soft matrices (fpfs-matrices) 

have enabled data processing in many problems 

containing uncertainty. Being one of these 

methods, Prevalence Effect Method (PEM) 

(Enginoğlu and Çağman, In Press) has been 

applied to a performance-based value assignment 

to some methods used in noise removal so that the 

methods can be ordered in terms of performance. 

We use this method for classification the 

monolithic columns mentioned in (Ay, 2017; Ay 

and Tolun, 2017b). The results show that 

Monolithic Columns Classification Method 

(MCCM) is successfully model the monolithic 

columns classification (MCC) problem. Here, 

fpfs-matrices have a row consisting of the 

significance degrees (membership degrees) of the 

parameters. These values are usually determined 

by consulting an expert. 

Figure 2. The estimated-distribution of Troad 

granite columns in Western Anatolia (Ay and 

Tolun, 2017b) 

In this study, we have identified the values, that 

is, the weights of archaeometric and geochemical 

parameters, concerning the opinions mentioned in 

(Ay, 2017; Ay and Tolun, 2017b). Moreover, Ay 

and Tolun have considered of more effective the 

geochemical data than the archaeometric data. 

Therefore, we set a higher value to geochemical 

data than archaeometric data in the final decision 

step.  

In Section 2 of the present study, we present the 

concept of fpfs-matrices and PEM. In Section 3, 

we give all the results of the qualitative 

mineralogical-petrographic and geochemical 

analyses provided in (Ay, 2017; Ay and Tolun, 

2017b). In Section 4, we propose a new method, 

i.e. MCCM. In section 5, we apply MCCM to the 

MCC problem. Finally, we discuss the need for 

further research.  

2. Preliminaries

In this section, we first present the concept of 

fuzzy soft matrices (fs-matrices) (Çağman and 

Enginoğlu, 2012). Throughout this paper, let 𝑈 be 

universal set, 𝐸 be a parameter set, 𝐹(𝐸) be the 

set of all fuzzy sets over 𝐸, and 𝜇 ∈ 𝐹(𝐸). Here, a 

fuzzy set is denoted by { 𝑥
𝜇(𝑥)

∶ 𝑥 ∈ 𝐸}. 

Definition 2.1. (Çağman et al., 2011b) Let 𝑈 be a 

universal set, 𝐸 be a parameter set, and 𝛼 be a 

function from 𝐸 to 𝐹(𝑈). Then, the set 

{(𝑥, 𝛼(𝑥)): 𝑥 ∈ 𝐸} being the graphic of 𝛼 is called 

a fuzzy soft set (fs-set) parameterized via 𝐸 over 

𝑈 (or briefly over 𝑈). 

In the present paper, the set of all fs-sets over 𝑈 is 

denoted by 𝐹𝑆𝐸(𝑈). In 𝐹𝑆𝐸(𝑈), since the graphic

of 𝛼 (𝑔𝑟𝑎𝑝ℎ(𝛼)) and 𝛼 generate each other 

uniquely, the notations are interchangeable. 

Therefore, as long as it does not cause any 

confusion, we denote an fs-set 𝑔𝑟𝑎𝑝ℎ(𝛼) by 𝛼. 

Example 2.1. Let 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}    and 

𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}. Then,

𝛼 = {(𝑥1, { 𝑢1
0.9 , 𝑢4

0.5 }), (𝑥2, { 𝑢2
0.3 , 𝑢3

0.5 }),

 (𝑥3, { 𝑢1
0.7 , 𝑢3

0.8 , 𝑢4
0.6 }), (𝑥4, {𝑢3, 𝑢5

0.9 })}

is an fs-set over 𝑈. Here, for brevity, the notation 

𝑢3 is used instead of 𝑢3
1  and also the elements

which have zero membership value such as 𝑢3
0

does not show in the sets containing them.  

Definition 2.2. (Çağman and Enginoğlu, 2012) 

Let 𝛼 ∈ 𝐹𝑆𝐸(𝑈). Then, [𝑎𝑖𝑗] is called the matrix

representation of 𝛼 (or briefly fs-matrix of 𝛼) and 

is defined by  

[𝑎𝑖𝑗] ≔

[
 
 
 
 
 
 
𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

𝑎21 𝑎22 𝑎23 ⋯ 𝑎2𝑛 ⋯

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ]
 
 
 
 
 
 

such that for 𝑖 ∈ {1,2,⋯ } and 𝑗 ∈ {1,2,⋯ }, 𝑎𝑖𝑗 ≔

𝛼(𝑥𝑗)(𝑢𝑖), where 𝛼(𝑥𝑗)(𝑢𝑖) refers to the

membership degree of 𝑢𝑖 in the fuzzy set

𝛼(𝑥𝑗).Here, if |𝑈| = 𝑚 and |𝐸| = 𝑛, then [𝑎𝑖𝑗]

has order 𝑚 × 𝑛. 
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From now on, the set of all fs-matrices 

parameterized via 𝐸 over 𝑈 is denoted by 𝐹𝑆𝐸[𝑈]. 
Example 2.2. The fs-matrix of 𝛼 provided in 

Example 2.1 is as follows:  

[𝑎𝑖𝑗] =

[
 
 
 
 
 
0.9 0 0.7 0

0 0.3 0 0

0 0.5 0.8 1

0.5 0 0.6 0

0 0 0 0.9]
 
 
 
 
 

 

 

Secondly, we present the concept of fpfs-matrices. 

 

Definition 2.3. (Çağman et al., 2010; Enginoğlu, 

2012) Let 𝑈 be a universal set, 𝜇 ∈ 𝐹(𝐸), and 𝛼 

be a function from 𝜇 to 𝐹(𝑈). Then, the set 

{(𝜇(𝑥)𝑥, 𝛼(𝜇(𝑥)𝑥)): 𝑥 ∈ 𝐸} being the graphic of 𝛼 

is called a fuzzy parameterized fuzzy soft set 

(fpfs-set) parameterized via 𝐸 over 𝑈 (or briefly 

over 𝑈). 

 

In the present paper, the set of all fpfs-sets over 𝑈 

is denoted by 𝐹𝑃𝐹𝑆𝐸(𝑈). In 𝐹𝑃𝐹𝑆𝐸(𝑈), since the 

𝑔𝑟𝑎𝑝ℎ(𝛼) and 𝛼 generate each other uniquely, 

the notations are interchangeable. Therefore, as 

long as it does not cause any confusion, we 

denote an fpfs-set 𝑔𝑟𝑎𝑝ℎ(𝛼) by 𝛼. 

 

Example 2.3. Let    𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}    and    

𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}. Then, 

𝛼 = {(0.8𝑥1, {
0.9𝑢1,

0.5 𝑢4}), (
0𝑥2, {

0.3𝑢2,
0.5 𝑢3}),     

        (0.1𝑥3, {
0.7𝑢1,

0.8 𝑢3,
0.6 𝑢4}), (

1𝑥4, {
1𝑢3,

0.9 𝑢5})}
 

is an fpfs-set over 𝑈. 

 

Definition 2.4. (Enginoğlu, 2012; Enginoğlu and 

Çağman, In Press) Let 𝛼 ∈ 𝐹𝑃𝐹𝑆𝐸(𝑈). Then, 

[𝑎𝑖𝑗] is called the matrix representation of 𝛼 (or 

briefly fpfs-matrix of 𝛼) and is defined by  

[𝑎𝑖𝑗] ≔

[
 
 
 
 
 
 
𝑎01 𝑎02 𝑎03 … 𝑎0𝑛 …

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ]
 
 
 
 
 
 

 

such that for 𝑖 ∈ {0,1,2,⋯ } and 𝑗 ∈ {1,2,⋯ }, 

𝑎𝑖𝑗 ≔ {
𝜇(𝑥𝑗), 𝑖 = 0

𝛼(𝜇(𝑥𝑗)𝑥𝑗)(𝑢𝑖), 𝑖 ≠ 0
 

Here, if |𝑈| = 𝑚 − 1 and |𝐸| = 𝑛, then [𝑎𝑖𝑗] has 

order 𝑚 × 𝑛. 

 

Herein, the set of all fpfs-matrices parameterized 

via 𝐸 over 𝑈 is denoted by 𝐹𝑃𝐹𝑆𝐸[𝑈]. 

Example 2.4. The fpfs-matrix of 𝛼 provided in 

Example 2.3 is as follows:  

[𝑎𝑖𝑗] =

[
 
 
 
 
 
0.8 0 0.1 1
0.9 0 0.7 0
0 0.3 0 0
0 0.5 0.8 1
0.5 0 0.6 0
0 0 0 0.9]

 
 
 
 
 

 

Definition 2.5. (Enginoğlu, 2012; Enginoğlu and 

Çağman, In Press) Let [𝑎𝑖𝑗] ∈ 𝐹𝑃𝐹𝑆𝐸[𝑈]. For all 

𝑖 and 𝑗, if 𝑎𝑖𝑗 = 𝜆, then [𝑎𝑖𝑗] is called 𝜆-fpfs-

matrix and is denoted by [𝜆]. Here, [0] is called 

empty fpfs-matrix and [1] is called universal fpfs-

matrix. 

 

Definition 2.6. (Enginoğlu, 2012; Enginoğlu and 

Çağman, In Press) Let [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] ∈

𝐹𝑃𝐹𝑆𝐸[𝑈]. For all 𝑖 and 𝑗, if 𝑐𝑖𝑗 ≔ |𝑎𝑖𝑗 − 𝑏𝑖𝑗|, 

then [𝑐𝑖𝑗] is called symmetric difference between 

[𝑎𝑖𝑗] and [𝑏𝑖𝑗] and is denoted by [𝑎𝑖𝑗]∆̃[𝑏𝑖𝑗]. 

 

Finally, we present the soft decision-making 

method PEM provided in (Enginoğlu and 

Çağman, In Press). Throughout this paper, 𝐼𝑛 ≔
{1,2, … , 𝑛} and 𝐼𝑛

∗ ≔ {0,1,2, … , 𝑛}. 
 

PEM Algorithm Steps  

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗](𝑚+1)×𝑛
 

such that 𝑖 ∈ 𝐼𝑚
∗  and 𝑗 ∈ 𝐼𝑛 

Step 2. Obtain a matrix [𝑠𝑖1] defined by 

𝑠𝑖1 ≔ ∑ [(
1

𝑚
∑ 𝑎𝑘𝑗

𝑚

𝑘=1
)(

1

𝑛
∑ 𝑎𝑖𝑡

𝑛

𝑡=1
) 𝑎0𝑗𝑎𝑖𝑗] ,

𝑛

𝑗=1
𝑖 ∈ 𝐼𝑚 

Step 3. Obtain a decision set { 𝑢𝑖

𝑠𝑖1
max

k
𝑠𝑘1

 | 𝑢𝑖 ∈ 𝑈}  

 

3. The Qualitative Mineralogical-Petrographic 

and Geochemical Analyses Results 

 

In this section, we give tables of the results of the 

qualitative mineralogical-petrographic and 

geochemical analyses provided in (Ay, 2017; Ay 

and Tolun, 2017b). The qualitative mineralogical-

petrographic analyses result from Koçali and 

Akçakeçili are the same, and the geochemical 

analyses results are close to each other. Since 

Koçali and Akçakeçili ancient quarries are the 

same structure, Ay and Tolun have compared 

eight samples with two sources: Bergama Kozak 

and Koçali-Akçakeçili in (Ay, 2017; Ay and 

Tolun, 2017b). Therefore, in the next section, we 

use the mean results from Koçali and Akçakeçili. 
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Table 1. Results of the mineralogical-petrographic analyses of alkali feldspars in thin sections 

Alkali Feldspars 
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Side Theatre 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Tlos Theatre 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Tlos Stadium 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Smyrna Agora 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Smyrna Agora 2 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 

Pergamon Red Hall 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 

Smintheion 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 

Smintheion 2 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 

Bergama Kozak 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 

Koçali 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 

Akçakeçili 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 
 

Table 2. Results of the mineralogical-petrographic analyses of amphiboles in thin-sections 

Amphiboles 
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Side Theatre 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

Tlos Theatre 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

Tlos Stadium 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

Smyrna Agora 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Smyrna Agora 2 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 

Pergamon Red Hall 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 

Smintheion 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Smintheion 2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Bergama Kozak 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 

Koçali 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 

Akçakeçili 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 
 

 

Table 3. Results of the mineralogical-petrographic analyses of biotite in thin-sections 

Biotite 
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P
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Side Theatre 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Tlos Theatre 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Tlos Stadium 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Smyrna Agora 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

Smyrna Agora 2 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 

Pergamon Red Hall 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 

Smintheion 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Smintheion 2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Bergama Kozak 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 

Koçali 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 

Akçakeçili 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 
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Table 4. Results of the mineralogical-petrographic analyses of plagioclase in thin-sections 
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P
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Side Theatre 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

Tlos Theatre 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

Tlos Stadium 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

Smyrna Agora 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

Smyrna Agora 2 1 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 

Pergamon Red Hall 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 

Smintheion 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 

Smintheion 2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Bergama Kozak 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 

Koçali 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 

Akçakeçili 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 

 

 

Table 5. Results of the mineralogical-petrographic analyses of quartz in thin-sections 

Quartz 
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Side Theatre 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Tlos Theatre 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Tlos Stadium 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Smyrna Agora 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Smyrna Agora 2 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 

Pergamon Red Hall 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 

Smintheion 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 

Smintheion 2 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 

Bergama Kozak 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 

Koçali 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 

Akçakeçili 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 

 

 

Table 6. Results of the geochemical analyses of thin-sections 

Geochemical Analyses C
aO

 

F
e 2

O
3
 

M
gO

 

P 2
O

5
 

Si
O

2
 

A
l 2

O
3
 

K
2
O

 

M
n
O

 

N
a

2
O

 

T
iO

2
 

Side Theatre 5.9 5.0 2.0 0.7 59.5 16.3 5.1 0.2 3.4 0.8 

Tlos Theatre 5.0 4.5 2.2 0.3 63.5 15.8 3.7 0.1 3.2 0.7 

Tlos Stadium 5.3 4.9 1.9 0.6 60.5 16.6 5.1 0.1 3.5 0.7 

Smyrna Agora 1 4.4 3.9 1.0 0.1 67.4 15.7 2.8 0.1 3.4 0.5 

Smyrna Agora 2 5.7 5.2 2.3 0.5 59.6 16.8 4.1 0.1 3.6 0.9 

Pergamon Red Hall  5.5 4.6 2.1 0.3 61.9 16.3 3.4 0.1 3.3 0.7 

Smintheion 1 4.6 3.8 1.7 0.4 63.6 15.9 4.4 0.1 3.5 0.6 

Smintheion 2 4.8 3.9 1.7 0.4 63.8 15.8 4.3 0.1 3.5 0.6 

Bergama Kozak 4.7 4.2 2.0 0.3 64.2 15.9 3.7 0.1 3.4 0.7 

Koçali 5.0 4.6 1.9 0.5 61.5 16.4 4.5 0.1 3.6 0.7 

Akçakeçili 5.0 4.4 1.9 0.5 61.6 16.1 4.7 0.1 3.5 0.7 

Koçali-Akçakeçili 5.0 4.5 1.9 0.5 61.55 16.25 4.6 0.1 3.55 0.7 
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Table 7. Results of the geochemical analyses of thin-sections (normalised via maximum value in Table 6) 

Geochemical Analyses 

(Normalised) C
aO

 

F
e 2

O
3
 

M
gO

 

P 2
O

5
 

Si
O

2
 

A
l 2

O
3
 

K
2
O

 

M
n
O

 

N
a

2
O

 

T
iO

2
 

Side Theatre 0.0875 0.0742 0.0297 0.0104 0.8828 0.2418 0.0757 0.0030 0.0504 0.0119 

Tlos Theatre 0.0742 0.0668 0.0326 0.0045 0.9421 0.2344 0.0549 0.0015 0.0475 0.0104 

Tlos Stadium 0.0786 0.0727 0.0282 0.0089 0.8976 0.2463 0.0757 0.0015 0.0519 0.0104 

Smyrna Agora 1 0.0653 0.0579 0.0148 0.0015 1.0000 0.2329 0.0415 0.0015 0.0504 0.0074 

Smyrna Agora 2 0.0846 0.0772 0.0341 0.0074 0.8843 0.2493 0.0608 0.0015 0.0534 0.0134 

Pergamon Red Hall  0.0816 0.0682 0.0312 0.0045 0.9184 0.2418 0.0504 0.0015 0.0490 0.0104 

Smintheion 1 0.0682 0.0564 0.0252 0.0059 0.9436 0.2359 0.0653 0.0015 0.0519 0.0089 

Smintheion 2 0.0712 0.0579 0.0252 0.0059 0.9466 0.2344 0.0638 0.0015 0.0519 0.0089 

Bergama Kozak 0.0697 0.0623 0.0297 0.0045 0.9525 0.2359 0.0549 0.0015 0.0504 0.0104 

Koçali-Akçakeçili 0.0742 0.0668 0.0282 0.0074 0.9132 0.2411 0.0682 0.0015 0.0527 0.0104 

 

 

4. Research Method 

 

In this section, we first present MCCM and which 

also uses the abilities of PEM (Enginoğlu and 

Çağman, In Press).  

 

Algorithm Steps of MCCM 

Pre-processing Steps for Archaeometric 

Data 

Step 1. Construct fs-matrices [𝑎𝑖𝑗
𝑧 ]

𝑚×𝑛
 for 

archaeological samples, for all 𝑧 ∈ 𝐼𝑤 

Step 2. Construct fs-matrices [𝑏𝑘𝑗
𝑧 ]

𝑟×𝑛
 for 

geological samples, for all 𝑧 ∈ 𝐼𝑤 

Step 3. Obtain [𝑐𝑖𝑗
𝑧𝑘]

𝑚×𝑛
 defined by 𝑐𝑖𝑗

𝑧𝑘 ≔ 𝑏𝑘𝑗
𝑧  

such that 𝑧 ∈ 𝐼𝑤 and 𝑘 ∈ 𝐼𝑟   

Step 4. Obtain [𝑑𝑖𝑗
𝑧𝑘]

𝑚×𝑛
 defined by [𝑑𝑖𝑗

𝑧𝑘] ≔

[1] − [𝑐𝑖𝑗
𝑧𝑘]∆̃[𝑎𝑖𝑗

𝑧 ] such that 𝑧 ∈ 𝐼𝑤 and 𝑘 ∈ 𝐼𝑟  

Main Steps for Archaeometric Data 

Step 1. Construct fpfs-matrices [𝑒𝑖𝑗
𝑧𝑘]

(𝑚+1)×𝑛
 

such that 𝑖 ∈ 𝐼𝑚
∗ , 𝑗 ∈ 𝐼𝑛, and 𝑖 ≠ 0 ⇒ 𝑒𝑖𝑗

𝑧𝑘 ≔ 𝑑𝑖𝑗
𝑧𝑘 

Step 2. Apply PEM to [𝑒𝑖𝑗
𝑧𝑘] for all 𝑧 ∈ 𝐼𝑤 and 

𝑘 ∈ 𝐼𝑟 . That is, obtain [𝑓𝑖𝑘
𝑧 ]𝑚×𝑟 defined by 

𝑓𝑖𝑘
𝑧 ≔ (

1

𝑛
∑ 𝑒𝑖𝑙

𝑧𝑘
𝑛

𝑙=1
)∑ [(

1

𝑚
∑ 𝑒𝑝𝑗

𝑧𝑘
𝑚

𝑝=1
)𝑒0𝑗

𝑧𝑘𝑒𝑖𝑗
𝑧𝑘]

𝑛

𝑗=1
 

such that 𝑧 ∈ 𝐼𝑤 and 𝑘 ∈ 𝐼𝑟  

Step 3. Obtain [𝑔𝑖𝑘]𝑚×𝑟  defined by 𝑔𝑖𝑘 ≔
1

𝑤
∑𝑤

𝑧=1 𝑓𝑖𝑘
𝑧  

Step 4. Obtain [𝑠𝑖𝑘
1 ]𝑚×𝑟  defined by 

𝑠𝑖𝑘
1 ≔ {

𝑔𝑖𝑘

max
𝑡∈𝐼𝑟

𝑔𝑖𝑡

, max
𝑡∈𝐼𝑟

𝑔𝑖𝑡 ≠ 0

𝑔𝑖𝑘 , max
𝑡∈𝐼𝑟

𝑔𝑖𝑡 = 0
 

Pre-processing Steps for Geochemical Data 

Step 1. Construct fs-matrices [𝑎𝑖𝑗]𝑚×𝑛
 for 

archaeological samples 

Step 2. Construct fs-matrices [𝑏𝑖𝑗]𝑚×𝑛
 for 

geological samples 

Step 3. Obtain fs-matrices [𝑐𝑖𝑗
𝑘 ]

𝑚×𝑛
 defined by 

𝑐𝑖𝑗
𝑘 ≔ 𝑏𝑘𝑗 such that 𝑘 ∈ 𝐼𝑟   

Step 4. Obtain fs-matrices [𝑑𝑖𝑗
𝑘 ]

𝑚×𝑛
 defined by 

[𝑑𝑖𝑗
𝑘 ] ≔ [1] − [𝑐𝑖𝑗

𝑘 ]∆̃[𝑎𝑖𝑗] such that 𝑘 ∈ 𝐼𝑟  

Main Steps for Geochemical Data 

Step 1. Construct fpfs-matrices [𝑒𝑖𝑗
𝑘 ]

(𝑚+1)×𝑛
 

such that 𝑖 ∈ 𝐼𝑚
∗ , 𝑗 ∈ 𝐼𝑛, and 𝑖 ≠ 0 ⇒ 𝑒𝑖𝑗

𝑘 ≔ 𝑑𝑖𝑗
𝑘  

Step 2. Apply PEM to [𝑒𝑖𝑗
𝑘 ] for all 𝑘 ∈ 𝐼𝑟 . That 

is, obtain [𝑓𝑖𝑘]𝑚×𝑟 defined by 

𝑓𝑖𝑘 ≔ (
1

𝑛
∑ 𝑒𝑖𝑙

𝑘
𝑛

𝑙=1
)∑ [(

1

𝑚
∑ 𝑒𝑝𝑗

𝑘
𝑚

𝑝=1
) 𝑒0𝑗

𝑘 𝑒𝑖𝑗
𝑘 ]

𝑛

𝑗=1
 

such that 𝑖 ∈ 𝐼𝑚 and 𝑘 ∈ 𝐼𝑟  

Step 3. Obtain [𝑠𝑖𝑘
2 ]𝑚×𝑟  defined by 

𝑠𝑖𝑘
2 ≔ {

𝑓𝑖𝑘

max
𝑡∈𝐼𝑟

𝑓𝑖𝑡

, max
𝑡∈𝐼𝑟

𝑓𝑖𝑡 ≠ 0

𝑓𝑖𝑘 , max
𝑡∈𝐼𝑟

𝑓𝑖𝑡 = 0

 

Output Steps 

Step 1. Obtain the decision matrix [𝑠𝑖𝑘]𝑚×𝑟 

such that 𝑠𝑖𝑘 = 0.25𝑠𝑖𝑘
1 + 0.75𝑠𝑖𝑘

2  

Step 2. Obtain the decision sets 𝐷𝑘 ≔

{𝑢𝑖  |𝑠𝑖𝑘 = max
𝑝

𝑠𝑖𝑝} such that 𝑘, 𝑝 ∈ 𝐼𝑟  

 

Secondly, we illustrate MCCM for 𝑧 = 𝑘 = 2, 

that is, for the Amphibols data given in the 

previous. Faithfully to the Ay and Tolun's 

opinions, we set 



Bilge International Journal of Science and Technology Research 2019, 3(Special Issue): 21-34 

 

28 

[0.01, 0.01, 0.01, 0.01, 1, 1, 1, 1, 1, 1, 0.01, 0.01, 

0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01] 

and 

[0.6, 0.6, 0.01, 0.7, 1, 0.8, 1, 0.01, 0.7, 0.01] 

to the weights of the archaeometric and 

geochemical parameters, respectively. Moreover, 

Ay and Tolun (2017b) consider more effective the 

geochemical data than archaeometric data. 

Therefore, we set 0.25 and 0.75 values to these 

data as weights, respectively, in the final decision 

stage. 

 

Pre-process Steps for Archaeometric Data 

 

Step 1. and Step 2. 

Let 𝑈 = {𝑢𝑖: 𝑖 ∈ 𝐼8}, 𝑉 = {𝑣𝑘: 𝑘 ∈ 𝐼2}, and 𝐸1 =

{𝑥𝑗 : 𝑗 ∈ 𝐼19} such that 𝑢1 =Side Theatre, 

𝑢2 =Tlos Theatre, 𝑢3 =Tlos Stadium, 

𝑢4 =Smyrna Agora 1, 𝑢5 =Smyrna Agora 2, 

𝑢6 =Pergamon Red Hall / Serapeion, 

𝑢7 =Smintheion 1, 𝑢8 =Smintheion 2, 

𝑣1 =Bergama Kozak, 𝑣2 =Koçali-Akçakeçili, 

𝑥1 = Coarse-Medium-Fine, 𝑥2 = Coarse -

Medium, 𝑥3 = Medium-Fine, 𝑥4 = Fine, 𝑥5 = 

Chloritised, 𝑥6 = Sericitised, 𝑥7 = Pertitic, 𝑥8 = 

Mirmekitic, 𝑥9 = Carbonated, 𝑥10 = Clayed,  

𝑥11 =Idiomorphic (Self-Shaped), 

𝑥12 =Hypidiomorphic (Semi-Self-Shaped), 

𝑥13 =Xenomorphic (Self-Shapeless), 𝑥14 = 

Homogeneous, 𝑥15 =Recrystallised (Wavy), 

𝑥16 =Prismatic, 𝑥17 =Flat Prismatic, 

𝑥18 =Clean Surfaced, and 𝑥19 =Twinning.  

 

Therefore, the fs-sets of the Amphiboles data are 

as follows: 

𝛼 = { (𝑥1, {𝑢5, 𝑢6}), (𝑥3, {𝑢3, 𝑢5, 𝑢6, 𝑢8}), 

   (𝑥4, {𝑢1, 𝑢2, 𝑢4, 𝑢7}), (𝑥5, {𝑢6}), (𝑥9, {𝑢6}), 

   (𝑥11, {𝑢1, 𝑢2, 𝑢3}), (𝑥12, 𝑈), (𝑥14, {𝑢5, 𝑢6}), 

   (𝑥16, {𝑢5, 𝑢6})} 

𝛽 = {(𝑥3, 𝑉), (𝑥9, 𝑉),(𝑥11, {𝑣1}), (𝑥12, 𝑉), (𝑥14, 𝑉), 

 (𝑥16, 𝑉)} 

where ∅ denotes empty fuzzy set. Here, for 

brevity, the notation 𝑢3 has been used instead of 

𝑢3
1 . Also, the elements such 𝑢3

0  and (𝑥4, ∅) 

have not been shown in the sets containing them. 

      

The fs-matrices corresponded to the fs-sets 𝛼 and 

𝛽, respectively, are as follows: 

 

 

[𝑎𝑖𝑗
2 ] = 

 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0  

 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0  

 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0  

 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  

 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0  

 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0  

 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  

 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  

 

[𝑏𝑖𝑗
2 ] = 

 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0  

 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0  

 

Step 3. 

  

[𝑐𝑖𝑗
22] =  

 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0  

 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0  

 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0  

 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0  

 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0  

 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0  

 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0  

 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0  
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Step 4.   

 

[𝑑𝑖𝑗
22] = 

 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1  

 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1  

 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1  

 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1  

 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1  

 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1  

 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1  

 

Main Steps for Archaeometric Data 

 

Step 1.  

[𝑒𝑖𝑗
22] = 

 0.01 0.01 0.01 0.01 1 1 1 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01  

 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1  

 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1  

 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1  

 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1  

 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1  

 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1  

 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1  

 

Step 2. 

[𝑓𝑖𝑘
2 ] = 

 3.6520 3.3886  

 3.6520 3.3886  

 4.1821 3.9178  

 3.3886 3.6538  

 4.1768 4.4435  

 3.5453 3.7724  

 3.3886 3.6538  

 3.9178 4.1842  

 

 

Step 3.  

[𝑔𝑖𝑘] = 

 3.5157 3.2720  

 3.6240 3.3803  

 3.5548 3.4438  

 3.5167 3.3788  

 4.2189 4.1625  

 4.4318 4.1732  

 3.6016 3.7574  

 3.5155 3.8252  

 

 

 

Step 4.  

[𝑠𝑖𝑘
1 ] = 

 0.7933 0.7383  

 0.8177 0.7627  

 0.8021 0.7771  

 0.7935 0.7624  

 0.9519 0.9392  

 1.0000 0.9416  

 0.8127 0.8478  

 0.7932 0.8631  

 

Pre-process Steps for Geochemical Data 

 

Step 1. and Step 2. 

 

Let 𝑈 = {𝑢𝑖: 𝑖 ∈ 𝐼8}, 𝑉 = {𝑣𝑘: 𝑘 ∈ 𝐼2}, and 𝐸2 =
{𝑦𝑙: 𝑙 ∈ 𝐼10} such that 𝑢1 =Side Theatre, 𝑢2 =Tlos 

Theatre, 𝑢3 =Tlos Stadium, 𝑢4 =Smyrna Agora 

1, 𝑢5 =Smyrna Agora 2, 𝑢6 =Pergamon Red Hall 

/ Serapeion, 𝑢7 =Smintheion 1, 𝑢8 =Smintheion 

2, 𝑣1 =Bergama Kozak, 𝑣2 =Koçali-Akçakeçili, 

𝑦1 = 𝐶𝑎𝑂, 𝑦2 = 𝐹𝑒2𝑂3, 𝑦3 = 𝑀𝑔𝑂, 𝑦4 = 𝑃2𝑂5, 

𝑦5 = 𝑆𝑖𝑂2, 𝑦6 = 𝐴𝑙𝑂3, 𝑦7 = 𝐾2𝑂, 𝑦8 = 𝑀𝑛𝑂, 

𝑦9 = 𝑁𝑎2𝑂, and 𝑦10 = 𝑇𝑖𝑂2. Therefore, the fs-

sets of the Amphiboles data are as follows: 
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𝛾 = {(𝑦1, { 𝑢1
0.0875 , 𝑢2

0.0742 , 𝑢3
0.0786 , 𝑢4,

0.0653 𝑢5
0.0846 , 𝑢6

0.0846 , 𝑢7
0.0682 , 𝑢8

0.0712 }), 

 (𝑦2, { 𝑢1
0.0742 , 𝑢2

0.0668 , 𝑢3
0.0727 , 𝑢4,

0.0579 𝑢5
0.0772 , 𝑢6

0.0682 , 𝑢7
0.0564 , 𝑢8

0.0579 }), 

 (𝑦3, { 𝑢1
0.0297 , 𝑢2

0.0326 , 𝑢3
0.0282 , 𝑢4,

0.0148 𝑢5
0.0341 , 𝑢6

0.0312 , 𝑢7
0.0252 , 𝑢8

0.0252 }), 

 (𝑦4, { 𝑢1
0.0104 , 𝑢2

0.0045 , 𝑢3
0.0089 , 𝑢4,

0.0015 𝑢5
0.0074 , 𝑢6

0.0045 , 𝑢7
0.0059 , 𝑢8

0.0059 }), 

 (𝑦5, { 𝑢1
0.8828 , 𝑢2

0.9421 , 𝑢3
0.8976 , 𝑢4,

1,0000 𝑢5
0.8843 , 𝑢6

0.9184 , 𝑢7
0.9436 , 𝑢8

0.9466 }), 

 (𝑦6, { 𝑢1
0.2418 , 𝑢2

0.2344 , 𝑢3
0.2463 , 𝑢4,

0.2329 𝑢5
0.2493 , 𝑢6

0.2418 , 𝑢7
0.2359 , 𝑢8

0.2344 }), 

 (𝑦7, { 𝑢1
0.0757 , 𝑢2

0.0549 , 𝑢3
0.0757 , 𝑢4,

0.0415 𝑢5
0.0608 , 𝑢6

0.0504 , 𝑢7
0.0653 , 𝑢8

0.0638 }), 

 (𝑦8, { 𝑢1
0.0030 , 𝑢2

0.0015 , 𝑢3
0.0015 , 𝑢4,

0.0015 𝑢5
0.0015 , 𝑢6

0.0015 , 𝑢7
0.0015 , 𝑢8

0.0015 }), 

 (𝑦9, { 𝑢1
0.0504 , 𝑢2

0.0475 , 𝑢3
0.0519 , 𝑢4,

0.0504 𝑢5
0.0534 , 𝑢6

0.0490 , 𝑢7
0.0519 , 𝑢8

0.0519 }), 

 (𝑦10, { 𝑢1
0.0119 , 𝑢2

0.0104 , 𝑢3
0.0104 , 𝑢4,

0.0074 𝑢5
0.0134 , 𝑢6

0.0104 , 𝑢7
0.0089 , 𝑢8

0.0089 })} 

  

𝛿 = {(𝑦1, { 𝑣1
0.0697 , 𝑣2

0.0742 }), (𝑦2, { 𝑣1
0.0623 , 𝑣2

0.0668 }), (𝑦3, { 𝑣1
0.0297 , 𝑣2

0.0282 }), 

 (𝑦4, { 𝑣1
0.0045 , 𝑣2

0.0074 }), (𝑦5, { 𝑣1
0.9525 , 𝑣2

0.9132 }) , (𝑦6, { 𝑣1
0.2359 , 𝑣2

0.2411 }), 

 (𝑦7, { 𝑣1
0.0549 , 𝑣2

0.0682 }), (𝑦8, { 𝑣1
0.0015 , 𝑣2

0.0015 }), (𝑦9, { 𝑣1
0.0504 , 𝑣2

0.0527 }), 

 (𝑦10, { 𝑣1
0.0104 , 𝑣2

0.0104 })} 

  

The fs-matrices corresponded to the fs-sets 𝛾 and 𝛿, respectively, are as follows: 

 

[𝑎𝑖𝑗] = 

 0.0875 0.0742 0.0297 0.0104 0.8828 0.2418 0.0757 0.0030 0.0504 0.0119  
 0.0742 0.0668 0.0326 0.0045 0.9421 0.2344 0.0549 0.0015 0.0475 0.0104  
 0.0786 0.0727 0.0282 0.0089 0.8976 0.2463 0.0757 0.0015 0.0519 0.0104  

 0.0653 0.0579 0.0148 0.0015 1.0000 0.2329 0.0415 0.0015 0.0504 0.0074  
 0.0846 0.0772 0.0341 0.0074 0.8843 0.2493 0.0608 0.0015 0.0534 0.0134  

 0.0816 0.0682 0.0312 0.0045 0.9184 0.2418 0.0504 0.0015 0.0490 0.0104  
 0.0682 0.0564 0.0252 0.0059 0.9436 0.2359 0.0653 0.0015 0.0519 0.0089  

 0.0712 0.0579 0.0252 0.0059 0.9466 0.2344 0.0638 0.0015 0.0519 0.0089  

 

[𝑏𝑖𝑗] = 
 0.0697 0.0623 0.0297 0.0045 0.9525 0.2359 0.0549 0.0015 0.0504 0.0104  
 0.0742 0.0668 0.0282 0.0074 0.9132 0.2411 0.0682 0.0015 0.0527 0.0104  

 

Step 3.  

[𝑐𝑖𝑗
2 ] = 

 0.0742 0.0668 0.0282 0.0074 0.9132 0.2411 0.0682 0.0015 0.0527 0.0104  
 0.0742 0.0668 0.0282 0.0074 0.9132 0.2411 0.0682 0.0015 0.0527 0.0104  

 0.0742 0.0668 0.0282 0.0074 0.9132 0.2411 0.0682 0.0015 0.0527 0.0104  
 0.0742 0.0668 0.0282 0.0074 0.9132 0.2411 0.0682 0.0015 0.0527 0.0104  

 0.0742 0.0668 0.0282 0.0074 0.9132 0.2411 0.0682 0.0015 0.0527 0.0104  

 0.0742 0.0668 0.0282 0.0074 0.9132 0.2411 0.0682 0.0015 0.0527 0.0104  
 0.0742 0.0668 0.0282 0.0074 0.9132 0.2411 0.0682 0.0015 0.0527 0.0104  

 0.0742 0.0668 0.0282 0.0074 0.9132 0.2411 0.0682 0.0015 0.0527 0.0104  

 

Step 4. 

[𝑑𝑖𝑗
2 ] = 

 0.9867 0.9926 0.9985 0.9970 0.9696 0.9993 0.9925 0.9985 0.9977 0.9985  
 1 1 0.9956 0.9971 0.9711 0.9933 0.9867 1 0.9948 1  
 0.9956 0.9941 1 0.9985 0.9844 0.9948 0.9925 1 0.9992 1  

 0.9911 0.9911 0.9866 0.9941 0.9132 0.9918 0.9733 1 0.9977 0.9970  
 0.9896 0.9896 0.9941 1 0.9711 0.9918 0.9926 1 0.9993 0.9970  

 0.9926 0.9986 0.9970 0.9971 0.9948 0.9993 0.9822 1 0.9963 1  

 0.9940 0.9896 0.9970 0.9985 0.9696 0.9948 0.9971 1 0.9992 0.9985  
 0.9970 0.9911 0.9970 0.9985 0.9666 0.9933 0.9956 1 0.9992 0.9985  
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Main Steps for Geochemical Data 

 

Step 1.  

[𝑒𝑖𝑗
2 ] = 

 0.6 0.6 0.01 0.7 1 0.8 1 0.01 0.7 0.01  

 0.9867 0.9926 0.9985 0.9970 0.9696 0.9993 0.9925 0.9985 0.9977 0.9985  

 1 1 0.9956 0.9971 0.9711 0.9933 0.9867 1 0.9948 1  

 0.9956 0.9941 1 0.9985 0.9844 0.9948 0.9925 1 0.9992 1  

 0.9911 0.9911 0.9866 0.9941 0.9132 0.9918 0.9733 1 0.9977 0.9970  

 0.9896 0.9896 0.9941 1 0.9711 0.9918 0.9926 1 0.9993 0.9970  

 0.9926 0.9986 0.9970 0.9971 0.9948 0.9993 0.9822 1 0.9963 1  

 0.9940 0.9896 0.9970 0.9985 0.9696 0.9948 0.9971 1 0.9992 0.9985  

 0.9970 0.9911 0.9970 0.9985 0.9666 0.9933 0.9956 1 0.9992 0.9985  

 

Step 2.  

[𝑓𝑖𝑘] = 

 5.1804 5.2810  

 5.3326 5.2865  

 5.2087 5.3150  

 5.2470 5.1519  

 5.1927 5.2767  

 5.2773 5.3157  

 5.3211 5.2906  

 5.3276 5.2869  

 

Step 3.  

 

Output Steps 

 

Step 1.  

[𝑠𝑖𝑘] = 

 0.9269 0.9273  

 0.9544 0.9342  

 0.9331 0.9418  

 0.9363 0.9152  

 0.9683 0.9769  

 0.9922 0.9830  

 0.9516 0.9560  

 0.9476 0.9594  

 

 

 

 

Step 2.  

Side Theatre Koçali-Akçakeçili 

Tlos Theatre Bergama Kozak 

Tlos Stadium Koçali-Akçakeçili 

Smyrna Agora 1 Bergama Kozak 

Smyrna Agora 2 Koçali-Akçakeçili 

Pergamon Red Hall  Bergama Kozak 

Smintheion 1 Koçali-Akçakeçili 

Smintheion 2 Koçali-Akçakeçili 

 

5. Conclusion 

 

We, in this paper, proposed a novel method 

MCCM to model an MCC problem. We then 

applied MCCM to the data provided in (Ay, 2017; 

Ay and Tolun, 2017b). The results affirmed those 

obtained by archaeometric analyses. Since this 

method is the first, it could not be compared with 

other methods for now. Soon, however, if another 

soft decision-making method that differs from 

PEM is applied to this problem, then a 

comparison of these methods can be given. 
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[𝑠𝑖𝑘
2 ] = 

 0.9715 0.9903  

 1.0000 0.9913  

 0.9768 0.9967  

 0.9840 0.9661  

 0.9738 0.9895  

 0.9896 0.9968  

 0.9978 0.9921  

 0.9991 0.9914  
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