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1 Introduction

Let ω be the set of all complex sequences, `k and c be the sets of k-absolutely convergent series and convergent sequences, respectively. By bv
we denote the space of all sequences of bounded variation, i.e.,

bv = {x ∈ w : ∆x ∈ `k} .

Let U and V be subspaces of w and A = (anv) be an arbitrary infinite matrix of complex numbers. By A(x) = (An (x)) , we denote the
A-transform of the sequence x = (xv), i.e.,

An (x) =

∞∑
v=0

anvxv,

provided that the series is convergent for n ≥ 0. Then, we say that A defines a matrix transformation from U into V , and denote it by A ∈
(U, V ) if the sequence A(x) = (An(x)) ∈ V for every sequence x ∈ U , also the sets Uβ = {ε = (εv) : Σεvxv converges for all x ∈ U}
and

UA = {x ∈ ω : A(x) ∈ U} (1)

are called the β dual of U and the domain of a matrix A in U. Further, U ⊂ w is said to be a BK-space if it is a Banach space with continuous
coordinates pn : U → C defined by pn (x) = xn for n ≥ 0. The sequence (ev) is called a Schauder base (or briefly base) for a normed
sequence space U if for each x ∈ U there exist unique scalar coefficients (xv) such that

lim
m→∞

∥∥∥∥∥x−
m∑
v=0

xvev

∥∥∥∥∥ = 0,

and we write

x =
∞∑
v=0

xvev.

An infinite matrix A = (anv) is called a triangle if ann 6= 0 and anv = 0 for all v > n for all n, v [1].
We define the notations Γc, Γ∞ and Γs for v = 1, 2, ..., as follows:

Γc =

{
ε = (εv) : lim

m

m∑
v=r

εv exists for r = 1, 2, ...

}
,

Γ∞ =

{
ε = (εv) : sup

m,r

∣∣∣∣∣
m∑
v=r

εv

∣∣∣∣∣ <∞, r = 1, 2, ...

}
,

and

Γs =

ε = (εv) : sup
m

m∑
r=1

∣∣∣∣∣θ−1/k∗

r

m∑
v=r

εv

∣∣∣∣∣
k∗

<∞

 ,

where k∗is the conjugate of k, that is, 1/k + 1/k∗ = 1, and 1/k∗ = 0 for k = 1.
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More recently some new sequence spaces by means of the matrix domain of a particular limitation method or absolute summability methods
have been defined and studied by several authors in many research papers (see, for instance [2–8]). In this study, we introduce the space bvθk,
give its some algebraic and topological properties and characterize some matrix operators defined on that space. Also we extend some well
known results.

The following lemmas are needed in proving our theorems.

Lemma 1. Let 1 ≤ k <∞. Then, A ∈ (`, `k) if and only if

sup
v

∞∑
n=0

|anv|k <∞,

[9].

Lemma 2.
a-)

A ∈ (`, c)⇔ (i) lim
n
anv exists for each v, and (ii) sup

n,v
|anv| <∞.

b-) Let 1 < k <∞.Then A ∈ (`k, c)⇔ (i) holds and

sup
n

∞∑
v=0

|anv|k
∗
<∞

[10].

2 The space bvθk and matrix operators

In this section we introduce the space bvθk as

bvθk =
{
x = (xk) ∈ w :

(
θ

1/k∗

n 4xn
)
∈ `k

}
,

where (θn) is a sequence of nonnegative terms, 1 ≤ k <∞ and 4xn = xn − xn−1 for all n. Note that it includes some known spaces. For

example, it is reduced to bvk for θn = 1 for all n and bvθ1 = bv, which have been studied by Malkowsky et al [11] and Jarrah and Malkowsky
[6]. Moreover, recently, Başar et al [3] have defined the sequence space bv (u, p) and proved that this space is linearly isomorphic to the space
`(p) of Maddox [12] as generalized to paranormed space.

It is redefined as bvθk = (`k)A with the notation (1) , where the matrix A is defined by

anv =


−θ1/k∗

n , v = n− 1,

θ
1/k∗

n , v = n,
0, v 6= n, n− 1.

Further,
∣∣∣Nθ
p

∣∣∣
k

=
(
bvθk

)
A

and |Cα|k =
(
bvθk

)
B

where A and B are Cesàro and Nörlund means of series Σxn (see [8],[5, 13]).

Now we begin with topological properties of bvθk, which also can be deduced from [3] .

Lemma 3. Let 1 ≤ k <∞ and (θn) be a sequence of nonnegative numbers. Then,
a-) The space bvθk is a BK-space and norm isomorphic to the space `k, i.e., bv

θ
k h `k.

b-)
(
bvθk

)β
= Γc ∩ Γs for 1 < k <∞ and (bv)β = Γc ∩ Γ∞ for k = 1.

c-) Define the sequence b(j) =
(
b
(j)
n

)
such that, for j, n ≥ 0,

b
(j)
n =

{
θ
−1/k∗

j , n ≥ j,
0, n < j.

Then, the sequence b(j) =
(
b
(j)
n

)
is the base of bvθk.

Proof: a-) Since `k is a BK-space with respect to its usual norm and A is a triangle matrix, Theorem 4.3.2 of Wilansky [1, p. 61] gives the fact
that bvθk is a BK-space for 1 ≤ k <∞. Now, consider T : bvθk → `k defined by y = T (x) =

(
θ

1/k∗

n ∆xn
)

for all x ∈ bvθk . Then, it is clear

that T is a linear operator, and surjective since, if y = (yn) ∈ `k, then x = (xn) =
(

Σnj=0θ
−1/k∗

j yj

)
∈ bvθk, and also one to one. Further, it

preserves the norm, since

‖T (x)‖`k =

( ∞∑
n=0

θk−1
n |4xn|k

)1/k

= ‖x‖bvθk ,

which completes the proof.
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b-) This part can be proved together with Lemma 2.
c-) Since the sequence e(j) is a base of `k, where e(j) =

(
e
(j)
n

)∞
n=0

is the sequence whose only non-zero term is 1 in the nth place for

each n ∈ N, it is clear that the sequence b(j) is the base of bvθk. In fact, we first note that T−1(e(j)) = b(j). Now, if x ∈ bvθk, then there exists
y ∈ `k such that y = T (x), and so it follows from (a) that∥∥∥∥∥∥x−

m∑
j=0

xjb
(j)

∥∥∥∥∥∥
bvθk

=

∥∥∥∥∥∥y −
m∑
j=0

yje
(j)

∥∥∥∥∥∥
`k

→ 0 as m→∞,

and it is easy to see that the representation x =
∑∞
j=0 xjb

(j) is unique. �

Theorem 1. Let A = (anv) be an infinite matrix of complex numbers for all n, v ≥ 0 , (θn) be a sequence of nonnegative numbers and
1 ≤ k <∞. Then, A ∈

(
bv, bvθk

)
if and only if

lim
n→∞

∞∑
j=ν

anj exists for each v, (2)

sup
n,v

∣∣∣∣∣∣
∞∑
j=v

anj

∣∣∣∣∣∣ <∞ (3)

and

sup
ν

∞∑
n=0

∣∣∣∣∣∣θ1/k∗

n

∞∑
j=ν

(
anj − an−1,j

)∣∣∣∣∣∣
k

<∞. (4)

Proof: A ∈
(
bv, bvθk

)
iff
(
anj
)∞
j=0
∈ bvβ and A (x) ∈ bvθk for every x ∈ bv, and also, by Lemma 3,

(
anj
)∞
j=0
∈ bvβ iff (2) and (3) hold.

Now, to prove necessity and sufficiency of the condition (4), consider the operators B : bv → ` and B′ : bvθk → `k defined by

Bn (x) = ∆xn, B
′
n(x) = θ

1/k∗

n ∆xn,

respectively. As in Lemma 3, these operators are bijection and the matrices corresponding to these operators are triangles. Further, let x ∈ bv
be given. Then, B (x) = y ∈ ` iff x = S (y) , where S is the inverse of B and it is given by

snν =

{
1, 0 ≤ ν ≤ n,
0, ν > n.

On the other hand, if any matrix R = (rnv) ∈ (`, c) , then, the series Rn(x) = Σrnvxv is convergent uniformly in n, since, by Lemma 2, the
remaining term tends to zero uniformly in n, that is,∣∣∣∣∣

∞∑
v=m

rnvxv

∣∣∣∣∣ ≤
(

sup
n,v
|rnv|

) ∞∑
v=m

|xv| → 0 as m→∞,

and so

lim
n
Rn(x) =

∞∑
v=0

lim
n
rnvxv. (5)

Now, it is easily seen from (2) and (3) that H =
(
h

(n)
mr

)
∈ (`, c), which gives us, by (5) , that

An(x) = lim
m

m∑
r=0

h
(n)
mryr =

∞∑
r=0

( ∞∑
v=r

anv

)
yr,

converges for all n ≥ 0,where, for r,m = 0, 1, ...,

h
(n)
mr =

{ ∑m
v=r anvsvr, 0 ≤ r ≤ m,

0, r > m.

This shows that the mapping sequence A(x) = (An(x)) exists. On the other hand, since S is the infinite triangle matrix, it is clear that
A(x) = A (S(y)) ∈ bvθk for every x ∈ bv iff B′ (A (S(y))) ∈ `k, i.e.,

(
B′oAoS

)
(y) ∈ `k , which implies that D = B′oAoS : `→ `k.

c© CPOST 2019 171



Therefore, it can be written that A : bv → bvθk iff D : `→ `k, and also D = B′oÂ, where Â = AoS. Now, a few calculations reveal that

ânv =

∞∑
j=v

anjsjv =

∞∑
j=v

anj

and so

dnv =

n∑
j=0

b′nj âjv = θ
1/k∗

n

∞∑
j=ν

(
anj − an−1,j

)
Now, let us apply Lemma 1 with the matrixD. Then, it can be easily obtained from the definition of the matrixD thatD : `→ `k iff condition
(4) holds. This completes the proof.

�

If A is an infinite triangle matrix in Theorem 1, then (2) and (3) hold, and so it reduces to the following result.

Corollary 1. If A is an infinite triangle matrix of complex numbers for all n, v ≥ 0 and 1 ≤ k <∞, then, A ∈
(
bv, bvθk

)
if and only if

sup
ν

∞∑
n=0

∣∣∣∣∣∣θ1/k∗

n

n∑
j=ν

(
anj − an−1,j

)∣∣∣∣∣∣
k

<∞.
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[3] F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Analysis 68(2) (2008), 273–287.
[4] G.C.H. Güleç, Compact Matrix Operators on Absolute Cesàro Spaces, Numer. Funct. Anal. Optim., 2019. DOI: 10.1080/01630563.2019.1633665
[5] G. C. Hazar, M.A. Sarıgöl, On absolute Nörlund spaces and matrix operators, Acta Math. Sin. (Engl. Ser.), 34(5) (2018), 812-826.
[6] A. M. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo II, 52 (1998), 177-191.
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