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Abstract 
 
The objective of this paper is to review the state-of-the-art of statistical relational learning (SRL) 
models developed to deal with machine learning and data mining in relational domains in presence of 
missing, partially observed, and/or noisy data. It starts by giving a general overview of conventional 
graphical models, first-order logic and inductive logic programming approaches as needed for 
background. The historical development of each SRL key model is critically reviewed. The study also 
focuses on the practical application of SRL techniques to a broad variety of areas and their limitations. 
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1. Introduction 
 
There is a great interest in learning on propositional data which is assumed to be identically 
and independently distributed (i.i.d.). Very often, this independence assumption fail to comply 
in real-world applications where data may be characterized by the presence of both 
uncertainty and complex relational structure. Domains where data is non-i.i.d. are widespread; 
such as the internet and the world-wide web, scientific citation and collaboration, 
epidemiology, communication analysis, metabolism, ecosystems, bioinformatics, fraud and 
terrorist analysis, citation analysis, and robotics [16]. 
 
SRL [28] also known as probabilistic inductive logic programming (PILP) [16] is based on 
the idea that we can build models that can effectively represent, reason and learn in domains 
with presence of uncertainty and complex relational structure. In doing so, it addresses one of 
the major concerns of artificial intelligence, where key principle is integration of probabilistic 
reasoning, first-order logic and machine learning [16]. As shown in Figure 1, SRL combines a 
logic-based representation with probabilistic modeling and machine learning. SRL models are 
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usually represented as combination of probabilistic graphical models (PGMs) with first-order 
logic (FOL) to handle the uncertainty and probabilistic correlations in relational domains. 
 

 
 

Figure 1: Statistical relational learning aka. probabilistic inductive logic programming 
combines probability, logic and learning. Adopted from [68]. 
 
 
In recent years, many formalisms and representations have been developed in SRL. 
Muggleton [42] and Cussens [6] upgraded stochastic grammars towards stochastic logic 
programs. Friedman [25] combined advantages of relational logic with Bayesian networks 
(BNs). Kersting et.al [34] combined definite logic programs with BNs. Neville and Jensen 
[52] extended dependency networks to relational dependency networks. Taskar et al. [71] 
extended Markov networks (MNs) into relational Markov networks (RMNs), and Domingos 
and Richardson [18] into Markov logic networks (MLNs). 
 
Recently, many works have been done about further development of new techniques and 
application of SRL models in science and industry. Therefore, the goal of this paper is to 
provide a state-of-the-art review of SRL models, in the same time to contribute to research 
community with a cohesive overview of state-of-the-art results for a wide range of SRL 
problems (during the five years) and to identify possible opportunities for future research.  
 
The rest of this paper is structured as the following: The second section introduces some 
background theory and notation, starting by the concepts of PGMs, FOL and Inductive 
Programming Language. The third section explores recent research into a range to SRL from 
its origins to the present day, including a discussion of relational models and of the successful 
role of the SRL problems/limitation and application in real world problem. The last section 
provides concluding remarks and some recommendations. 
 

2. Background and notation 
 
This part gives some background theory and notation as needed to facilitate understanding of 
the SRL models and techniques. 
 

2.1 Probabilistic graphical models 
 
PGMs [30] aka. graphical models are tightly integration of probability and graph theory. 
PGMs are probabilistic models for which a graph represents the joint probability distribution 
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over a large number of interdependent random variables. In this way, they provide an elegant 
framework for dealing with uncertainty, independence and complexity. 
 
PGMs are characterized by the following properties:  

 they provide simple and useful ways to visualize the structure of a probabilistic 
model and can be used to design new models 

 can go deeper into the properties of the model, that is conditional independence  
 complex computations about inference and learning are expressed through 

graphical manipulation and mathematical formulations.  

Bayesian networks and MNs are the two most well known types of graphical models [36], 
Bayesian networks are directed graphical models consisting from links that have a particular 
directionality denoted by arrows. On the other hand, MNs are the type of undirected graphical 
models where the links do not own arrows. Key aspects of these two types of graphical 
models are provided in the following. Further details about these models can be found in [36], 
[37], [30], [46]. 
 

2.2 Bayesian networks 

BNs [1] also known as Bayes Nets or Belief Nets, is a directed acyclic graph (DAG). Let 𝒢𝒢 be 
BNs graph over the variables 𝑋𝑋𝑖𝑖,...,𝑋𝑋𝑛𝑛, than each node in the graph represents a random 
variable 𝑋𝑋𝑖𝑖, and edges between the nodes represent conditional probability dependencies 
among the corresponding random variables. The conditional probability distribution (CPD) 
for 𝑋𝑋𝑖𝑖, given its parents in the graph (𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖), is P(𝑋𝑋𝑖𝑖 | 𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖). 

 
 

Figure 2: A simple example of a BN graph structure. Adopted from [2]. 
 

 
As defined by [36], let 𝒢𝒢 be a BN graph over the variables 𝑋𝑋𝑖𝑖,…,𝑋𝑋𝑛𝑛. It can be said that a 
distribution 𝑃𝑃𝐵𝐵 over the same space factorizes according to 𝒢𝒢 if 𝑃𝑃𝐵𝐵 can be expressed as a 
product: 

 
𝑃𝑃𝐵𝐵(𝑋𝑋𝑖𝑖 , . . . ,𝑋𝑋𝑛𝑛) = ∏𝑛𝑛

𝑖𝑖=1 𝑃𝑃(𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖)  (1) 
 

A BN is a pair (𝒢𝒢, 𝜃𝜃𝒢𝒢), where 𝑃𝑃𝐵𝐵 factorizes over 𝒢𝒢, and where 𝑃𝑃𝐵𝐵 is specified as set of CPDs 
associated with 𝒢𝒢s nodes, denoted 𝜃𝜃𝒢𝒢. 
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The equation above is known as the chain rule for BN. It provides an efficient method for 
determining the probability of any complete assignment to the set of random variables. Each 
factor represents a conditional probability of the corresponding variable given its parents in 
the network [36]. 
 
An example of directed graphs which describes probability distributions is illustrated in 
Figure 2. Here, 𝑃𝑃(𝐴𝐴,𝐶𝐶,𝐷𝐷,𝐵𝐵) represents an arbitrary joint distribution over four variables 
𝐴𝐴,𝐶𝐶,𝐷𝐷,𝐵𝐵. 
According to the chain rule for BNs, the joint probability of all the nodes in the graph above 
can be expressed using the Equation 2.  

 
𝑃𝑃(𝐴𝐴,𝐶𝐶,𝐷𝐷,𝐵𝐵) = 𝑃𝑃(𝐴𝐴) ∗ 𝑃𝑃(𝐶𝐶|𝐴𝐴) ∗ 𝑃𝑃(𝐷𝐷|𝐴𝐴,𝐶𝐶) ∗ 𝑃𝑃(𝐵𝐵|𝐴𝐴,𝐶𝐶,𝐷𝐷) (2) 
 
Equation 2, after using conditional independence relationship can be formulated as in Eq. 3.  
 
𝑃𝑃(𝐴𝐴,𝐶𝐶,𝐷𝐷,𝐵𝐵) = 𝑃𝑃(𝐴𝐴) ∗ 𝑃𝑃(𝐶𝐶|𝐴𝐴) ∗ 𝑃𝑃(𝐷𝐷|𝐴𝐴) ∗ 𝑃𝑃(𝐵𝐵|𝐶𝐶,𝐷𝐷) (3) 
 
 This is achieved because 𝐷𝐷 is independent of 𝐶𝐶 and 𝐵𝐵 is independent of 𝐴𝐴. 
 
The conditional independence relationships provide a more compact way of representing the 
joint distribution. If 𝑛𝑛 is a binary node, then the full joint requires 𝑂𝑂(2𝑛𝑛) space to represent 
this node. On the other hand, the factored form requires 𝑂𝑂(2𝑚𝑚𝑚𝑚𝑚𝑚|𝑃𝑃𝑚𝑚𝑃𝑃(𝑋𝑋𝑖𝑖)|) space to represent 
the same node, where, 𝑃𝑃𝑎𝑎𝑃𝑃(𝑋𝑋𝑖𝑖) shows the set of parents of the variable 𝑋𝑋𝑖𝑖. 
 

2.3 Dependency networks (DNs) 
 
DNs [29] are graphical models for probabilistic relationship, and represent an alternative to 
the BNs. The graph of a dependency network, not similar to BNs, is potentially cyclic, but 
probability component of a dependency network, like a BNs, is a set of conditional 
distributions over multiple random variables, one for each node given its parents. The authors 
in [29] stated that there exist algorithms capable to learn the structure and the probabilities of 
a dependency network from data in a straightforward and efficient way in terms of 
computational complexity. From the graphical perspective, DNs integrate the characteristics 
of directed and undirected models and allow presence of bi-directional links among variables. 
 

 
 

Figure  3: An example of dependency network. Adopted from [50]. 
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2.4 Markov networks (MN) 
  

MN also referred as Markov random field (MRF) [36] is an undirected graphical model which 
represents the joint probability distribution over events denoted with a set of variables 𝑋𝑋 =
𝑃𝑃(𝑋𝑋1,𝑋𝑋2, . . . ,𝑋𝑋𝑛𝑛) ∈ 𝜒𝜒. It contains an undirected graph 𝒢𝒢 and a set of potential functions 𝜙𝜙𝑘𝑘 
for each clique in the graph where the nodes are random variables. MN provides a different 
and often simpler view compared to directed models, both, in terms of the independence 
structure and the inference task [36], [2]. The output of potential function is typically a non-
negative real-value of the state of the corresponding clique, obtaining the full joint 
distribution indicated by MN given in Equation 4. 

 
𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = 1

𝑍𝑍
∏𝑘𝑘 𝜙𝜙𝑘𝑘(𝑥𝑥(𝑘𝑘))  (4) 

 
where 𝑥𝑥(𝑘𝑘) shows the state of the 𝑘𝑘𝑡𝑡ℎ clique. 
The partition function Z is given in Equation 5. 

 
𝑍𝑍 = ∑𝑚𝑚∈𝜒𝜒 ∏𝑘𝑘 𝜙𝜙𝑘𝑘(𝑥𝑥(𝑘𝑘))  (5) 
 
A clique is a subset of the nodes in a graph, in which, there exists a connection link between 
all pairs of nodes in the subset. The graphical structure in Figure 4 includes two maximal 
cliques A, C, B and A, D, B and the rest of the cliques are not maximal A, C, A, D, A, B, D, 
B, C, B [2]. 

 
 

 
 

Figure  4: A simple example of a MN. Adopted from [2]. 
 
 

Any MNs parameterized using positive factors can be converted to into log-linear model 
leading to: 
 
𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = 1

𝑍𝑍
exp(∑𝑗𝑗 𝑤𝑤𝑗𝑗𝑓𝑓𝑗𝑗(𝑥𝑥))  (6) 

 
where, it is one feature corresponding to each possible state 𝑥𝑥𝑘𝑘 of each clique and 𝑤𝑤𝑗𝑗 is weight 
of feature 𝑗𝑗. 
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2.5 First-order logic 
 

A first-order knowledge base (KB) is defined as a set of expressions or formulas in FOL [26] 
that is a rich system capable to reasoning about objects and relationships. 
 
Formulas typically consist of four types of symbols: 

 Constants: represent objects within the domain of interest  
 Variables: represent range over the objects within the domain  
 Functions: represent mappings from tuples of objects to objects  
 Predicates: represent syntactic symbols, with a given arity, that denotes either 

properties of a given object or relations among objects  

Predicates contain Boolean truth value (True or False) showing if the predicate holds or not a 
value. Terms, atoms and formula that have no variables are called ground. A literal is an 
atomic formula or its negation. A formula in conjunctive normal form (CNF) represents a 
conjunction of clauses, in the other side, each clause represents a disjunction of literals. 
 
A Horn clause is a logical formula that contains at most one positive literal. If a Horn clause 
has exactly one positive literal it is known as definite clause and it is written as in the 
following expression:  

 ℎ𝑒𝑒𝑎𝑎𝑒𝑒 ⟸ 𝑙𝑙1 ∨. . .∨ 𝑙𝑙𝑚𝑚 

The set of literals 𝑙𝑙𝑗𝑗 represents the body of the clause. In the other hand a clause that has no 
head is known as a fact. A set of Horn clauses with exactly one head each is a definite logic 
program, and it is often used in ILP to represent the model (hypothesis). A collection of 
implicitly conjoined formulae is a knowledge base:  

 𝐾𝐾𝐵𝐵: = ∧
𝑖𝑖=1

(𝐹𝐹𝑖𝑖) 

An "interpretation" is a model for a formula 𝐹𝐹 if it satisfies the formulae. Let 𝐹𝐹 and 𝐺𝐺 be two 
formulae, then 𝐹𝐹 logically entails 𝐺𝐺 if all models of 𝐹𝐹 belong to models of 𝐺𝐺. The process of 
checking whether a formula logically entails another, is known as the satisfiability problem 
for FOL. Further details of the FOL can be found in [2, 24, 26, 28, 64, 72]. 

 
2.6 Inductive logic programming (ILP) 

 
ILP [43] and multi-relational data mining (MRDM) [22] is field of relational learning that 
integrates learning and logical programming. In the same time ILP serves as a foundation for 
many SRL methods. It represents a formal framework and offers practical algorithms for 
inductively learning relational descriptions from examples and background knowledge [16]. 
 
The major concern of ILP is to find a deterministic hypothesis H, in the form of a logical 
program from a set of positive (𝑃𝑃𝑃𝑃𝑃𝑃) and negative (𝑁𝑁𝑒𝑒𝑁𝑁) examples. For a given dataset 𝐷𝐷 that 
covers 𝑛𝑛 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑃𝑃 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1, . . . ,𝑛𝑛, denoted with a set of 𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑁𝑁𝑒𝑒𝑁𝑁 examples that are part of 
class label 𝑦𝑦𝑖𝑖. For a given background knowledge 𝐵𝐵 of logical formulae, and a language bias 
𝐿𝐿 that describes the hypothesis space, the goal of ILP is to induce a logical program 𝐻𝐻 that 
entails all positive examples 𝑃𝑃 and none of the negatives 𝑁𝑁. The learned hypothesis should be 
both complete and consistent with regard to the background knowledge 𝐵𝐵 and the data 𝐷𝐷. 
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Overviews of inductive logic programming can be found in [20, 21, 41]. In the following a 
short introduction on the three main settings for learning in ILP is given. Further details about 
these three settings can be found in [15]. 

 
Learning from entailment: If 𝐻𝐻 represents a causal theory and 𝑒𝑒 denotes a clause, then the 
coverage relation as shown by [28] is defined as 𝑓𝑓𝑃𝑃𝑐𝑐𝑒𝑒𝑃𝑃𝑃𝑃(𝐻𝐻, 𝑒𝑒), if and only if 𝐻𝐻 ⊨ 𝑒𝑒. Learning 
from entailment is probably one of the most used ILP setting and there are many well-known 
ILP systems such as FOIL [58], PROGOL [44] and ALEPH [70] using it. 

Learning from interpretation: In learning from interpretations, if 𝐻𝐻 represents a causal 
theory and 𝑒𝑒 denotes a Herbrand interpretation as shown by [15] then we have expression as: 
𝑓𝑓𝑃𝑃𝑐𝑐𝑒𝑒𝑃𝑃𝑃𝑃(𝐻𝐻, 𝑒𝑒) if and only if 𝐻𝐻 ⊨ 𝑒𝑒 if and only if 𝑒𝑒 with respect to the background theory B is 
a model of 𝐵𝐵 ∪ 𝐻𝐻. Learning from interpretations is generally simple and computationally easy 
compared to learning from entailment [17]. Simplicity of this method is related to fact that 
interpretations hold much more information compared to examples in learning from 
entailment. The approach used by learning from interpretations is similar to those that learn 
from entailment. The most important difference is in the generality relationship [2]. 

Learning from proofs: Learning from proofs was the first learning system applied to 
perform a kind of the learning in Model Inference System (MIS) [66]. As shown by [15] MIS 
normally fits within the learned from entailment setting where examples are facts. Inspired by 
the work of Shapiro on MIS, the authors in [15] presented the learning from proofs setting of 
ILP. In learning from proofs, if 𝐻𝐻 stands for hypothesis and 𝑒𝑒 for example and 𝐵𝐵 for 
background theory, than hypothesis 𝐻𝐻 covers example 𝑒𝑒 in regard to 𝐵𝐵 if and only if 𝑒𝑒 is a 
proof-tree for 𝐻𝐻 ∪ 𝐵𝐵. 

 
2.7 Probabilistic inductive logic programming 

 
PILP [15] is a field that tries to combine ILP principles with statistical learning and the most 
natural way to do this is by extending ILP settings with probabilistic semantics. Further 
details on this issue can be found in [13, 15]. 
 
The main difference between PILP and ILP is that the 𝑓𝑓𝑃𝑃𝑐𝑐𝑒𝑒𝑃𝑃 relation becomes a probabilistic 
one and clauses will be explained with the help of probability values. If 𝑒𝑒 stands for an 
example, 𝐻𝐻 for an hypothesis and 𝐵𝐵 stands for background theory, a probabilistic 𝑓𝑓𝑃𝑃𝑐𝑐𝑒𝑒𝑃𝑃𝑃𝑃 
relation returns a probability 𝑃𝑃 that can be given as:  

 𝑓𝑓𝑃𝑃𝑐𝑐𝑒𝑒𝑃𝑃(𝑒𝑒,𝐻𝐻 ∪ 𝐵𝐵) = 𝑃𝑃(𝑒𝑒|𝐻𝐻,𝐵𝐵) 

The latter is the likelihood of the example 𝑒𝑒 and 𝐸𝐸 is the set of examples. With this 𝑓𝑓𝑃𝑃𝑐𝑐𝑒𝑒𝑃𝑃 
relation, goal of PILP is to find hypothesis 𝐻𝐻 that provides maximum likelihood of the data 
given by expression as: 𝑃𝑃(𝐸𝐸|𝐻𝐻,𝐵𝐵). 
 

3. Statistical relational learning models 
 
Most of the work related to SRL can be grouped in two main research streams, one that starts 
with PGMs extending it with relational aspects, and another research stream in [12, 14, 15, 
16], those who follow another approach, they start with inductive logic programming (ILP) 
and extend it with probabilistic semantics. In the following we present state-of-the-art review 
of statistical relational learning models. 
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3.1 Probabilistic relational models (PRMs) 
 

PRMs [25] represent a rich representation language for structured statistical models [27]. 
PRMs combine advantages of relational logic with BNs. In contrast, from PILP approaches, 
the authors in [25] start from BNs and extend it with the concepts of objects, their properties, 
and relations between them, creating in these form a model that deals with both relations and 
uncertainty. One of the key contribution of authors in [25] was to present that some of the 
techniques of BNs learning can be further extended to the learning of these more complex 
models. It was this contribution used to generalize the ideas of [38] on this topic. More details 
on PRMs can be found at [25, 27, 28]. 

 
3.2 Stochastic logic programs (SLPs) 

 
SLPs [42] generalize Hidden Markov Models (HMMs), context-free grammars and directed 
BNs [45]. According to [28] SLPs provide a simple scheme for representing probability 
distributions over structured objects. As defined by [45] a pure SLPs is specified by a set of 
labeled clauses 𝑝𝑝:𝐶𝐶, where 𝑝𝑝 is a probability and 𝐶𝐶 is first order that has restricted range by a 
definite clause. The subset 𝑆𝑆𝑝𝑝 of clauses in 𝑆𝑆 with predicate symbol 𝑝𝑝 in the head is known as 
the definition of 𝑝𝑝. The sum of probability labels 𝜋𝜋𝑝𝑝 must be at most 1 for each definition 𝑆𝑆𝑝𝑝. 
In this case 𝑆𝑆 will be complete if 𝜋𝜋𝑝𝑝 = 1 for each 𝑝𝑝 and incomplete otherwise. On the other 
hand the 𝑃𝑃(𝑆𝑆) denotes the definite program combining by all clauses in 𝑆𝑆, with labels 
removed [45]. 

 
3.3 Bayesian logic programs (BLPs) 

  
BLPs [34] are a language used to integrate definite logic programs with BNs that results 
probability distributions over first-order interpretations. The main use of BLPs is to create an 
one-to-one mapping between ground atoms and random variables, and between the immediate 
consequence operator and the dependency relation. In this way, BLPs combine the advantages 
of both definite clause logic and BNs. Authors in [35] have presented results obtained by 
combining ILP learning from interpretations with BNs to learn from both the types of 
components (qualitative and the quantitative) of BLPs from data. 

 
3.4 Relational dependency networks (RDNs) 

 
RDNs [52] are another type of graphical models that represents extended DNs for relational 
domains similarly, as RBNs that extend BNs [50]. Authors in [52] described RDNs compared 
to RBNs and RMNs and outlined the relative strengths of RDNs, the ability that RDNs to 
denote cyclic dependencies, simple approach for parameter estimation, and efficient structure 
learning techniques. The robustness of RDNs comes from the use pseudolikelihood learning 
techniques, that estimate an efficient approximation of the full joint distribution. In contrast to 
the conventional learning, the approach used for RDNs learn a single probability tree per each 
random variable. Furthermore authors in [50] proposed turning the problem into a number of 
relational function-approximation problems by applying gradient-based boosting. The 
experimental results obtained by [50] in several data sets showed that using boosting method 
has significant improvement on RDNs learning that is more efficient compared to other state-
of-the-art statistical relational learning methods. 
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3.5 Relational markov networks 
 

RMNs [71] are undirected graphical models that extend the framework of MNs to relational 
domains. Undirected models (MNs) address two limitations of the directed models. First, 
MNs are undirected models so there are free of the problem of cycles. Second,  undirected 
models are more appropriate for discriminative training, where it is optimized the conditional 
likelihood of the labels for given features, that generally helps to improve classification 
accuracy. The authors in [71] showed how these models can be trained to be more efficient, 
and also they illustrated how to use approximate probabilistic inference over the learned 
model for collective classification and link prediction. A relational Markov network 𝑀𝑀 =
(𝐶𝐶,Φ) is defined by a set of clique templates 𝐶𝐶 and corresponding potentials Φ = {𝜙𝜙𝐶𝐶}𝐶𝐶∈𝐶𝐶 in 
order to define a conditional distribution as shown in Equation 7: 

 𝑃𝑃(𝐼𝐼.𝑦𝑦|𝐼𝐼. 𝑥𝑥, 𝐼𝐼. 𝑃𝑃) = 1
𝑍𝑍(𝐼𝐼.𝑚𝑚,𝐼𝐼.𝑃𝑃)

∏𝐶𝐶∈𝐶𝐶 ∏𝑐𝑐∈𝐶𝐶(𝐼𝐼) 𝜙𝜙𝑐𝑐(𝐼𝐼. 𝑥𝑥𝑐𝑐 , 𝐼𝐼.𝑦𝑦𝑐𝑐) (7) 

𝑍𝑍(𝐼𝐼. 𝑥𝑥, 𝐼𝐼. 𝑃𝑃) represents the normalizing partition function: 

 𝑍𝑍(𝐼𝐼. 𝑥𝑥, 𝐼𝐼. 𝑃𝑃) = ∑𝐼𝐼.𝑦𝑦 ∏𝐶𝐶∈𝐶𝐶 ∏𝑐𝑐∈𝐶𝐶(𝐼𝐼) 𝜙𝜙𝑐𝑐(𝐼𝐼. 𝑥𝑥𝑐𝑐 , 𝐼𝐼.𝑦𝑦𝑐𝑐) (8) 

Authors in [71] provided some experimental results obtained on hypertext and social network 
domains, which shows that accuracy has been significantly improved by modeling relational 
dependencies. 

 
3.6 Markov logic networks 

 
MLNs [60] is a state-of-the-art SRL model that integrates FOL representation with MN 
modeling. MLNs represent a probabilistic extension of FOL with attaching weights to each 
formula (or clause) and are suitable to deal with complex data which are characterized with 
uncertainty. As defined by [60] a MLN 𝐿𝐿 represents a set of pairs (𝐹𝐹𝑖𝑖 ,𝑤𝑤𝑖𝑖), in which the 
expression 𝐹𝐹𝑖𝑖 represents a formula in first-order logic, 𝑤𝑤𝑖𝑖 represent real number and together 
with finite 𝐶𝐶 = {𝑓𝑓1, 𝑓𝑓2, . . . , 𝑓𝑓|𝐶𝐶|} set of constants, it defines a MN 𝑀𝑀𝐿𝐿 ,𝐶𝐶 as defined by Equation 
9: 
 𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = 1

𝑍𝑍
𝑒𝑒𝑥𝑥𝑝𝑝(∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑛𝑛𝑖𝑖(𝑥𝑥)) = 1

𝑍𝑍
∏𝑖𝑖 𝜙𝜙𝑖𝑖(𝑥𝑥(𝑖𝑖))𝑛𝑛𝑖𝑖(𝑚𝑚) (9) 

 
Here, 𝑤𝑤𝑖𝑖 denotes weight of formula 𝑖𝑖, 𝑛𝑛𝑖𝑖(𝑥𝑥) denotes the number of true groundings of 
formula 𝐹𝐹𝑖𝑖 in 𝑥𝑥, 𝑥𝑥{𝑖𝑖} is the state of the predicates present in 𝐹𝐹𝑖𝑖 , and 𝜙𝜙𝑖𝑖(𝑥𝑥(𝑖𝑖)) = 𝑒𝑒𝑤𝑤𝑖𝑖 . 
 

4. SRL limitation and applications 
 

4.1 SRL limitations 
  

Probably the computational complexity of inference is one of the biggest limitation present at 
most of the SRL methods, followed by the size of the graph 𝐺𝐺𝐼𝐼 that is in proportion to the 
number of descriptive attributes and objects, which is another relevant factor that limits the 
scalability for many realistic datasets. 
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4.2 Application of SRL 
 

Using statistical and relational information gives better results. The SRL community has had a 
lot of successes with application of SRL methods in a number of areas including link 
prediction [57] and document mining [56]. Lately there has been a significant interest in SRL 
methods, with many successful applications in a wide variety of complex problems including 
information extraction [61], [55], where SRL-based algorithms have been successfully 
implemented. Some well-known cases where SRLs methods have been successfully applied 
includes biomedical problems such as breast cancer [9] and drug activity prediction [10]. In 
addition, there is another learning method known as Relational Functional Gradient Boosting 
(RFGB) [50] that has been successfully applied by [74] for predicting heart attack, later there 
was another successful application fo SRL by [49] for predicting of cardiovascular risk and 
Alzheimer’s disease prediction by [51]. SRL was also successfully applied by [11] for the first 
time in 3D building reconstruction, and to Recognize Textual Entailment by [62], and by [4] 
for modeling of large data streams using SRL techniques for classification. In the other hand, 
authors in [53] presented how a statistical models can be trained on large knowledge graphs 
to predict new facts about the world which is similar to predicting new edges in the graph 
[53]. An approach to Identifying Evidence Based Medicine Categories was presented by [73]. 
In their paper [75] proposed application of SRL approaches to hybrid recommendation 
systems. Recently, authors in [54] provide a comprehensive review of employing SRL for 
collaborative filtering task. At the same time, [54] demonstrated that exist strong evidence of 
successful application of SRL methods in the recommender system domains. 
 
More recently, statistical relational learning models have demonstrated a great success in 
classification, handwritten recognition, collaborative filtering, recommendation systems and 
time series forecasting. Luperto et al. [40] proposed semantic classification by reasoning on 
the whole structure of buildings using SRL techniques. In this study, authors proposed a 
method for global reasoning on the whole structure of buildings, considered as single 
structured objects. They have used SRL algorithm, named kLog and compared it with another 
classifier, Extra-Trees, which resembles classical approaches, in three tasks: classification of 
rooms, classification of entire floors of building and validation of simulated worlds. The 
results obtained showed that their global approach outperforms local approaches when the 
classification task involves reasoning on the regularities of buildings and when available 
about rooms is coarse-grained. 
 
Dai et al. [7] presented a new approach for detecting visual relationships with deep relational 
networks. In this study, authors proposed an integrated framework to tackle the difficulties 
caused by the high diversity of visual appearance for each kind of relationships or the larger 
number of distinct values phrases. This framework integrates deep relational network, which 
is designed specifically for exploiting the statistical dependencies between objects and their 
relationship. Results obtained by proposed method when used on two large data set, have 
reached significant improvements compared to state-of-the-art. 
 
Yang et al. [76] proposed combining content-based and collaborative filtering for job 
recommendation system. In this paper, authors proposed a way to adapt the state-of-the-art in 
SRL approaches to construct a real hybrid job recommendation system. Furthermore, in order 
to satisfy a common requirement in recommendation systems, the proposed approach can also 
allow tuning the trade-off between the precision and recall of the system in a principled way. 
Through experimental results authors demonstrated the efficiency of their proposed approach 
as well as its improved performance on recommendation precision. 
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Natarajan et al. [48] proposed MLNs for adverse drug event extraction from text. Thus, in this 
work, authors addressed the question of whether they can quantitatively estimate relationships 
between drugs and conditions from the medical literature. This paper proposed and studied a 
state-of-the-art NLP-based extraction of ADEs from text. 
 
Cohen et al. [5] proposed relational restricted Boltzmann machines (RBMs): A probabilistic 
logic learning approach. In this study, authors considered the problem of learning Boltzmann 
machine classifiers from relational data. The author’s goal was to extend the deep belief 
framework of RBMs to statistical relational models. Empirical results showed that this 
approach of designing an RBM is comparable or even better than the state-of-the-art 
probabilistic relational learning algorithms on six relational domains. 
 
Embar et al. [23] proposed scalable structure learning for probabilistic soft logic (PSL). Zhang 
et al. [77] proposed a model-based asset deterioration assessment framework represented by 
PRMs. The authors in this study have illustrated the use of the framework with multiple 
variants of deterioration models. 
 
Kazemi and Poole [33] introduced Relnn: A deep neural model for relational learning. In this 
study, authors developed relational neural networks (RelNNs) by integrating hiddens layers to 
relational logistic regression (the relational counterpart of logistic regression). In this study 
authors conducted some initial experiments on several tasks over three real-world datasets and 
results obtained showed that RelNNs are promising models for relational learning. 
 
Sileo et al. [67] showed improving composition of sentence embeddings through the lens of 
statistical relational learning. In this study, authors were based on recent SRL models to 
address textual relational problems, showing that they are more expressive, and can alleviate 
issues from simpler compositions. The resulting models significantly improve the state of the 
art in both transferable sentence representation learning and relation prediction. 
 
Katzouris et al. [31] presented online learning of weighted relational rules for complex event 
recognition. In this study, authors advanced the state-of-the-art by integrating an existing 
online algorithm for learning crisp relational structure with an online method for weight 
learning in MLNs. The authors here have evaluated this approach on a complex real-world 
application for activity recognition and result obtained showed that it performs better its crisp 
predecessor and competing online MLNs learners in terms of predictive performance. 
 
Li et al. [39] proposed an unsupervised automatic data cleaning approach based on statistical 
relational learning. In this study, authors focused on cleaning dirty data without involving data 
quality patterns or human expert’s interaction. This approach follows a series of steps, firstly, 
they learnt a model of data in the form of BN that represents the dependency relationships 
among different attributes of database table. After that, they translated the dependency 
relationship into first-order logic formulas, then form first-order logic formulas into MLNs by 
giving weigh for each formula. Secondly, they transformed MLNs into DeepDive inference 
rules and execute this steps in DeepDive framework. Here, the results of inference have been 
used to estimate the most likely repairs of dirty in data. 
 
Dong et al. [19] presented second-order Markov assumption based Bayes classifier for 
networked data with heterophily. The authors here in this study describe the problems faced in 
case of classification of networked data. According to [19] most of the traditional relational 
classifiers which are based on the principle of homophily are characterized with 
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unsatisfactory classification performance, this is due to the fact that these methods consider 
inhomogeneous networks homogenously. To address this problem, authors in this study 
proposed a progression of a network-only Bayes classifier based on second order Markov 
assumption for heterophilous networks. The experimental results obtained showed that the 
proposed method have better performance when the networks are heterophilous. 
 
Das et al. [8] proposed fast relational probabilistic inference and learning by using 
approximate counting via hypergraphs. Their experimental results showed that the efficiency 
of these approximations allows these models to perform significantly faster than state-of-the-
art, which can be successfully applied to several complex statistical relational models, without 
sacrificing effectiveness. 
 
Speichert and Belle [69] proposed learning probabilistic logic programs in continuous and 
mixed discrete-continues data. Rossi in [63] formulated the relational time series forecasting, 
Kazemi and Poole [32] introduced combining weighted rules with graph random walks for 
statistical relational models, Schlichtkrull et al. [65] introduced relational graph convolutional 
networks (R-GCNs) and applied them for link prediction (recovery of missing facts) and 
entity classification (recovery of missing entity attributes), Ravkic et al. [59] presented the 
graph sampling appraoch with applications to estimating the number of pattern embeddings 
and the parameters of a statistical relational model. Mutlu et al. [47] presented a 
comprehensive review on graph feature learning and feature extraction techniques for link 
prediction. Bozcan and Kalkan [3] introduced COSMO: Contextualized scene modeling with 
Boltzmann machines. 
 

5. Conclusions 
 
Statistical relational models (SRL) methods have in most of the cases been very successful 
and significant progress is made over the last two decades. Many different problems have 
been defined using SRL models and good results have already been achieved; nevertheless, 
despite all these advances and successful application, the current SRL models surveyed in this 
paper still require further improvements to make SRL models more effective in a broader 
range of application. In this paper, we reviewed various limitation of the current SRL models 
and discussed possible extension that can be provide better learning capabilities. The 
computational complexity of inference is the most important limitation present among most of 
the SRL methods. The size of the graph 𝐺𝐺𝐼𝐼, that is directly linked (proportional) to the number 
of describing attributes and objects and in this way limits the scalability for many real world 
datasets. We hope that the issues presented in this paper will advance the discussion in the 
statistical relational learning community about the next generation of statistical relational 
learning techniques. 
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