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Abstract: In this study, a new three step iterative algorithm was introduced with 
the help of Jungck-contraction principle which is one of the remerkable 
generalizations of Banach-contraction principle.  Also,  the convergence and stability 
results were obtained for the pair of nonself mappings which satisfy a certain 
contractive condition by using this iterative algorithm in any Banach space. In 
addition, it was shown that the new iterative algorithm has a better convergence 
speed when compared the other Jungck-type iterative algorithms in the current 
literature, and to support this result, numerical examples were given. 

  
  

Genelleştirilmiş Banach-Büzülme Prensibi Kullanılarak Yeni Sabit Nokta 
Teoremlerinin Elde Edilmesi 

 
 

Anahtar Kelimeler 
Jungck-Büzülme Prensibi, 
Yeni İterasyon Algoritması, 
Yakınsaklık,  
Kararlılık  

Öz: Bu çalışmada,  Banach-büzülme prensibinin dikkate değer genellemelerinden 
biri olan Jungck-büzülme prensibi yardımıyla yeni üç adımlı iterasyon algoritması 
tanımlanmıştır. Ayrıca bu iterasyon algoritması kullanılarak, kendi üzerine olmayan 
ve belirli bir büzülme şartını sağlayan dönüşüm çifti için herhangi bir Banach 
uzayında yakınsaklık ve kararlılık sonuçları elde edilmiştir. Ek olarak, tanımlanan 
yeni algoritmanın literatürde bulunan diğer Jungck-tipindeki algoritmalarla 
kıyaslandığında yakınsama anlamında daha hızlı olduğu gösterilmiş ve bu sonucu 
destekleyen nümerik örnekler verilmiştir. 
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1. Introduction
 
 
Fixed point theory has become an interesting and fundamental subject of nonlinear functional analysis with its 
wide range of applications in various fields of mathematics (differential and integral equations, linear algebra, 
approximation theory, control theory, game theory, etc.). This theory also has very fruitful applications in almost 
all branches of science such as chemistry, biology, statistics, computer science, engineering and economics. 
Particularly in the last fifty years, fixed point theory has been one of the most active areas of research that has 
rised on the basis of analysis and topology and today in this sense continues to attract the attention of many 
researchers as a dynamic field of study. 
 
Let 𝑋 is nonempty set. The point that provides the equation 𝑇𝑥 = 𝑥 for the 𝑇 mapping is called the fixed point of 𝑇. 
Geometrically, this means the points on the 𝑦 = 𝑥 line. The basic idea in fixed point theory is to find the 𝑥 point 
that provides the equation given above. Theorems constructed for the existence and uniqueness of the fixed point 
are called fixed point theorems. 
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The Banach contraction principle, which is one of the most famous theorems in fixed point theory, formulated and 
proved by Banach [1] guarantees the existence and uniqueness of a fixed point of a mapping defined on a complete 
metric space under appropriate conditions.  
 
Also, it says that the sequence obtained from the Picard iteration will converge to this fixed point.  Because of its 
simplicity and usefulness, this theorem has become a popular tool in the search for fixed points. Later, this theorem 
was extended and generalized in many ways by many authors (see [2]-[5]).However, the Banach contraction 
principle cannot guarantee the convergence of the sequence obtained from Picard iteration for non-expansive 
mappings. Therefore, new iterative algorithms are defined and fixed point theorems are obtained for different 
mapping classes in many spaces from Hilbert spaces to metric spaces (see [6]- [11]). 
 
When defining an iterative algorithm, it is important that it must be faster and simpler in terms of convergence. 
Moving from this point, a new iterative algorithm of Jungck-type is defined in this study and convergence is 
obtained in Banach spaces. In addition, stability has been proved by using the newly defined iterative algorithm 
for a more general mapping class than the Jungck-contraction mapping. Finally, it has been shown that the new 
algorithm is faster than the other Jungck type algorithms in the literature. 
 
2. Material and Method 
 
One of the most important generalizations of the Banach contraction principle is obtained by Jungck [4] using 
commutative mappings as follows: In this paper we assume that  𝑋 is a Banach space 𝑌 an arbitrary set and 
𝑆, 𝑇: 𝑌 → 𝑋 such that 𝑇(𝑌) ⊆ 𝑆(𝑌).  
 
Theorem 2.1. Suppose (𝑋, 𝑑) is a complete metric space. Let 𝑓 and 𝑔 be two functions such that 𝑓, 𝑔: 𝑋 → 𝑋 satisfy 
the following conditions for all 𝑥, 𝑦 ∈ 𝑋 : 
 

i. (𝑓, 𝑔) are commutative mapping pair 
ii. 𝑔 is continuous 

iii. 𝑓(𝑋) ⊂ 𝑔(𝑋)  
iv. 𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝑘. 𝑑(𝑔𝑥, 𝑔𝑦)   such that 𝑘 ∈ [0,1). 

 
Then 𝑓 and 𝑔 have a unique common fixed point such as 𝑝 ∈ 𝑋.  
 
In this theorem, the condition given by (iv) is called the Jungck-contraction mapping. Furthermore, if  𝑔(𝑥) = 𝑥 
this theorem reduces to classical Banach contraction principle. As a result of this theorem, the following iterative 
algorithm is defined by Jungck [4]: 
 

𝑆𝑥𝑛+1 = 𝑇𝑥𝑛   
   (1) 

 
for all 𝑛 ∈ ℕ. This equation is called Jungck iterative algorithm. If 𝑆 = 𝐼 (unit mapping) and 𝑌 = 𝑋 in the above 
equation, it is clear that classical Picard iterative algorithm is obtained.  
 

This approach, introduced by Jungck, has paved the way for many researchers to rewrite classical iterative 
algorithms in Jungck-type to obtain various types of fixed point theorems. Some of the studies carried out with this 
approach are as follows: 
 
In 2005, Singh et al. [13] defined Jungck-Mann (JM) iterative algorithm as follows: 
 

𝑆𝑥𝑛+1 = (1 − 𝛼𝑛)𝑆𝑥𝑛 + 𝛼𝑛𝑇𝑥𝑛   (2) 

 
where {𝛼𝑛}𝑛=0

∞ ⊂ [0,1].  
 

Jungck-Ishikawa (JI) and Jungck-Noor (JN) iterative algorithms were defined as follow respectively: 
 

{
𝑆𝑥𝑛+1 = (1 − 𝛼𝑛)𝑆𝑥𝑛 + 𝛼𝑛𝑇𝑦

𝑛

𝑆𝑦
𝑛

= (1 − 𝛽
𝑛
)𝑆𝑥𝑛 + 𝛽

𝑛
𝑇𝑥𝑛

 (3) 

 
and  
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{

𝑆𝑥𝑛+1 = (1 − 𝛼𝑛)𝑆𝑥𝑛 + 𝛼𝑛𝑇𝑦
𝑛

𝑆𝑦
𝑛

= (1 − 𝛽
𝑛
)𝑆𝑥𝑛 + 𝛽

𝑛
𝑇𝑧𝑛

𝑆𝑧𝑛 = (1 − 𝛾
𝑛
)𝑆𝑥𝑛 + 𝛾

𝑛
𝑇𝑥𝑛

 (4) 

 
where {𝛼𝑛}𝑛=0

∞ , {𝛽𝑛}𝑛=0
∞ , {𝛾𝑛}𝑛=0

∞ ⊂ [0,1] (see [14], [15]). 
 
In 2011, Jungck-SP (JSP) iterative algorithm was defined as follows: 
 

{

𝑆𝑥𝑛+1 = (1 − 𝛼𝑛)𝑆𝑦
𝑛

+ 𝛼𝑛𝑇𝑦
𝑛

𝑆𝑦
𝑛

= (1 − 𝛽
𝑛
)𝑆𝑧𝑛 + 𝛽

𝑛
𝑇𝑧𝑛

𝑆𝑧𝑛 = (1 − 𝛾
𝑛
)𝑆𝑥𝑛 + 𝛾

𝑛
𝑇𝑥𝑛

 (5) 

 
where {𝛼𝑛}𝑛=0

∞ , {𝛽𝑛}𝑛=0
∞ , {𝛾𝑛}𝑛=0

∞ ⊂ [0,1] (see [16]). 
 
Jungck-CR (JCR) iterative algorithm were defined by Hussain et al. as follow: 
 

{

𝑆𝑥𝑛+1 = (1 − 𝛼𝑛)𝑆𝑦
𝑛

+ 𝛼𝑛𝑇𝑦
𝑛

𝑆𝑦
𝑛

= (1 − 𝛽
𝑛
)𝑇𝑥𝑛 + 𝛽

𝑛
𝑇𝑧𝑛

𝑆𝑧𝑛 = (1 − 𝛾
𝑛
)𝑆𝑥𝑛 + 𝛾

𝑛
𝑇𝑥𝑛

 (6) 

 
where {𝛼𝑛}𝑛=0

∞ , {𝛽𝑛}𝑛=0
∞ , {𝛾𝑛}𝑛=0

∞ ⊂ [0,1] (see [17]). 
 
In 2014, Khan et al. defined Jungck-Khan (JK) iterative algorithm as follow: 
 

{

𝑆𝑢𝑛+1 = (1 − 𝛼𝑛 − 𝛽
𝑛
)𝑆𝑢𝑛 + 𝛼𝑛𝑇𝑣𝑛 + 𝛽

𝑛
𝑇𝑢𝑛

𝑆𝑣𝑛 = (1 − 𝑏𝑛 − 𝑐𝑛)𝑆𝑢𝑛 + 𝑏𝑛𝑇𝑤𝑛 + 𝑐𝑛𝑇𝑢𝑛

𝑆𝑤𝑛 = (1 − 𝑎𝑛)𝑆𝑢𝑛 + 𝑎𝑛𝑇𝑢𝑛

 (7) 

 
where {𝛼𝑛}𝑛=0

∞ , {𝛽𝑛}𝑛=0
∞ , {𝛾𝑛}𝑛=0

∞ , {𝑎𝑛}𝑛=0
∞ , {𝑏𝑛}𝑛=0

∞ , {𝑐𝑛}𝑛=0
∞ ⊂ [0,1] ( see [18]). 

 
Remark 2.2.  
 

• Putting 𝑆 = 𝐼 and 𝑌 = 𝑋 in the JM iterative algorithm (2), we get classical Mann iterative algorithm [6]. 
• Putting 𝑆 = 𝐼 and 𝑌 = 𝑋 in the JI iterative algorithm (3) and JN iterative algorithm (4), we get classical 

Ishikawa and classical Noor iterative algorithms, respectively [7], [8]. 
• Putting 𝑆 = 𝐼 and 𝑌 = 𝑋 in the JSP iterative algorithm (5), we get classical SP iterative algorithm [19]. 
• Putting 𝑆 = 𝐼 and 𝑌 = 𝑋 in the JCR iterative algorithm (6), we get classical CR iterative algorithm [20]. 
• Putting 𝛽𝑛 = 𝑐𝑛 = 0 in the JK iterative algorithm (7), we get JN iterative algorithm (4). 

 
Also putting 𝛼𝑛 = 0 and 𝛼𝑛 = 0, 𝛽𝑛 = 1 in the JCR iterative algorithm (6) respectively, we obtain the following 
Jungck-Agarwal (JA) iterative algorithm [21] and Jungck-Sahu (JS) iterative algorithm [17]: 
 

{
𝑆𝑥𝑛+1 = (1 − 𝛽

𝑛
)𝑇𝑥𝑛 + 𝛽

𝑛
𝑇𝑦

𝑛

𝑆𝑦
𝑛

= (1 − 𝛾
𝑛
)𝑆𝑥𝑛 + 𝛾

𝑛
𝑇𝑥𝑛

 (8) 

 
and 
 

{
𝑆𝑥𝑛+1 = 𝑇𝑦

𝑛

𝑆𝑦
𝑛

= (1 − 𝛾
𝑛
)𝑆𝑥𝑛 + 𝛾

𝑛
𝑇𝑥𝑛

 (9) 
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It is shown that the sequence obtained from the iterative algorithm given by (1) converges to the common fixed 
point of 𝑆 and 𝑇 mappings which satisfies the Jungck-contraction condition by Jungck [4]. The following mapping 
class, which is more general than the Jungck-contraction mapping condition, was described by Olatinwo [14] and 
some convergence and stability results were obtained for the Jungck-Ishikawa iteration algorithm: 
 
Definition 2.3. The pair 𝑆, 𝑇: 𝑌 → 𝑋 is called contractive if there exist a real number 𝛿 ∈ [0,1) and a continuous 
function 𝜙: ℝ+ → ℝ+ such that 𝜙(0) = 0 and for all 𝑥, 𝑦 ∈ 𝑌, we have  
 

‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝜙(‖𝑆𝑥 − 𝑇𝑥‖) + 𝛿‖𝑆𝑥 − 𝑆𝑦‖.   (10) 

 
Hussain et al. [17] obtained some convergence and stability results by using this mapping for the JCR iterative 
algorithm (6) in any Banach space and showed that the convergence rate of this algorithm is better compared to 
other iterative algorithms. 
 
In the light of the studies mentioned above, we have defined a new Jungck type iterative algorithm (JY) as follows: 
 

{

𝑆𝑥𝑛+1 = 𝑇𝑦
𝑛

𝑆𝑦
𝑛

= (1 − 𝛼𝑛)𝑆𝑧𝑛 + 𝛼𝑛𝑇𝑧𝑛

𝑆𝑧𝑛 = 𝑇𝑥𝑛

 (11) 

 
where {𝛼𝑛}𝑛=0

∞ ⊂ [0,1].  
 
Definition 2.4. Let 𝑋 be a nonempty set and 𝑆, 𝑇: 𝑋 → 𝑋 be mappings.  
 

i. If 𝑇𝑥 = 𝑆𝑥, then 𝑥 ∈ 𝑋 is called coincidence point of 𝑇 and 𝑆. 
ii. If 𝑥 = 𝑇𝑥 = 𝑆𝑥, then 𝑥 ∈ 𝑋 is called common fixed point of 𝑇 and 𝑆. 

iii. If 𝑝 = 𝑇𝑥 = 𝑆𝑥 for some 𝑥 ∈ 𝑋, then 𝑝 is called the point of coincidence of 𝑇 and 𝑆. 
iv. If 𝑇𝑆𝑥 = 𝑆𝑇𝑥 for all 𝑥 ∈ 𝑋, then a pair (𝑆, 𝑇) is called commuting. 
v. If 𝑇𝑆𝑥 = 𝑆𝑇𝑥 whenever 𝑇𝑥 = 𝑆𝑥 for some 𝑥 ∈ 𝑋, then a pair (𝑆, 𝑇) is called weakly compatible [22]. 

 
Lemma 2.5. Let {𝜎𝑛}𝑛=0

∞  and {𝜇𝑛}𝑛=0
∞  be nonnegative real sequences satisfying the following inequality 

 

𝜎𝑛+1 ≤ (1 − 𝜆𝑛)𝜎𝑛 + 𝜇𝑛    

 

where  𝜆𝑛 ∈ (0,1) for all 𝑛 ≥ 𝑛0, ∑ 𝜆𝑛 = ∞∞
𝑛=0  and 

𝜇𝑛  

𝜆𝑛
→ 0 as 𝑛 → ∞. Then lim

𝑛→∞
𝜎𝑛 = 0 [23]. 

 
Definiton 2.6. Let {𝑐𝑛}𝑛=0

∞  and {𝑑𝑛}𝑛=0
∞  be two sequences of real numbers with limits 𝑐 and 𝑑, respectively. Suppose 

that there exists 
 

lim
𝑛→∞

|𝑐𝑛−c|

|𝑑𝑛−d|
= 𝑙    

 
i. If 𝑙 = 0, then we say that {𝑐𝑛}𝑛=0

∞  converges faster to 𝑐 than {𝑑𝑛}𝑛=0
∞  to 𝑑. 

ii. If 0 < 𝑙 < ∞, then we say that {𝑐𝑛}𝑛=0
∞  and {𝑑𝑛}𝑛=0

∞  have the same rate of convergence [24]. 

 
Definition 2.7. Let 𝑆, 𝑇: 𝑌 → 𝑋,  𝑇(𝑌) ⊆ 𝑆(𝑌) and 𝑝 = 𝑇𝑥 = 𝑆𝑥. For any 𝑥0 ∈ 𝑌, let the sequence {𝑆𝑥𝑛}𝑛=0

∞  generated 
by the iterative algorithm 𝑆𝑥𝑛+1 = 𝑓(𝑇, 𝑥𝑛) converges to 𝑝. Let {𝑆𝑦𝑛}𝑛=0

∞ ⊂ 𝑋 be an arbitrary sequence and set 𝜖𝑛 =

𝑑(𝑆𝑦𝑛+1, 𝑓(𝑇, 𝑦𝑛)), 𝑛 = 0,1,2, …. Then the iterative algorithm  𝑓(𝑇, 𝑥𝑛) will be called (𝑆, 𝑇)-stable if and only if 

lim
𝑛→∞

𝜖𝑛 = 0 implies that lim
𝑛→∞

𝑆𝑦𝑛 = 𝑝 [13]. 
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3. Results 
 
For the sake of simplicity in the rest of this paper, we assume that 𝑆, 𝑇: 𝑌 → 𝑋 satisfy contractive condition (10) 
where 𝑇(𝑌) ⊆ 𝑆(𝑌) such that 𝑆(𝑌) is complete subset of 𝑋 and 𝐶(𝑆, 𝑇) denotes the set of coincidence points of 𝑆 
and 𝑇.  
 
Theorem 3.1. Let {𝑆𝑥𝑛}𝑛=0

∞  be iterative sequence (11) with ∑ 𝛼𝑛 = ∞∞
𝑛=0 . Assume that there exist a 𝑧 ∈ 𝐶(𝑆, 𝑇) 

such that 𝑝 = 𝑇𝑧 = 𝑆𝑧. Then {𝑆𝑥𝑛}𝑛=0
∞  converges to 𝑝. In adittion, 𝑝 is a unique common fixed point of 𝑆 and 𝑇 if 

𝑌 = 𝑋 and 𝑆 and 𝑇 are weakly compatible. 
Proof. By using iterative algorithm (11) and contractive condition (10), we obtain 
 

‖𝑆𝑥𝑛+1 − 𝑝‖ = ‖𝑇𝑦𝑛 − 𝑝‖ ≤ 𝜙(‖𝑆𝑧 − 𝑇𝑧‖) + 𝛿‖𝑆𝑧 − 𝑆𝑦𝑛‖   (12) 

                                                   = 𝛿‖𝑆𝑦𝑛 − 𝑝‖  

 
Also 
 

‖𝑆𝑦𝑛 − 𝑝‖ = ‖(1 − 𝛼𝑛)𝑆𝑧𝑛 + 𝛼𝑛𝑇𝑧𝑛 − 𝑝‖    

                     ≤ (1 − 𝛼𝑛)‖𝑆𝑧𝑛 − 𝑝‖ + 𝛼𝑛‖𝑇𝑧𝑛 − 𝑝‖ (13) 

                     ≤ (1 − 𝛼𝑛)‖𝑆𝑧𝑛 − 𝑝‖ + 𝛼𝑛{𝜙(‖𝑆𝑧 − 𝑇𝑧‖) + 𝛿‖𝑆𝑧 − 𝑆𝑧𝑛‖}  

                     = [1 − 𝛼𝑛(1 − 𝛿)]‖𝑆𝑧𝑛 − 𝑝‖  

 
and  
 

‖𝑆𝑧𝑛 − 𝑝‖ = ‖𝑇𝑥𝑛 − 𝑝‖ ≤ 𝜙(‖𝑆𝑧 − 𝑇𝑧‖) + 𝛿‖𝑆𝑧 − 𝑆𝑥𝑛‖   (14) 

                                                   = 𝛿‖𝑆𝑥𝑛 − 𝑝‖.  

 
Substituting (14) in (13) and (13) in (12) respectively, we have 
 

‖𝑆𝑥𝑛+1 − 𝑝‖ ≤ 𝛿2[1 − 𝛼𝑛(1 − 𝛿)]‖𝑆𝑥𝑛 − 𝑝‖   (15) 

 
Then  
 

‖𝑆𝑥𝑛+1 − 𝑝‖ ≤ ∏ 𝛿2[1 − 𝛼𝑘(1 − 𝛿)]‖𝑆𝑥0 − 𝑝‖𝑛
𝑘=0    (16) 

                                                   ≤
𝛿2𝑛

𝑒
(1−𝛿) ∑ 𝛼𝑘 𝑛

𝑘=0
‖𝑆𝑥0 − 𝑝‖  

 
Taking the limit in both sides of the above inequality, it can be seen that lim

𝑛→∞
‖𝑆𝑥𝑛 − 𝑝‖ = 0. 

 

Now we show that 𝑝 is a unique common fixed point of 𝑆 and 𝑇 when 𝑌 = 𝑋. Assume that there exist another point 
of coincide 𝑝∗ of the pair (𝑆, 𝑇). Then there exist 𝑧∗ ∈ 𝐶(𝑆, 𝑇) such that 𝑆𝑧∗ = 𝑇𝑧∗ = 𝑝∗. By using inequality (10), we 
get 
 

0 ≤ ‖𝑝 − 𝑝∗‖ = ‖𝑇𝑧 − 𝑇𝑧∗‖ ≤ 𝜙(‖𝑆𝑧 − 𝑇𝑧‖) + 𝛿‖𝑆𝑧 − 𝑆𝑧∗‖ = 𝛿‖𝑝 − 𝑝∗‖   

 
which implies that 𝑝 = 𝑝∗. Also 𝑆 and 𝑇 are weakly compatible and 𝑆𝑧 = 𝑇𝑧 = 𝑝, then 𝑇𝑝 = 𝑇𝑇𝑧 = 𝑇𝑆𝑧 = 𝑆𝑇𝑧 
implies 𝑇𝑝 = 𝑆𝑝. Hence, 𝑇𝑝 is a point of coincidence of the pair (𝑆, 𝑇) and because point of coincidence is unique, 
then 𝑇𝑝 = 𝑝. So, 𝑆𝑝 = 𝑇𝑝 = 𝑝 implies that 𝑝 is a unique common fixed point of 𝑆 and 𝑇. 
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Theorem 3.2. Assume that 𝑧 ∈ 𝐶(𝑆, 𝑇) such that 𝑝 = 𝑇𝑧 = 𝑆𝑧. Let {𝑆𝑥𝑛}𝑛=0
∞  be iterative sequence (11) with 

0 < 𝛼1 < 𝛼𝑛 converges to 𝑝. Also let {𝑆𝑢𝑛}𝑛=0
∞ ⊂ 𝑋 be an arbitrary sequence and let 𝜖𝑛 = 𝑑(𝑆𝑢𝑛+1, 𝑓(𝑇, 𝑢𝑛)), 𝑛 =

0,1,2, …. Then iterative algorithm (11) will be called (𝑆, 𝑇)-stable if and only if lim
𝑛→∞

𝜖𝑛 = 0 implies that 

lim
𝑛→∞

𝑆𝑢𝑛 = 𝑝. 

 
Proof. Let {𝑆𝑢𝑛}𝑛=0

∞ ⊂ 𝑋 be an arbitrary sequence and let 𝑆𝑣𝑛 = (1 − 𝛼𝑛)𝑆𝑤𝑛 + 𝛼𝑛𝑇𝑤𝑛 , 𝑆𝑤𝑛 = 𝑇𝑢𝑛 and lim
𝑛→∞

𝜖𝑛 = 0 

such that 𝜖𝑛 = ‖𝑆𝑢𝑛+1 − 𝑇𝑣𝑛‖. It will be shown that lim
𝑛→∞

𝑆𝑢𝑛 = 𝑝. 

 

‖𝑆𝑢𝑛+1 − 𝑝‖ ≤ ‖𝑆𝑢𝑛+1 − 𝑇𝑣𝑛‖ + ‖𝑇𝑣𝑛 − 𝑝‖    

                         ≤ 𝜖𝑛 + ‖𝑇𝑧 − 𝑇𝑣𝑛‖ (17) 

                         ≤ 𝜖𝑛 + 𝜙(‖𝑆𝑧 − 𝑇𝑧‖) + 𝛿‖𝑆𝑧 − 𝑆𝑣𝑛‖  

                         = 𝜖𝑛 + 𝛿‖𝑆𝑣𝑛 − 𝑝‖  

 
and 
 

‖𝑆𝑣𝑛 − 𝑝‖ ≤ (1 − 𝛼𝑛)‖𝑆𝑤𝑛 − 𝑝‖ + 𝛼𝑛‖𝑇𝑤𝑛 − 𝑝‖    

                     ≤ (1 − 𝛼𝑛)‖𝑆𝑤𝑛 − 𝑝‖ (18) 

                          +𝛼𝑛{𝜙(‖𝑆𝑧 − 𝑇𝑧‖) + 𝛿‖𝑆𝑧 − 𝑆𝑤𝑛‖}  

                     = [1 − 𝛼𝑛(1 − 𝛿)]‖𝑆𝑤𝑛 − 𝑝‖  

 
Moreover 
 

‖𝑆𝑤𝑛 − 𝑝‖ ≤ 𝜙(‖𝑆𝑧 − 𝑇𝑧‖) + 𝛿‖𝑆𝑧 − 𝑆𝑢𝑛‖ = 𝛿‖𝑆𝑢𝑛 − 𝑝‖  
 

(19) 

Substituting (19) in (18) and (18) in (17) respectively, we have 

 

‖𝑆𝑢𝑛+1 − 𝑝‖ ≤ 𝜖𝑛 + 𝛿2[1 − 𝛼𝑛(1 − 𝛿)]‖𝑆𝑢𝑛 − 𝑝‖  
 

(20) 

 
Hence 0 < 𝛼1 < 𝛼𝑛 and 𝛿 ∈ [0,1), we get [1 − 𝛼𝑛(1 − 𝛿)] ≤ [1 − 𝛼1(1 − 𝛿)] < 1. Then we obtain lim

𝑛→∞
𝑆𝑢𝑛 = 𝑝. 

Now, we suppose that lim
𝑛→∞

𝑆𝑢𝑛 = 𝑝. It will be shown that lim
𝑛→∞

𝜖𝑛 = 0 : 

 

𝜖𝑛 = ‖𝑆𝑢𝑛+1 − 𝑇𝑣𝑛‖ ≤ 𝛿‖𝑆𝑢𝑛+1 − 𝑝‖ + ‖𝑇𝑣𝑛 − 𝑝‖   

                                         ≤ ‖𝑆𝑢𝑛+1 − 𝑝‖ + 𝜙(‖𝑆𝑧 − 𝑇𝑧‖) + 𝛿‖𝑆𝑧 − 𝑆𝑣𝑛‖ (21) 

                                         = ‖𝑆𝑢𝑛+1 − 𝑝‖ + 𝛿‖𝑆𝑣𝑛 − 𝑝‖  

 
From (18) it can be seen easily ‖𝑆𝑣𝑛 − 𝑝‖ ≤ [1 − 𝛼𝑛(1 − 𝛿)]‖𝑆𝑤𝑛 − 𝑝‖. Then we get 
 

𝜖𝑛 ≤ ‖𝑆𝑢𝑛+1 − 𝑝‖ + 𝛿[1 − 𝛼𝑛(1 − 𝛿)]‖𝑆𝑤𝑛 − 𝑝‖  
 

 

 
Also ‖𝑆𝑤𝑛 − 𝑝‖ ≤ 𝛿‖𝑆𝑢𝑛 − 𝑝‖. Hence we obtain 
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𝜖𝑛 ≤ ‖𝑆𝑢𝑛+1 − 𝑝‖ + 𝛿2[1 − 𝛼𝑛(1 − 𝛿)]‖𝑆𝑢𝑛 − 𝑝‖  
 

 

 
Taking the limit in both sides of the above inequality, it can be seen that lim

n→∞
ϵn = 0. 

 
Theorem 3.3. Let {𝑆𝑥𝑛}𝑛=0

∞  be iterative sequence (11) with ∑ 𝛼𝑛 = ∞∞
𝑛=0  and 𝑙𝑖𝑚

𝑛→∞
𝛼𝑛 = 0. Let {𝑆𝑢𝑛}𝑛=0

∞  be iterative 

sequence (7) with 𝑙𝑖𝑚
𝑛→∞

𝛽𝑛 = 0 and 0 ≤ 𝛼𝑛 + 𝛽𝑛 ≤
1

1+𝛿
. Assume that 𝑝 is the unique common fixed point of the pair 

(𝑆, 𝑇). Then {𝑆𝑥𝑛}𝑛=0
∞  converges to 𝑝 faster than {𝑆𝑢𝑛}𝑛=0

∞  for 𝑥0 = 𝑢0 ∈ 𝑌. 
 
Proof. From inequality (16) in Theorem 3.1., we have  
 

‖𝑆𝑥𝑛+1 − 𝑝‖ ≤ 𝛿2(𝑛+1) ∏ [1 − 𝛼𝑖(1 − 𝛿)]‖𝑆𝑥0 − 𝑝‖𝑛
𝑖=0   (22) 

 
Also from JK iterative algorithm (7), we have 
 

‖𝑆𝑤𝑛 − 𝑝‖ ≤ (1 − 𝑎𝑛)‖𝑆𝑢𝑛 − 𝑝‖ + 𝑎𝑛‖𝑇𝑢𝑛 − 𝑝‖   (23) 

                      ≤ [1 − 𝑎𝑛(1 − 𝛿)]‖𝑆𝑢𝑛 − 𝑝‖  

 
and 
 

‖𝑆𝑣𝑛 − 𝑝‖ ≤ (1 − 𝑏𝑛 − 𝑐𝑛)‖𝑆𝑢𝑛 − 𝑝‖ + 𝑏𝑛‖𝑇𝑤𝑛 − 𝑝‖ + 𝑐𝑛‖𝑇𝑢𝑛 − 𝑝‖   (24) 

                      ≤ (1 − 𝑏𝑛 − 𝑐𝑛)‖𝑆𝑢𝑛 − 𝑝‖ + 𝑏𝑛𝛿‖𝑆𝑤𝑛 − 𝑝‖ + 𝑐𝑛𝛿‖𝑆𝑢𝑛 − 𝑝‖.  

 
Substituting (23) in (24), we obtain 
 

‖𝑆𝑣𝑛 − 𝑝‖ ≤ {1 − 𝑏𝑛 − 𝑐𝑛 + 𝑏𝑛𝛿[1 − 𝑎𝑛(1 − 𝛿)] + 𝑐𝑛𝛿}‖𝑆𝑢𝑛 − 𝑝‖  (25) 

 

Also 

 

‖𝑆𝑢𝑛+1 − 𝑝‖ ≥ (1 − 𝛼𝑛 − 𝛽𝑛)‖𝑆𝑢𝑛 − 𝑝‖ − 𝛼𝑛‖𝑇𝑣𝑛 − 𝑝‖ − 𝛽𝑛‖𝑇𝑢𝑛 − 𝑝‖  (26) 

 
and because ‖𝑇𝑣𝑛 − 𝑝‖ ≤ 𝛿‖𝑆𝑣𝑛 − 𝑝‖, we have  
 

‖𝑆𝑢𝑛+1 − 𝑝‖ ≥ (1 − 𝛼𝑛 − 𝛽𝑛)‖𝑆𝑢𝑛 − 𝑝‖  

                              −𝛼𝑛𝛿{1 − 𝑏𝑛 − 𝑐𝑛 + 𝑏𝑛𝛿[1 − 𝑎𝑛(1 − 𝛿)] + 𝑐𝑛𝛿}‖𝑆𝑢𝑛 − 𝑝‖  

                              −𝛽𝑛𝛿‖𝑆𝑢𝑛 − 𝑝‖ (27) 

                        = {
1 − 𝛼𝑛 − 𝛽𝑛

−𝛼𝑛𝛿{1 − 𝑏𝑛 − 𝑐𝑛 + 𝑏𝑛𝛿[1 − 𝑎𝑛(1 − 𝛿)] + 𝑐𝑛𝛿} − 𝛽𝑛𝛿
} ‖𝑆𝑢𝑛 − 𝑝‖  

 
Because 𝑐𝑛𝛿 < 𝑐𝑛, 𝑏𝑛𝛿 < 𝑏𝑛 and [1 − 𝑎𝑛(1 − 𝛿)] ≤ 1, we obtain 
 

‖𝑆𝑢𝑛+1 − 𝑝‖ ≥ (1 − 𝛼𝑛 − 𝛽𝑛 − 𝛼𝑛𝛿 − 𝛽𝑛𝛿)‖𝑆𝑢𝑛 − 𝑝‖  

                         = [1 − (𝛼𝑛 + 𝛽𝑛)(1 + 𝛿)]‖𝑆𝑢𝑛 − 𝑝‖  
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From the above inequality we obtain  

 

‖𝑆𝑢𝑛+1 − 𝑝‖ ≥ ∏ [1 − (𝛼𝑖 + 𝛽𝑖)(1 + 𝛿)]‖𝑆𝑢0 − 𝑝‖𝑛
𝑖=0   (28) 

 
By using (22) and (28), we get 
 

‖
𝑆𝑥𝑛+1 − 𝑝

𝑆𝑢𝑛+1 − 𝑝
‖ ≤

𝛿2(𝑛+1) ∏ [1 − 𝛼𝑖(1 − 𝛿)]‖𝑆𝑥0 − 𝑝‖𝑛
𝑖=0

∏ [1 − (𝛼𝑖 + 𝛽𝑖)(1 + 𝛿)]‖𝑆𝑢0 − 𝑝‖𝑛
𝑖=0

 

 
Define 

 

𝜓𝑛 =
𝛿2(𝑛+1) ∏ [1 − 𝛼𝑖(1 − 𝛿)]‖𝑆𝑥0 − 𝑝‖𝑛

𝑖=0

∏ [1 − (𝛼𝑖 + 𝛽𝑖)(1 + 𝛿)]‖𝑆𝑢0 − 𝑝‖𝑛
𝑖=0

 

 
Then we have 

 
𝜓𝑛+1

𝜓𝑛

=
𝛿2[1 − 𝛼𝑛(1 − 𝛿)]

[1 − (𝛼𝑛+1 + 𝛽𝑛+1)(1 + 𝛿)]
 

 

By assumption lim
n→∞

αn = lim
n→∞

βn = 0, we get lim
n→∞

ψn+1

ψn
= δ2 < 1. That is lim

n→∞
ψn = 0 which implies that {Sxn}n=0

∞  

converges to 𝑝 faster than {Sun}n=0
∞ . 

 
The following examples show that our newly defined iterative algorithm is faster than other Jungck-type 
algorithms which mentioned in this paper: 
 
Example 3.4. Let 𝑌 = [−1,1] ⊂ ℝ be endowed with usual metric. Define 𝑇, 𝑆: [−1,1] → [−1,1] with a common fixed 

point 𝑝 = 0 by 𝑇𝑥 =
𝑥

8
 and 𝑆𝑥 =

𝑥

2
. It is clear that 𝑇([−1,1]) ⊆ 𝑆([−1,1]) and 𝑆([−1,1]) is a complete subset of 

[−1,1]. The pair (𝑆, 𝑇) satisfies condition (10) with 𝛿 ∈ [
2

5
, 1) and 𝜙(𝑡) =

𝑡

8
. Let 𝑥0 = 0.79 and 𝛼𝑛 = 𝛽𝑛 = 𝛾𝑛 = 𝑎𝑛 =

𝑏𝑛 = 𝑐𝑛 =
1

4
.  

 
The following table shows that the new iterative algorithm (11) converges to 𝑝 = 0 faster than all of Jungck-type 
iterative algorithm: 
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 Table 1. Comparison of rate of convergence of some Jungck-type iterative algorithms for 𝑥0 = 0.79 initial point 
Iter. No. JY JCR JSP JN JA JI JS JM JK 

1 0,790000 0,790000 0,790000 0,790000 0,790000 0,790000 0,790000 0,790000 0,790000 

2 0,040117 0,152947 0,423738 0,632039 0,188242 0,632617 0,160469 0,641875 0,474656 

3 0,002037 0,029611 0,227283 0,505662 0,044855 0,506588 0,032595 0,521523 0,285187 

          
6 0,000000 0,000215 0,035073 0,258946 0,000607 0,260134 0,000273 0,279733 0,061857 

7 
 

0,000042 0,018813 0,207170 0,000145 0,208310 0,000055 0,227283 0,037165 

8  0,000008 0,010091 0,165746 0,000034 0,166811 0,000011 0,184668 0,022330 

9  0,000002 0,005412 0,132605 0,000008 0,133579 0,000002 0,150042 0,013417 

10  0,000000 0,002903 0,106090 0,000002 0,106968 0,000000 0,121909 0,008061 

11  
 

0,001557 0,084877 0,000000 0,085658 0,000000 0,099051 0,004843 

 
  

       
23   0,000001 0,005837  0,005956  0,008199 0,000011 

24   0,000000 0,004670  0,004769  0,006661 0,000006 

 
  

  
 

 
 

  
29   

 
0,001531  0,001570  0,002359 0,000001 

30    0,001225  0,001258  0,001916 0,000000 

 
   

 
 

 
 

  
64    0,000001  0,000001  0,000002  

65    0,000000  0,000001  0,000001  

66    
 

 0,000000  0,000001  

 
     

 
 

 
 

69        0,000001  

70        0,000000 
 

 
Table 1 shows that while the newly defined iterative algorithm reaches the fixed point at the 6𝑡ℎ step; 

• Jungck-CR iterative algorithm at the 10𝑡ℎ step, 
• Jungck-SP iterative algorithm at the 24𝑡ℎ step, 
• Jungck-Noor iterative algorithm at the 65𝑡ℎ step, 
• Jungck-Agarwal iterative algorithm at the 11𝑡ℎ step, 
• Jungck-Ishikawa iterative algorithm at the 66𝑡ℎ step, 
• Jungck-Sahu iterative algorithm at the 10𝑡ℎ step, 
• Jungck-Mann iterative algorithm at the 70𝑡ℎ step, 
• Jungck-Khan iterative algorithm reaches to the fixed point at the 30𝑡ℎ step. 

 
Example 3.5. Let 𝑌 = [4,5] ⊂ ℝ be endowed with usual metric. Define 𝑇, 𝑆: [4,5] → [16,25] with a coincidence 
point 𝑝 = 16 by 𝑇𝑥 = 2𝑥 + 8 and 𝑆𝑥 = 𝑥2. It is clear that 𝑇([4,5]) ⊆ 𝑆([4,5]) and 𝑆([4,5]) is a complete subset of 

[16,25]. The pair (𝑆, 𝑇) satisfies condition (10) with 𝛿 ∈ [
1

5
, 1) and 𝜙(𝑡) =

𝑡

8
. Let 𝑥0 = 5 and 𝛼𝑛 = 𝛽𝑛 = 𝛾𝑛 = 𝑎𝑛 =

𝑏𝑛 = 𝑐𝑛 =
1

4
.  

The convergence result for various Jungck-type iterative algorithms to 𝑝 = 16 = 𝑆4 = 𝑇4 are listed in the 
following table: 
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Table 2. Comparison of rate of convergence of some Jungck-type iterative algorithms for 𝑥0 = 5 initial point 
Iter. No JY JCR JSP JN JA JI JS JM JK 

1 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 5,000000 

2 4,049142 4,189182 4,552299 4,812098 4,232129 4,812579 4,200435 4,821825 4,616665 

3 4,002491 4,036464 4,301403 4,657939 4,054970 4,658752 4,040615 4,674229 4,376874 

4 4,000127 4,007054 4,163259 4,531936 4,013079 4,532962 4,008246 4,552299 4,228900 

5 4,000006 4,001365 4,088045 4,429293 4,003115 4,430436 4,001675 4,451822 4,138459 

6 4,000000 4,000264 4,047366 4,345926 4,000742 4,347113 4,000340 4,369205 4,083535 

7  4,000051 4,025447 4,278388 4,000177 4,279567 4,000069 4,301403 4,050317 

8  4,000010 4,013661 4,223795 4,000042 4,224927 4,000014 4,245851 4,030278 

9  4,000002 4,007331 4,179746 4,000010 4,180808 4,000003 4,200400 4,018209 

10  4,000000 4,003933 4,144261 4,000002 4,145238 4,000001 4,163259 4,010947 

11   4,002110 4,115711 4,000001 4,116596 4,000000 4,132937 4,006579 

12   4,001132 4,092766 4,000000 4,093558  4,108205 4,003954 

 

  

    

 

  
24 

  
4,000001 4,006430 

 
4,006555 

 
4,009021 4,000009 

25 
  

4,000000 4,005145 
 

4,005250 
 

4,007331 4,000005 

 

  

  

 

 

 

  
29 

   
4,002108 

 
4,002159 

 
4,003196 4,000001 

30 
   

4,001687 
 

4,001729 
 

4,002597 4,000000 

 

   

 

 

 

 

  
62 

   
4,000001 

 
4,000001 

 
4,000003 

 

63 
   

4,000001 
 

4,000001 
 

4,000003 
 

 

   

 

 

 

 

 

 

66 
   

4,000001 
 

4,000001 
 

4,000001 
 

67 
   

4,000000 
 

4,000000 
 

4,000001 
 

 

   

 

 

 

 

 

 

71 
       

4,000001 
 

72 
  

  
 

      4,000000   

 

Table 2 shows that while the newly defined iterative algorithm reaches the fixed point at the 6𝑡ℎ step; 
• Jungck-CR iterative algorithm at the 10𝑡ℎ step, 
• Jungck-SP iterative algorithm at the 25𝑡ℎ step, 
• Jungck-Noor iterative algorithm at the 67𝑡ℎ step, 
• Jungck-Agarwal iterative algorithm at the 12𝑡ℎ step, 
• Jungck-Ishikawa iterative algorithm at the 67𝑡ℎ step, 
• Jungck-Sahu iterative algorithm at the 11𝑡ℎ step, 
• Jungck-Mann iterative algorithm at the 72𝑡ℎ step, 
• Jungck-Khan iterative algorithm reaches to the fixed point at the 30𝑡ℎ step. 

 
4. Discussion and Conclusion 
 
Considering the results obtained in Theorem 3.1, Theorem 3.2, Theorem 3.3 and Table 1 - Table 2; 

• The fact that the newly defined Jungck-type iterative algorithm (11) has a higher convergence rate 
compared to other algorithms in the literature shows that this algorithm has good potential for future 
applications. 

• In addition to the high convergence rate, it is observed that stability results can be obtained by using the 
new iterative algorithm (11) for more general mapping classes. 

• It is also seen from Table 1 and Table 2 that the rate of convergence of an iterative algorithm can be 
changed depend on its control sequences. 
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