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W—LINE CONGRUENCES

RASHAD A. ABDEL-BAKY AND FERHAT TAŞ

Abstract. By utilizing the Darboux frames, along with a regular surface
whose parametric curves are lines of curvature, we analyzed the normal line
congruence which preserves the asymptotic curves between its focal surfaces.
This allows deriving systems of partial differential equations through which
the problem of determining the director surface and the corresponding normal
line congruence could be solved. Moreover, a necessary and suffi cient condition
that the focal surfaces of the normal line congruence are degenerates into curves
is derived. As a result the middle focal surface of the normal line congruence
is presented as a new surface interrogation tool.

1. Introduction

In Euclidean 3-space, a two-parameter set of lines is called a line congruence.
For instance, the normal vector field of a surface constitute such a line congruence
but this is not the general situation. Hence, the line congruence of normals forms a
special class; which is called normal line congruence. The lines of a line congruence
meet a given plane in such a way that through a point of the plane one line, or
at most a finite member, pass. Similar results hold if a surface is taken instead
of a plane; this surface is called the reference surface or director surface of the
line congruence. The lines of the line congruence which pass through a curve on
the surface form a one-parameter set of lines i.e. a ruled surface (parameter ruled
surface). It is known that on each generator of line congruence, there are two
special points, called the focal points. This terminology is justified by the fact that
a line congruence can be considered as the set of lines tangents two surfaces, the
focal surfaces of the line congruence. Therefore there are two surfaces such that
the generating lines of the line congruence are tangents to these surfaces.
There are several different ways that the representation of the line geometry.

One of them is the dual vector system; a point on a dual unit sphere corresponds
to a straight line in the 3-dimensional Euclidean system. So, the one parameter
motion of this point corresponds to a ruled surface, while its two real parameter
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motion corresponds to a line congruence. Nowadays, the differential geometry of
the line congruence and the focal surfaces have been widely applied in design and
manufacturing, (e.g. Computer Aided Geometric Design/Computer Aided Manu-
facturing) of products and many other areas such as motion analysis and simulation
of rigid bodies via dual number and dual vector systems and model-based object
recognition systems [10-13].
This work is organized in the following way: In sec. 2, we present a brief intro-

duction to the basic definitions of the representation of the Darboux frame on a
regular surface whose parametric curves are lines of curvature and the normal line
congruence. Sec. 3 is dedicated to the main results; we form systems of partial dif-
ferential equations related to the following properties: the representation preserves,
asymptotic curves, and the element area between the focal surfaces. Meanwhile,
a necessary and suffi cient condition that the focal surfaces of the normal line con-
gruence are degenerates into curves has been derived. Especially, we have been
paid pay attention to the director surface to be minimal surface and Weingarten-
surface since the focal surfaces have special geometrical properties. Finally, the
generalization middle focal surface is presented as a new surface interrogation tool.

2. Line Congruence in Euclidean 3-Space E3

In the following, we will present some facts about classical results of differential
line geometry in order to introduce the notations which will be used through the
next sections. These and more recent descriptions about line congruences can be
found in the works [1-4,6,8].
Let the vector function r = r(u1, u2) represent a regular non-spherical and-non

developable surface M in Euclidean 3-Space E3, i.e. r : U ⊂ R2 → E3 be a regular
parametrized surface and gij and hij are the coeffi cients of the first and second
fundamental forms of the surface M , and suppose that the u1-and u2 curves of
this parametrization are lines of curvature, i.e., the elements g12 and h12 vanish
identically ( g12 = h12 = 0). Consider now the unit vectors e1 = e1(u1, u2),
e2 = e2(u1, u2), are the tangents of the parametric curves u2=const., u1 =const.,
and the unit vector e3 = e3(u1, u2) of the normal to the surface M at any regular
point, then we have:

e1 =
1
√
g11

∂r

∂u1
, e2 =

1
√
g22

∂r

∂u2
, e3 = e1 × e2, (2.1)

which are invariants vector functions on the surface. Using that u1-and u2 curves are
curvature lines on the surface, we can calculate ds =

√
g11du1-and ds =

√
g22du2,

the arc length parameters of the curves u2=const., u1 =const., respectively. The
moving frame {e1, e2, e3} on the surface M at every regular point is then called
the Darboux frame. Hence, by means of the derivatives with respect to the arc
length parameter of the curves u2=const. with tangent e1 on M , the derivative
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formula with respect to the Darboux frame, may be stated as [1]:

∂

∂s

 e1
e2
e3

 =

 0 q k
−q 0 0
−k 0 0

 e1
e2
e3

 , (2.2)

where k = h11
g11

=< ∂e1
∂s , e3 >, and q =

−(g11)u2
2g11
√
g22

=< ∂e1
∂s , e2 > are the normal and

geodesic curvatures of the curves u2=const., respectively. Similarly, the derivative
formula of the Darboux frame of the curves u1=const., with tangent e2 on M is:

∂

∂s

 e1
e2
e3

 =

 0 q 0

−q 0 k

0 −k 0

 e1
e2
e3

 , (2.3)

also k = h22
g22

=< ∂e2
∂s , e3 >, and q =

(g22)u1
2g22
√
g11

= − < ∂e2
∂s , e1 > have the same

meaning as in (2.2), for the curves u1=const. on the surface M . We shall denote
∂/∂s and ∂/∂s by the suffi xes 1 and 2.
Since k, k, and q, q are the invariant quantities of curvature on M , these invari-

ants and their derivatives must fulfill the Gauss and Mainardi-Codazzi equations
[1]:

−q2 + q2 − kk = q1 + q
2,

q(k − k) + k2 = 0,
q(k − k) + k1 = 0.

 (2.4)

As stated earlier, given a set of unit vectors e3 = e3(u1, u2), the normal line con-
gruence in E3 is defined in the parameter form:

CN : y(u1, u2, µ) = r(u1, u2) + µe3(u1, u2), µ ∈ R, (2.5)

where r = r(u1, u2) is its director surface and e3 = e3(u1, u2) is the unit vector
field along the direction of the generating lines of the congruence.

3. Main Results

It is known that the consecutive normals along a line of curvature on M :
r = r(u1, u2) intersect, the points of intersection being the corresponding center
of curvature. The locus of the centers of curvature for all points of the surface
M is called the surface of centers or centro-surface of M . In general it consists
of two sheets, conjugated to the two families of lines of curvature and called focal
surfaces of M . The parametric representations of the focal surfaces of C are given
by [6,7,14]:

F : x(u1, u2) = r(u1, u2) + ρe3(u1, u2), ρ = 1
k 6= 0,

F : x(u1, u2) = r(u1, u2) + ρe3(u1, u2), ρ =
1
k
6= 0.

}
(3.1)

Let gijk, and h
i
jk (i = 1, 2) are the coeffi cients of the first and second fundamental

forms of the focal surfaces x = x(u1, u2), and x = x(u1, u2), respectively, one can
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obtain:
g111 = ρ21, g112 = ρ1 ρ2, g122 = (1− ρ

ρ )
2 + ρ22,

g211 = (1− ρ
ρ )

2 + ρ21, g212 = ρ1 ρ2, g222 = ρ22,

}
(3.2)

and
h111 = −

ρ1
ρ , h112 = 0, h122 =

ρ ρ1
ρ2
,

h211 =
ρρ2
ρ2 , h212 = 0, h222 = −

ρ2
ρ .

}
(3.3)

Hence, the parametric curves on the focal surfaces, which correspond to the
lines of curvature on the director surface, are conjugate, but not (generally) lines
of curvature. The expression for the Gaussian curvatures of the focal surfaces F ,
and F , at the corresponding points, are:

Kx = − ρ1
ρ1( ρ−ρ)2

,

Kx = − ρ2
ρ2( ρ−ρ)2

.

}
(3.4)

Moreover, the Mainardi-Codazzi equations may be given as in the following form

∂
∂s [ln

√
g11
ρ −

∫
dρ
ρ−ρ ] = 0,

∂
∂s [ln

√
g22
f(ρ) −

∫
dρ
ρ−ρ ] = 0.

}
(3.5)

The integration of equations (3.5) is reducible to

√
g11 = ρa(s)e

∫ dρ
ρ−ρ ,

√
g11 = b(s)e

∫ dρ
ρ−ρ . (3.6)

Without changing the parametric curves, we may assume that a(s) = b(s) = 1,
then we get:

g11 = ρ2e2
∫ dρ
ρ−ρ , g12 = 0, g22 = ρ2e2

∫ dρ
ρ−ρ . (3.7)

Therefore

h11 = ρe−2
∫ dρ
ρ−ρ , h12 = 0, h22 = ρe−2

∫ dρ
ρ−ρ . (3.8)

Thus g11, g22 , and h11, h22 are expressible as functions of ρ or ρ, and consequently
they are functions of one another. It is clear after simple manipulation that these
magnitudes satisfy the Gauss’s equation.

3.1. Weingarten line congruence (W-line congruence). A line congruence in
Euclidean 3-space E3 is a two-parameter set of straight lines. Such a congruence
has a parameterization in the form [14]:

L : y(u, v, λ) = p(u, v) + λξ(u, v), ‖ξ‖ = 1, (3.9)

where p(u, v) is its base surface (the surface of reference) and ξ(u, v) is the unit vec-
tor giving the direction of the straight lines of the congruence, λ being a parameter
on each line. The equations

u = u(t), v = v(t), u′2 + v′2 6= 0, (3.10)
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define a ruled surface belonging to the line congruence. The ruled surface is called
a developable if and only if

det[ξ(t), ξ′(t),p(t)] = 0. (3.11)

This is a quadratic equation for u′, v′. If it has two real and distinct roots, then the
solutions of this equation define two distinct families of developable ruled surfaces.
In the generic case, each family consists of the tangent lines to a surface, and these
two surfaces M and M∗ are called the focal surfaces of the line congruence. The
line congruence gives a mapping f :M →M∗ with the property that the line con-
gruence consists of lines which are tangent to both M and M∗ and joining p ∈M
to f(p ∈ M∗). This simple construction plays a fundamental role in the theory of
the transformation of surfaces. The classical Bäckland theorem studies the trans-
formations of surfaces of constant negative Gaussian curvature in 3-dimensional
Euclidean space E3 by realizing them as the focal surfaces of a pseudo-spherical
(p.s.) line congruence. The integrability theorem says that we can construct a new
surface in E3 with constant negative Gaussian curvature from a given one.
We can rephrase this in more current terminology as follows:

Definition 1. Let L be a line congruence in 3-dimensional Euclidean space E3

with focal surfaces M,M∗ and let f :M →M∗ be the function defined above. The
line congruence is called a p.s. line congruence if
(i) the distance ‖pp∗‖ = r is a constant independent of p,
(ii) the angle between the two normals at p and p∗ is a constant independent of p.

Theorem 1. (Bäckland 1875): Suppose that L is a p.s. line congruence in E3

with the focal surfaces M and M∗. Then both focal surfaces have constant negative
Gaussian curvature equal to −sin2θ/r2 (such surfaces are called p.s. surfaces).

There is also an integrability theorem:

Theorem 2. SupposeM is a surface in E3 of constant negative Gaussian curvature
K = −sin2θ/r2, where r > 0 and 0 < θ < π are constants. Given any unit vector
e ∈ Mp, which is not a principal direction, there exists a unique surface M∗ and
p.s. congruence f : M → M∗ such that if p∗ = f(p), we have pp∗ = re and θ is
the angle between the normals at p and p∗.

Thus one can construct one-parameter family of new surface of constant negative
Gaussian curvature from a given one, the results by varying r.
One of the problems of the theory of line congruences is to classify the categories

of them which have the property such that this representation preserves the asymp-
totic curves between the two focal surfaces. This leads to the following definitions
for a Weingarten line congruence (W-line congruence):

Definition 2. A W-line congruence is a line congruence which preserves the as-
ymptotic curves between its focal surfaces.
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Equivalently, for a W -line congruence the second fundamental forms of the two
surfaces are proportional.

Corollary 1. A p.s. line congruence is a W-line congruence.

Theorem 3. Consider a line congruence generated by the normals along a regu-
lar non-spherical and non-developable surface M in Euclidean 3-Space E3. If the
generators of this congruence are preserving the asymptotic curves on their focal
surfaces, then the Gaussian curvatures of the focal surfaces satisfying the relation:

Kx Kx =
1

( ρ− ρ)4 . (3.12)

Hence at the corresponding points the curvature is of the same kind.

Proof. Let IIx and IIx be the second fundamental forms of the focal surfaces
x = x(u1, u2), and x = x(u1, u2), respectively. By equations (3.7), we have:

IIx = −ρ1ρ ds
2 + ρ ρ1

ρ2
ds2,

IIx =
ρρ2
ρ2 ds2 − ρ2

ρ ds
2.

}
(3.13)

Then the proportionality of the second fundamental forms means IIx = λ IIx; λ ∈
R, which is equivalent to the following condition on the invariants:

ρ1ρ2 − ρ2ρ1 = 0⇒
ρ1
ρ1
=
ρ2
ρ2
. (3.14)

From this relation, it follows that

Kx Kx =
ρ1ρ2

ρ1 ρ2( ρ− ρ)4
=

1

( ρ− ρ)4 , (3.15)

as claimed. �

Example 1. As an example of a p.s. surface, pseudo-sphere can be given as a focal
surface of a p.s. line congruence (so a W-line congruence):

x(u, v) = (sech(u) cos(v), sech(u)sin(v), u− tanh(u))

Let
{
e1 =

xu
‖ xu‖

, e2 =
xv
‖ xv‖

, e3 = xu × xv
}
be an orthonormal frame of the

surface x, where superscript shows the partial derivatives. Then the W-line con-
gruence is represented by (for simplicity for the equations we can chose)

L(u, v, µ) = x(u, v) + µe1(u, v),

where µ ∈ R.
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The other focal surface can be given as x = x+ re1 where r = ‖ x− x‖. There-
fore, assuming r =

√
2
2 the second focal surface is (see Fig.1)

x =

((
2−
√
2

2

)
sech(u) cos(v),

(
2−
√
2

2

)
sech(u)sin(v), u−

(
2−
√
2

2

)
tanh(u)

)
.

Figure 1. Focal surfaces of the line congruence.

3.1.1. W-surfaces. From equation (3.14), we see that ρ and ρ are connected by
functional relation as:

f(ρ, ρ) = ρ− ρ = c, c ∈ R. (3.16)

Surfaces with this property are called W-surfaces. From this relation it follows that

ρ1
ρ1
=
ρ2
ρ2
= 1.

Therefore, by using the expressions of the Gaussian curvatures in (3.4), we have

Kx = Kx = −
1

c2
. (3.17)

We know that the Gaussian curvature of the focal surfaces of the W-line congruence
equal to:

−sin2τ
r2

= − 1
c2
⇒ ρ− ρ = | r

sinτ
| (3.18)

Surfaces with constant negative Gaussian curvatures are called pseudo-spherical
surfaces and they are a result of the sine-Gordon partial differential equation, [8,
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12]. Hence, when this functional relation is substituted into (3.7), and (3.8), we
obtain:

g11 = ρ2e
2ρ
c , g12 = 0, g22 = ρ2e

−2ρ
c ,

h11 = ρe−
2ρ
c , h12 = 0, h22 = ρe

−2ρ
c .

}
(3.19)

Combining the above analysis with the fact that the Gauss and Mainardi-Codazzi
equations are the only independent algebraic equations among the fundamental
invariants k, k, and q, q and following Bonnet’s theorem. Then we may state the
following theorem:

Theorem 4. Among the line congruence in the Euclidean space E3, the only line
congruence whose focal surfaces are pseudo-spherical surfaces, and these surfaces
can be geodesically mapped upon the plane, is W-line congruence.

Now, the second fundamental form of the director surface M is given from the
equation:

II =
1

ρ
ds2 +

1

ρ
ds2, (3.20)

If we consider the possibility of the following corresponding II = λ IIx; λ ∈ R,
which is equivalent to the following condition on the invariants:

ρ1ρ1 + ρρ1 = 0. (3.21)

That is
∂

∂s
(ρρ) = 0. (3.22)

This means that the Gaussian curvature of the director surfaceM is constant along
the lines of curvature u2 − const,. Hence, the following theorem can be given:

Theorem 5. A necessary and suffi cient condition for the Gaussian curvature of the
director surface of the congruence CN is constant along one set of lines of curvature
is that the second fundamental forms of the focal surface, conjugate to this set, and
the director surface are proportional.

3.2. Degenerate focal surfaces. Now, we proceed to show the case for which the
line congruence CN degenerate into ruled surface. Since one of the families of lines
of curvature on a surface are plane curves, they are circular: In this case, either
sheet of the centro-surface may degenerate into a curve , i.e. x(u1, c), or x(c, u2).
In such a case the edge of regression of the developable ruled surface generated by
the normals along a line of curvature becomes a single point of that curve. Then,
from equations (3.1), the focal surface F is a curve if and only if

C : x(u1, c) = r(u1, u2) +
1

k
e3(u1, u2), k(u1, u2) 6= 0, c ∈ R, (3.23)

or

C : r(u1, u2) = x(u1, c)−
1

k
e3(u1, u2), k(u1, u2) 6= 0. (3.24)
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Because of < e3, dr >= 0, then we have

< e3, (
∂x

∂s
+
k1
k2
e3) >= 0, (3.25)

and

< e3,−
k

k
e2 +

k2
k2
e3 >= 0, (3.26)

which is equivalent to

− k1
k2
= < e3,

∂x

∂s
>=

∥∥∥∥∂x∂s
∥∥∥∥ cosϕ, k2 = 0, (3.27)

where ϕ is the inclination of the normal to M with the tangent to the curve C.
Since then

∂
∂s (
∥∥∂x
∂s

∥∥ cosϕ) = ∂
∂s (−

k1
k2 ),

= ∂
∂s (

∂
∂s

1
k ),

= ∂
∂s (

∂
∂s

1
k ),

= ∂
∂s (−

k2
k2 ) = 0,

(3.28)

it follows that ϕ = ϕ(u1), i.e. is a function of u1 only. Thus the normals to M ,
which meet at a point of the curve C, form a right circular cone whose semi-vertical
angle ϕ changes as the point moves along the curve. These intersecting normals
emanate from line of curvature (u2 = const.) on M , which must then be circular.
Thus the surfaceM has a system of circular lines of curvature. The sphere described
with center at the point of concurrence of the normals, and passing through the feet
of these normals, will touch M along one of the circular lines of curvature. Thus
M is the envelope of a one-parameter family of spheres with centers on the curve
C, i.e. M is a canal surface.
By similar argument, we can also have k1 = 0 for the focal surface F degenerate

into a curve. Hence, both systems of lines of curvature of M are circular lines of
curvature (k2 = 0, k1 = 0), and each sheet of the focal surfaces degenerate to a
curve. From the preceding arguments, it follows that each of these curves lies on a
one-parameter family of circular cones whose axes are tangents to the other curve.
Surfaces of this nature are called Dupin’s cyclids. Then as a result:

Theorem 6. For the line congruence CN , a necessary and suffi cient condition for
the focal surfaces degenerate into curves is that the director surface is Dupin cyclide.
More explicitly, we have the following:

k2 = 0, k1 = 0.

3.3. Generalized middle focal surface. The Gaussian curvature has the im-
portant property of remaining invariant if the surface is subject to an arbitrary
bending. A bending is defined as any deformation for which the arc length and an-
gles of all curves on the surface are left invariant. In equation (2.5), as µ = µ(u1, u2)
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is a differentiable function with continuos partial derivatives of a certain order the
regular surface

G : y(u1, u2) = r(u1, u2) + µ(u1, u2)e3(u1, u2), (3.29)

define the graph of the function µ = µ(u1, u2) on the surface M : r = r(u1, u2). For
each fixed t ∈ (ε,−ε), we define the generalized of the middle focal surface as:

y(u1, u2) = r(u1, u2) + tµe3(u1, u2); µ =
(ρ+ ρ)

2
. (3.30)

Thus µ is signed mean distance between the two focal surfaces x = x(u1, u2),
and x = x(u1, u2), and the lines of CN generate the corresponding between the
surfaces M and G.
Two surfaces that can be transformed into each other by bending are called

applicable to each other. Equivalently, we will determine whether the generating
lines of the congruence CN establish an area preserving representation between M
and G, i.e. it is necessary and suffi cient condition for the following condition to be
satisfied:

|A(G)−A(M)| → min, (3.31)

where A(G) and A(M) are the element areas on the surfaces M and G. So, we
have to calculate

A(G) =

∫∫
U

√
gG11 g

G
22 − (gG12)2

∫
du1du2, (3.32)

where gG11, g
G
22, and g

G
12 are the coeffi cients of the first fundamental form of the

surfaces G. By making use of the equations (2.2), (2.3), and (3.26), we obtain

gG11 =< y1,y1 >= g11 − 2tµh11 + t2(µ2k2 + µ21),
gG12 =< y1,y2 >= t2µ1µ2,

gG22 =< y2,y2 >= g22 − 2tµh22 + t2(µ2k
2
+ µ22).

 (3.33)

It follows that if ε is suffi ciently small subject to the relations ε2 = ε3 = ... = 0,
then we obtain

gG11g
G
22 = g11g22(1− 4tµH), (3.34)

or as √
gG11 g

G
22 =

√
g11g22(1− 2tµH), (3.35)

where we have used √
1− 4tµH = 1− 2tµH. (3.36)

Substituting equation (3.31) into the element area formula (3.28), then

A(G) = A(M)− 2tµ
∫∫
U

Hdsds. (3.37)

where H denotes to the mean curvatures of the director surface M . With ρ+ρ 6= 0
on the surface M , it means there is no change of sign of the mean curvature: It
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exists a real number m > 0, with |ρ+ ρ| > 0 for all µ ∈ (u1, u2) ∈ U . Therefore,
the function (ρ+ ρ) is bounded, and the relation (3.27) is hold.
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