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LCN-TRANSLATION SURFACES IN AFFINE 3-SPACE

NURAL YUKSEL, MURAT KEMAL KARACAN, AND YILMAZ TUNÇER

Abstract. We consider translation surfaces in Affi ne 3- space. Firstly, we
give some results of translation surfaces whose mean and Gaussian curvatures
vanish [8,16]. Further, we define and investigate LCN-translation surfaces with
zero the mean and the Gaussian curvatures in Affi ne 3-space.

1. Introduction

A surface that arises when a curve α(u) is translated over another curve β(v),
is called a translation surface. A translation surface can be defined as the sum of
the two generating curves α(u) and β(v).Therefore, translation surfaces are made
up of quadrilateral, that is, four sided, facets. Because of this property, translation
surfaces are used in architecture to design and construct free-form glass roofing
structures. A translation surface in an Euclidean 3-space E3 formed by translating
two curves lying in orthogonal planes is the graph of a function z(u, v) = f(u)+g(v),
where f(u) and g(v) are smooth functions on some interval of R [3, 6].
In 1835, H. F. Scherk studied translation surfaces in E3 defined as graph of the

function z(u, v) = f(u) + g(v) and he proved that, besides the planes, the only
minimal translation surfaces are the surfaces given by

z(u, v) =
1

a
log

∣∣∣∣cos(au)

cos(av)

∣∣∣∣ =
1

a
log |cos(au)| − 1

a
log |cos(av)| ,

where a is a non-zero constant. These surfaces are now referred as Scherk’s minimal
surfaces [18].
In mathematics, an Affi ne space is a geometric structure that generalizes some

of the properties of Euclidean spaces in such a way that these are independent of
the concepts of distance and measure of angles, keeping only the properties related
to parallelism and ratio of lengths for parallel line segments. Affi ne differential
geometry is a type of differential geometry in which the differential invariants are
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invariant under volume-preserving affi ne transformations. The basic difference be-
tween affi ne and Riemannian differential geometry is that in the affi ne case we
introduce volume forms over a manifold instead of metrics.
In theory of surfaces, there are some special surfaces such as ruled surfaces,

minimal surfaces, flat surfaces and surfaces of constant curvature in which differ-
ential geometers are interested. Liu described translation surfaces having constant
Gaussian and mean curvature in the Euclidean and Minkowski space [12].Goemans
studied weingarten translation surfaces Euclidean and Minkowski 3-spaces [6]. In
the literature of affi ne differential geometry, translation surfaces have been also
studied previously by many geometers [8, 10, 11, 15, 16, 17]. Manhart gave a com-
plete explicit classification of nondegenerate minimal translation surfaces in Affi ne
space R3 [11]. Magid and Vrancken showed that the curvatures must be zero and
this is equivalent to one of the defining curves being planar. Also, they investi-
gated other, natural, geometric conditions on translation surfaces. In particular,
they classified those translation surfaces which are umbilical, affi ne spheres have
trivial normal connection or null mean curvature vectors [10]. Sun classified trans-
lation surface with nonzero constant mean curvature in Affi ne space R3[15]. Fu
and Hou gave a complete classification of nondegenerate affi ne translation surfaces
with constant Gaussian curvature in R3 [8].Yang, Yu and Liu gave some classifica-
tion results for nondegenerate linear Weingarten centroaffi ne translation surfaces in
Affi ne space R3[16]. Yanga and Fu obtained the complete classification of minimal
affi ne translation surfaces in Affi ne space [17]. Andrade and Lewiner gave geomet-
ric properties of parametric or implicit surfaces, in particular the affi ne metric, the
conormal and normal vectors, and the affi ne Gaussian and mean curvatures [1, 2].
Huamani studied the surfaces with zero affi ne mean curvature [7].
The spline surface is composed of quartic Clough-Tocher-type macro elements.

Each element is capable of matching boundary data consisting of three points
with associated normal vectors. The collection of the macro elements forms a
G1continuous spline surface. Jutler and Sampoli constructed for polynomial spline
surfaces with a piecewise linear field of normal vectors [9]. Sampoli, Peternell and
Jüttler showed that even the convolution surface of an LN-surface and any rational
surface admits rational parametrization [14]. Sampoli showed that for LN spline
surfaces (surfaces with a linear field of normal vectors) a closed form representation
is available [13].
In this paper, we have pointed out the flat and minimal of the LCN-translation

surfaces in Affi ne 3-space.

2. Preliminaries

In this section we will give some definitions of the main affi ne structures: the
co-normal and normal vectors and the Gaussian and the mean curvatures. The
Berwald-Blaschke metric is invariant for Affi ne transformations and also indepen-
dent of system of coordinates. This metric is a quadric form. This quadratic form
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might not be positive definite (non-convex) case. Let X : Ω → R3 be a parame-
trization of a regular surface locally convex. The first affi ne fundamental form given
by

I = Ldu2 + 2Mdudv +Ndv2,

where

L = [Xu, Xv, Xuu] , N = [Xu, Xv, Xvv] , M = [Xu, Xv, Xuv] .

The Berwald-Blaschke metric or the second affi ne fundamental form given by

h = II = Edu2 + 2Fdudv +Gdv2, (1)

where

E =
L

|LN −M2|
1
4

, G =
N

|LN −M2|
1
4

, F =
M

|LN −M2|
1
4

.

From now on, we shall assume that the surface is non-degenerate, that is, LN −
M2 6= 0. Points LN − M2 are negative, zero or positive are called hyperbolic,
parabolic or elliptical, respectively [1, 2, 4, 7]. A transformation A : R3 → R3 is
affi ne iff A satisfies A(u) = C(u) + v0, where C is linear and v0 ∈ R3.
Orthonormality relationships are not preserved under an affi ne transformation A,

therefore the Euclidean normalNeis not an affi ne covariant vector. However, the di-
rection of the Euclidean normal is covariant (if 〈Ne, Xu〉 = 0, then

〈
A−TNe, AXu

〉
=

0 and similarly Xv, 〈, 〉 is Euclidean scalar product). Therefore, a covariant affi ne
normal, called the affi ne conormal ν can be obtained by scaling the Euclidean nor-
mal vector

ν = |Ke|−
1
4 Ne =

Xu ∧Xv

[ν, νu, νv]
=

Xu ∧Xv

|LN −M2|
1
4

, (2)

where L,N and M are the coeffi cients of the first affi ne fundamental form, Ke

and Neare the Euclidean Gaussian curvature and the Euclidean normal vector,
respectively [1, 2, 7].

By definition, it can be seen that ν.dX = 0. Let d = ± [ν, νu, νv] = ±
(
LN −M2

) 1
4 ,

where the signal ± depends on the point elliptical or hyperbolic. Using this nota-
tion, we have

ν =
Xu ∧Xv

d
. (3)

Since the affi ne conormal is not in general a unitary vector, it is not orthogonal to
its derivatives νu, νv.But since [ν, νu, νv] = d 6= 0, those derivatives define a proper
plane not orthogonal to ν. A contravariant affi ne vector can then be obtained by
looking at a vector orthogonal to that plane and would be the affi ne equivalent to
the Euclidean normal. More precisely, the affi ne normal vector ξ is defined locally
by the relationship:

〈ν, ξ〉 = 1, 〈νu, ξ〉 = 0, 〈νv, ξ〉 = 0.
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The affi ne normal then satisfies:

〈ν, ξu〉 = 〈ν, ξv〉 = 0.

This last relation shows that a local basis for the embedding space R3 at a point p
of the surface can be obtained by [Xu, Xv, ξ] .This allows to define affi ne structures
from Cartan’s moving frames theory. Denote by ξ = [ξ1, ξ2, ξ3] the affi ne normal
vector. Thus we have

ξ =
νu ∧ νv

[ν, νu, νv]
=
νu ∧ νv

d
(4)

or

ξ =
1

2

∣∣LN −M2
∣∣ 14

√
LN −M2

[
∂

∂u

(
NXu −MXv√
LN −M2

)
+

∂

∂v

(
LXv −MXu√
LN −M2

)]
(5)

or

ξ=
1

2

1√
EG− F 2

[
∂

∂u

(
GXu − FXv√
EG− F 2

)
+

∂

∂v

(
EXv − FXu√
EG− F 2

)]
, (6)

[1, 2, 7].

Figure 1

Observe that, the affi ne normal vector does not belong to the tangent plane to
the surfaces S. The curvatures describe the variation of the normal vector. We
know that ν.ξu = 0, ν.ξv = 0.That is , the derivatives ξu and ξv are orthogonal
to ν. In particular ξu and ξv ∈ TpS. Therefore, we can define the shape operator
S as follows

S : TpS → TpS

given by Sp(v) = −Dvξ. Since ξu and ξv are tangents to the surface, we have that
there are functions

bij : Ω→ R, i, j = 1, 2,

such that

ξu = b11Xu + b12Xv, (7)

ξv = b21Xu + b22Xv,

where

b11 =
[ξu, Xv, ξ]

d
, (8)
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b12 =
[ξv, Xv, ξ]

d
,

b11 =
[Xu, ξu, ξ]

d
,

b11 =
[Xu, ξv, ξ]

d
.

This shows that in the basis {Xu, Xv} , the Shape Operator Sp(v) = Dvξ is given
by the matrix B = (bij) , i, j = 1, 2. Notice that this matrix is not necessarily sym-
metric [1, 2, 7].

Definition 1. The coeffi cients bij form a matrix B = (bij), whose determinant
and the half of the trace are the Gaussian and the mean curvatures, respectively.
Hence, we have

K = detB = b11b22 − b12b21, (9)

H =
1

2
trB =

b11 + b22
2

[1, 2, 7].

Consider a surface X∗(u, v) in Affi ne 3-space. This surface is said to be an LCN
(linear conormal)-surface, if its conormal vectors admit a linear representation of
the form

ν∗ = −→a u+
−→
b v +−→c (10)

with certain constant coeffi cient vectors −→a ,−→b ,−→c ∈ R3. More precisely, it satisfies
the equations

〈X∗u, ν∗〉 = 〈X∗v , ν∗〉 = 0.

We assume that the three vectors −→a ,−→b ,−→c are linearly independent. Without loss
of generality we may then assume that

−→a = (1, 0, 0) ,
−→
b = (0, 1, 0) ,−→c = (0, 0, 1) ,

i.e.,ν∗ = (u, v, 1) .The tangent planes of an LCN surface have the equations

T (u, v) : z (u, v) + ux+ vy + z = 0, (11)

where z (u, v) is a polynomial or rational function, in case of a polynomial or rational
LCN surface, respectively. On the other hand, given a system of tangent planes of
the form (11) with a polynomial or rational function z(u, v).The envelope surface
X∗ = (x, y, z) satisfies the equations

T (u, v) : z (u, v) + ux+ vy + z = 0,

Tu(u, v) : zu + x = 0,

Tv(u, v) : zv + y = 0,
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and the conormal vector evaluates to

ν∗ =

(
zuuzvv − (zuv)

2

d∗

)
(u, v, 1) . (12)

Thus the envelope surface given by

X∗(u, v) = (−zu,−zv,−z + uzu + vzv) . (13)

[13, 14].

3. LCN-Translation Surfaces in Affine 3-Space

In this chapter, we define the LCN-translation surfaces in Affi ne 3-space. Con-
sider a surface in as a the graph of a function z = r(u, v) of two variables, which is
itself the sum of two functions f and g of one variable. Here, we restrict our topic
to regular surfaces X. Thus, we can express in open form as

X: z = f(u) + g(v). (14)

A surface S defined as the sum of two affi ne space curves α(u) = (u, 0, f(u)) and
β(v) = (0, v, g(v)) is called a translation surface in Affi ne 3-space. So, a translation
surface is defined by a patch

X(u, v) = (u, v, f (u) + g (v)) . (15)

The coeffi cients of the first affi ne fundamental form of the translation surface given
by

L = f ′′(u), N = g′′(v), M = 0, (16)

d =
(
LN −M2

) 1
4 = (f ′′g′′)

1
4 .

Hence the coeffi cients of the Berwald—Blaschke metric of the translation surface or
the coeffi cients of the second affi ne fundamental form of the translation surface are
given by

E =
f ′′

(f ′′g′′)
1
4

, G =
g′′

(f ′′g′′)
1
4

, F = 0. (17)

We suppose that the Berwald—Blaschke metric is non-degenerate: d 6= 0. Thus, we
have the affi ne conormal and normal vectors are given by

ν =

(
− f ′

(f ′′g′′)
1
4

,− g′

(f ′′g′′)
1
4

,
1

(f ′′g′′)
1
4

)
. (18)

ξ =


− f

′′′(f ′′g′′)
1
4

4f ′′2
,

− g
′′′(f ′′g′′)

1
4

4g′′2
,

(f ′′g′′)
1
4
(
−f ′g′′

2
f ′′′+f ′′

2
(
4g′′

2
−g′g′′′

))
4f ′′2g′′2

 . (19)
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respectively.

Proposition 2. Let S be a translation surface with non-degenerate in Affi ne 3-
space. Then the Gaussian and the mean curvatures of S can be given by

K =
f ′′′

2
(

12g′′′
2 − 7g′′g(4)

)
+ f ′′f (4)

(
−7g′′′

2

+ 4g′′g(4)
)

64 (f ′′g′′)
5
2

, (20)

H =

 (f ′′g′′)
1
4

(
7f ′′′

2 − 4f ′′f (4)
)

32f ′′3
+

(f ′′g′′)
1
4

(
7g′′′

2 − 4g′′g(4)
)

32g′′3

 ,

respectively [10, 11, 15].

In [8, 15], Fu, Hou and Sun classified vanishing Gaussian curvature and minimal
translation surfaces in the Affi ne 3-space, they proved the following theorems:

Theorem 3. Let S be a nondegenerate affi ne translation surface in R3 with van-
ishing Gaussian curvature. Then S is affi nely equivalent to one of the graph of the
following functions

z = u2 + g(v),

z = eu + v
1
2 ,

z = u lnu± v ln v,

z = lnu± ln v,

z = u
3−2λ
λ−1 ± v

3−2λ
5−3λ ,

where g(v) is an arbitrary function and λ is a constant satisfying λ 6= 1, 2, 32 ,
5
3 [8].

Theorem 4. Let S be a nondegenerate affi ne minimal translation surface in R3 .
Then S is one of the graph of the following functions under affi ne transformations:

z = u2 ± v2,
z = u

2
3 ± v 2

3 ,

z = u2 ± v 2
3

or

z = lnu− ln v,

z = ± lnu± (1 + cosh t) , t+ sinh t = v,

z = ± lnu± (1− cos t) , t− sin t = v,

z = ± (1 + cosh t)± (1 + cosh s) , t+ sinh t = u, s+ sinh s = v,

z = ± (1 + cosh t)± (1− cos s) , t+ sinh t = u, s− sinh s = v,

z = ± (1− cos t)± (1− cos s) , t− sin t = u, s− sin s = v.

[15].
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So, using (11) and (13), we can define the LCN- translation surfaces defined by
as

X∗(u, v) = (−f ′(u),−g′(v), uf ′(u) + vg′(v)− f(u)− g(v)) . (21)

A basis for the tangent vectors is given by

X∗u = (−f ′′, 0, uf ′′) , (22)

X∗v = (0,−g′′, vg′′) .

The second partial derivatives of X∗(u, v) are given by

X∗uu = (−f ′′′, 0, f ′′ + uf ′′′) , (23)

X∗uv = (0, 0, 0)

X∗vv = (0,−g′′′, g′′′ + vg′′′) .

The coeffi cients of the first affi ne fundamental form of the translation surface given
by

L∗ = f ′′
2

g′′, N∗ = f ′′g′′
2

, M∗ = 0, (24)

d∗ =
(
L∗N∗ −M∗

2
) 1
4

=
(
f ′′

3

g′′
3
) 1
4

.

Hence the coeffi cients of the Berwald—Blaschke metric of the translation surface or
the coeffi cients of the second affi ne fundamental form of the translation surface are
given by

E∗ =
f ′′

2

g′′(
f ′′3g′′3

) 1
4

, G∗ =
f ′′g′′

2(
f ′′3g′′3

) 1
4

, F ∗ = 0. (25)

We suppose that the Berwald—Blaschke metric is non-degenerate: d∗ 6= 0. Geomet-
rically d∗ > 0 means that the Euclidean Gaussian curvature does not vanish, i.e.
the LCN translation surface is strongly convex. The affi ne conormal field of the
LCN translation surface given by

ν∗ =
f ′′g′′(

f ′′3g′′3
) 1
4

(u, v, 1) . (26)

Thus, we have the affi ne normal vector

ξ∗ =


− f ′′f ′′′g′′

2

4(f ′′3g′′3)
3
4
,

− f ′′
2
g′′g′′′

4(f ′′3g′′3)
3
4
,

f ′′g′′(uf ′′′g′′+f ′′(4g′′−vg′′′))

4(f ′′3g′′3)
3
4

 . (27)
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Consequently, the coeffi cients b∗ij form a matrix B∗ =
[
b∗ij
]
are given by

b∗11 =

(
f ′′

3

g′′
3
) 1
4
(
−5f ′′′

2

+ 4f ′′f (4)
)

16f ′′4g′′
, b∗12 = − f ′′′g′′g′′′

16
(
f ′′3g′′3

) 3
4

, (28)

b∗21 = − f ′′f ′′′g′′′

16
(
f ′′3g′′3

) 3
4

, b∗22 =

(
f ′′

3

g′′
3
) 1
4
(
−5g′′′

2

+ 4g′′g(4)
)

16f ′′g′′4
.

Proposition 5. Let S∗ be a LCN−translation surface with non-degenerate in Affi ne
3-space. Then the Gaussian and the mean curvatures of S∗ can be given by

K∗ =
f ′′g′′

(
f ′′′

2
(

6g′′′
2 − 5g′′g(4)

)
+ f ′′f (4)

(
−5g′′′

2

+ 4g′′g(4)
))

64
(
f ′′3g′′3

) 3
2

, (29)

H∗ =
1

2


(
f ′′

3

g′′
3
) 1
4
(
−5f ′′′

2

+ 4f ′′f (4)
)

16f ′′4g′′
+

(
f ′′

3

g′′
3
) 1
4
(
−5g′′′

2

+ 4g′′g(4)
)

16f ′′g′′4

 ,

where f ′′ 6= 0, g′′ 6= 0, respectively.

We suppose that the LCN-translation surface with non-degenerate given by (29)
has zero the Gaussian curvature. Then we obtain

f ′′′
2
(

6g′′′
2

− 5g′′g(4)
)

+ f ′′f (4)
(
−5g′′′

2

+ 4g′′g(4)
)

= 0. (30)

Here u and v are independent variables, so each side of (30) is equal to a constant
p ∈ R\{0}. Hence, the equation (30) is reduced to

− f ′′′
2

f ′′f (4)
= p =

−5g′′′
2

+ 4g′′g(4)

6g′′′2 − 5g′′g(4)
, (31)

where f (4) 6= 0, g(4) 6= 0. By solving (31), we get

f(u) = c1 + c2u−
c3 (u+ pu− pc4)2+

p
1+p

(1 + 2p) (2 + 3p)
, (32)

g(v) = c5 + c6v −
c7 ((1 + p) v + c8 (4 + 5p))

− 2+3p
1+p

(2 + 3p) (3 + 4p)
,
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for some constants ci ∈ R and p 6=
{
−1,− 12 ,−

2
3 ,−

3
4

}
. We draw it as in Figure 2.

Figure 2

Theorem 6. Let S∗ be a LCN -translation surface with non-degenerate in Affi ne
3-space. If S∗ has zero Gaussian curvature or affi ne flat then S∗ is parametrized
as (20) with (32).

We assume that S∗ is affi ne minimal. Hence, the mean curvature is zero if and
only if(

f ′′
3

g′′
3
) 1
4
(
−5f ′′′

2

+ 4f ′′f (4)
)

16f ′′4g′′
+

(
f ′′

3

g′′
3
) 1
4
(
−5g′′′

2

+ 4g′′g(4)
)

16f ′′g′′4
= 0. (33)

Then, the minimality condition (33) can be separated for the variables(
−5f ′′′

2

+ 4f ′′f (4)
)

f ′′3
= −

(
−5g′′′

2

+ 4g′′g(4)
)

g′′3
, (34)

which implies there exists a constant p ∈ R\{0} such that(
−5f ′′′

2

+ 4f ′′f (4)
)

f ′′3
= p = −

(
−5g′′′

2

+ 4g′′g(4)
)

g′′3
, (35)

where f ′′ 6= 0, g′′ 6= 0. Solving this equation for f and g, we get

f(u) = c1 + c2u−
2c3 (c4 + u) arctanh

(
c3(c4+u)
4
√
p

)
p
3
2

, (36)
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g(v) = c5 + c6v −
2c7 (c8 + v) arctanh

(
c7(c8+v)
4
√
p

)
p
3
2

,

where ci ∈ R and p ∈ R\{0}. We draw it as in Figure 3.

Figure 3

Thus we have following theorem.

Theorem 7. A LCN-translation surface with non-degenerate S∗ is affi ne minimal
in Affi ne 3-space if and only if it is a part of the surface (20) with (36).

References

[1] Andrade, M. Calculus of Affi ne Structures and Applications for Isosurfaces (in Portuguese),
PhD dissertation, Rio de Janeiro, August 2011.

[2] Andrade, M. and Lewiner, T. Affi ne-invariant Curvature Estimators for Implicit Surfaces,
Computer Aided Geometric Design 29 (2012),162—173.

[3] Arslan, K., Bayram, B., Bulca, B. and Ozturk, G. On translation surfaces in 4-dimensional
Euclidean space, Acta Et Commentationes Universitatis Tartuensis De Mathematica, 20(2)
(2016),123-133.

[4] Blaschke, W. Vorlesungen über Differentialgeometrie II, Springer, Berlin, 1923.L. Verstraelen,
L. Vrancken, Affi ne variation formulas and affi ne minimal surfaces, Michigan Math. J., 36
(1989), 77—93.

[5] Bulca, B. On generalized LN-Surfaces in E4, Mathematical Sciences And Applications E-
Notes, 1(2) (2013), 35-41 .

[6] Goemans, W. Surfaces in three-dimensional Euclidean and Minkowski space, in particular a
study of Weingarten surfaces, PhD. Dissertation, September 2010.

[7] Huamani, E. F. C. Affi ne Minimal Surfaces with Singularities, Masters dissertation,Rio de
Janeiro,September 2017.

[8] Fu, Y. and Hou, Z.H. Affi ne Translation Surfaces with Constant Gauss Curvatures, Kyung-
pook Math. J., 50 (2010), 337-343.



472 NURAL YUKSEL, MURAT KEMAL KARACAN, AND YILMAZ TUNÇER

[9] Juttler, B. and Sampoli, M.L. Hermite interpolation by piecewise polynomial surfaces with
rational offsets, Comp. Aided Geom. Design, 17 (2000), 361-385.

[10] Magid, M. and Vrancken, L. Affi ne Translation Surfaces, Results Math., 35 (1999),134-144.
[11] Manhart, F. Die Affi nminimalrückungsflächen, Arch. Math., 44 (1985), 547-556.
[12] Liu, H.L. Translation Surfaces with Constant Mean Curvature in 3-dimensional spaces,

J.Geom., 64 (1999), 141-149.
[13] Sampoli, M.L. Computing the convolution and the Minkowski sum of surfaces, Proceed-

ings of the 21st Spring Conference on Computer Graphics, Budmerice,Slovakia, May 12-14,
(2005),111-117

[14] Sampoli, M. L., Peternell, M. and Jüttler, B. Rational surfaces with linear normals and their
convolutions with rational surfaces, Comp. Aided Geom. Design, 23 (2006), 179-192

[15] Sun, H. On affi ne translation surfaces of constant mean curvature, Kumamoto J. Math., 13
(2000) 49– 57.

[16] Yang, Y., Yu, Y.H. and Liu, H.L. Linear Weingarten centroaffi ne translation surfaces in R3,
J. Math. Anal. Appl., 375 (2011), 458-466.

[17] Yanga, D.Fu, Y.,On affi ne translation surfaces in affi ne space, J. Math. Anal. Appl., 440
(2016), 437-450.

[18] Yoon, D.W. Some Classification of Translation surfaces in Galilean 3-space, Int. Journal of
Math. Analysis, 6(28) (2012), 1355-1361.

Current address : Nural Yuksel: Erciyes University, Faculty of Sciences, Department of Math-
ematics, 38030- Melikgazi / KAYSERİ
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