SS-SUPPLEMENTED MODULES

ENGIN KAYNAR, HAMZA ÇALIŞICI, AND ERGÜL TÜRKMEN

Abstract. A module M is called \textit{ss-supplemented} if every submodule U of M has a supplement V in M such that $U \cap V$ is semisimple. It is shown that a finitely generated module M is ss-supplemented if and only if it is supplemented and $\text{Rad}(M) \subseteq \text{Soc}(M)$. A module M is called \textit{strongly local} if it is local and $\text{Rad}(M)$ is semisimple. Any direct sum of strongly local modules is ss-supplemented and coatomic. A ring R is semiperfect if $\text{Rad}(R) \subseteq \text{Soc}(R)$ if every left R-module is (amply) ss-supplemented if μR is a finite sum of strongly local submodules.

1. Introduction

Throughout this study, all rings are associative with identity and all modules are unitary left modules. Let R be a ring and M be an R-module. $U \subseteq M$ will mean that U is a submodule of M. $\text{Rad}(M)$ and $\text{Soc}(M)$ will indicate radical and socle of M. A submodule N of M is called \textit{small} in M, denoted $N \ll M$, if $M \neq N + K$ for every proper submodule K of M. Let U and V be submodules of M. V is called a \textit{supplement} of U in M if it is minimal with respect to $M = U + V$, equivalently $M = U + V$ and $U \cap V \ll V$. The module M is called \textit{supplemented} if every submodule of M has a supplement in M. A submodule U of M has \textit{ample supplements} in M if every submodule L of M such that $M = U + L$ contains a supplement of U in M. The module M is called \textit{amply supplemented} if every submodule of M has ample supplements in M. For characterizations of supplemented and amply supplemented modules we refer to [7].

A non-zero module M is called \textit{hollow} if every proper submodule of M is small in M and is called \textit{local} if the sum of all proper submodules of M is also a proper submodule of M. Note that local modules are hollow and hollow modules are clearly amply supplemented. A ring R is called \textit{local ring} if μR is a local module.

In [3], Zhou and Zhang generalized the concept of socle of a module M to that of $\text{Soc}_s(M)$ by considering the class of all simple submodules of M that are small in M.

Received by the editors: July 02, 2019; Accepted: November 20, 2019.

2010 Mathematics Subject Classification. Primary 16D10, 16D60; Secondary 16D99.

Key words and phrases. semisimple module, ss-supplemented module, strongly local module.
in place of the class of all simple submodules of M, that is, $\text{Soc}_s(M) = \sum \{ N \ll M \mid N \text{ is simple} \}$. It is clear that $\text{Soc}_s(M) \subseteq \text{Rad}(M)$ and $\text{Soc}_s(M) \subseteq \text{Soc}(M)$.

We call a module M strongly local if it is local and $\text{Rad}(M)$ is semisimple. We call a ring R left strongly local ring if R is a strongly local module. Then we have that the following implications on modules:

$$\text{simple} \implies \text{strongly local} \implies \text{local}$$

Next we mention two examples which show that the above implications are proper. For the local left \mathbb{Z}-module $M = \mathbb{Z}_4$, we have $\text{Rad}(M) = \text{Soc}(M)$. Hence, M is strongly local but not simple. On the other hand, for the local left \mathbb{Z}-module $M = \mathbb{Z}_8$, $\text{Soc}(M)$ is a proper submodule of $\text{Rad}(M)$. Thus M is not a strongly local module.

In section 2 we study on strongly local modules and rings. We show that every left strongly local ring is left perfect and right perfect. A strongly local commutative domain is field.

Let U and V be submodules of a module M. V is called a Rad-supplement of U in M if $M = U + V$ and $U \cap V \subseteq \text{Rad}(V)$. Since $\text{Soc}_s(V) \subseteq \text{Rad}(V)$, it is of interest to investigate the analogue of this notion by replacing “$\text{Rad}(V)$” with “$\text{Soc}_s(V)$”. Now, we give the following result playing a key role in our work as a proper generalization of direct summands. Firstly, we need the following well known facts that we include here for completeness.

Lemma 1. Let M be a module and N be a semisimple submodule of M which is contained in $\text{Rad}(M)$. Then $N \ll M$.

Proof. Let $N + K = M$ for some submodule K of M. Since N is semisimple, there exists a submodule N' of N such that $N = (N \cap K) \oplus N'$. Hence $M = N + K = [(N \cap K) \oplus N'] + K = N' + K$. Since $N' \cap K = (N' \cap N) \cap K = N' \cap (N \cap K) = 0$, we have $M = N' \oplus K$. It follows from [7, 21.6 (5)] that $\text{Rad}(M) = \text{Rad}(N') \oplus \text{Rad}(K) = \text{Rad}(K)$ since $\text{Rad}(N') \subseteq \text{Rad}(N) = 0$. Then $M = N + K \subseteq \text{Rad}(M) + K \subseteq K$. It means that $N \ll M$.

Lemma 2. Let M be a module. Then $\text{Soc}_s(M) = \text{Rad}(M) \cap \text{Soc}(M)$.

Proof. Let $a \in \text{Rad}(M) \cap \text{Soc}(M)$. Then Ra is semisimple and so there exist $n \in \mathbb{Z}^+$ and simple submodules S_i of M (1 ≤ i ≤ n) such that $Ra = S_1 \oplus S_2 \oplus \ldots \oplus S_n$ by [7, Proposition 3.3]. Since Ra is small in M, it follows from [7, 19.3 (2)] that each S_i is small in M. Thus $a \in Ra \subseteq \text{Soc}_s(M)$.

Lemma 3. Let M be a module and U, V be submodules of M. Then the following statements are equivalent:

1. $M = U + V$ and $U \cap V \subseteq \text{Soc}_s(V)$,
2. $M = U + V$, $U \cap V \subseteq \text{Rad}(V)$ and $U \cap V$ is semisimple,
3. $M = U + V$, $U \cap V \ll V$ and $U \cap V$ is semisimple.
Proof. (1) \implies (2) It follows that $U \cap V \subseteq \text{Soc}_s(V) \subseteq \text{Rad}(V) \cap \text{Soc}(V)$. Hence, we deduce that $U \cap V \subseteq \text{Rad}(V)$ and $U \cap V$ is semisimple.

(2) \implies (3) It is clear by Lemma 1.

(3) \implies (1) It is clear by Lemma 2.

We say that V an ss-supplement of U in M if the equal conditions in the above lemma are satisfied. It is clear that the following implications on submodules of a module hold:

Direct summand \implies ss-supplement \implies supplement \implies Rad-supplement

We call a module M ss-supplemented if every submodule of M has an ss-supplement in M. A submodule U of a module M has ample ss-supplements in M if every submodule V of M such that $M = U + V$ contains an ss-supplement of U in M. We call a module M amply ss-supplemented if every submodule of M has ample ss-supplements in M. It is clear that every ss-supplemented module is supplemented. Of course there exists the same relationship between amply ss-supplemented modules and amply supplemented modules. Later we shall give examples of (amply) supplemented modules which are not (amply) ss-supplemented (see Example 17 and Example 18).

In section 3 we characterize ss-supplemented and amply ss-supplemented modules. For modules with small radical, we give some conditions which are equivalent to being an ss-supplemented module in Theorem 20. It follows that a finitely generated module M is ss-supplemented if and only if it is supplemented and $\text{Rad}(M) \subseteq \text{Soc}(M)$. Any direct sum of strongly local modules is ss-supplemented and coatomic. A module M is amply ss-supplemented if and only if every submodule of the module M is ss-supplemented. We show that a ring R is semiperfect and $\text{Rad}(R) \subseteq \text{Soc}(R)$ if and only if every left R-module is (amply) ss-supplemented.

2. Strongly Local Modules and Rings

As we mentioned at introduction, we denote by $\text{Soc}_s(M)$ the sum of all simple submodules of a module M that are small in M. Then we have:

Let M be a non-zero module. M is called indecomposable if the only direct summands of M are 0 and M.

Lemma 4. Let M be an indecomposable module. Then M is simple or $\text{Soc}(M) \subseteq \text{Rad}(M)$.

Proof. Suppose that M is not simple. Let $M = \text{Soc}(M) + X$ for some submodule X of M. Since $\text{Soc}(M)$ is semisimple, there exists a submodule Y of $\text{Soc}(M)$ such that $\text{Soc}(M) = (\text{Soc}(M) \cap X) \oplus Y$. Therefore, $M = \text{Soc}(M) + X = [(\text{Soc}(M) \cap X) \oplus Y] + X = X \oplus Y$. Since M is indecomposable and not simple, it follows that $Y = 0$. It means that $X = M$. Hence $\text{Soc}(M) << M$, that is, $\text{Soc}(M) \subseteq \text{Rad}(M)$.

Using Lemma 2 and Lemma 4, we have the following result.
Corollary 5. Let M be a local module which is not simple. Then $\text{Soc}_s(M) = \text{Soc}(M)$.

Recall that a module M is called radical if M has no maximal submodules, that is, $M = \text{Rad}(M)$. Let $P(M)$ be the sum of all radical submodules of M. It is easy to see that $P(M)$ is the largest radical submodule of M. If $P(M) = 0$, M is called reduced.

Proposition 6. Let M be a strongly local module. Then M is reduced.

Proof. Since M is strongly local, we get $P(M) \subseteq \text{Rad}(M) \subseteq \text{Soc}(M)$. This implies that $P(M)$ is semisimple and so $P(M) = \text{Rad}(P(M)) = 0$. This completes the proof. \square

Note that the condition “strongly” in the above proposition is necessary. The following example shows that in general a local module need not be reduced.

Example 7. Let K be a field. In the polynomial ring $K[x_1, x_2, \ldots]$ with countably many indeterminates x_n, $n \in \mathbb{Z}^+$, consider the ideal $I = (x_1^2, x_2^2 - x_1, x_3^2 - x_2, \ldots)$ generated by x_1^2 and $x_{n+1}^2 - x_n$ for each $n \in \mathbb{Z}^+$. Then as shown in [7, Example 6.2], the quotient ring $R = K[x_1^2, x_2, \ldots]/I$ is a local ring with the unique maximal ideal $J = (x_1, x_2, \ldots) = J^2$. Let M be the left R-module $_R$. Then M is a local module. On the other hand, M is not reduced because $P(M) = \text{Rad}(J) = J \neq 0$.

Proposition 8. Every factor module of a strongly local module is strongly local.

Proof. Let M be a strongly local module and N be a submodule of M. Then the factor module $\frac{M}{N}$ is local. Since $\text{Rad}(M)$ is the unique maximal submodule of M, it follows from [7] 21.2 (1) that $\text{Rad}(\frac{M}{N}) = \frac{\text{Rad}(M)}{N} \subseteq \frac{\text{Soc}(M)}{N} = \pi(\text{Soc}(M)) \subseteq \text{Soc}(\frac{M}{N})$, where $\pi : M \to \frac{M}{N}$ is the canonical projection. Hence $\frac{M}{N}$ is strongly local. \square

Proposition 9. Let R be a left strongly local ring. Then $(\text{Rad}(R))^2 = 0$. In particular, $\text{Rad}(R)$ is nilpotent.

Proof. Since $\text{Rad}(R) \subseteq \text{Soc}(_R)$, it follows from [7] 21.12 (4) that $(\text{Rad}(R))^2 = 0$. It means that $\text{Rad}(R)$ is nilpotent. \square

Recall from [7] that an ideal I of a ring R is right t-nilpotent if for every sequence a_1, a_2, \ldots, a_k of elements in I, there is a $k \in \mathbb{Z}^+$ with $a_1a_2\ldots a_k = 0$. Similarly left t-nilpotent is defined. Following [7] 43.9, R is called left perfect (respectively, right perfect) if R is semilocal and $\text{Rad}(R)$ is right t-nilpotent (respectively, left t-nilpotent). Here a ring R is semilocal if $\frac{R}{\text{Rad}(R)}$ is an artinian semisimple ring (see [4]). Note that nilpotent ideals are left and right t-nilpotent. Using this fact, we have the following:

Corollary 10. Every left strongly local ring is left perfect and right perfect.
Proof. Let R be a left strongly local ring. Since local rings are semilocal, it follows from Proposition 9 that R is left perfect and right perfect.

It is well known that an artinian commutative domain is field. We have:

Proposition 11. A strongly local commutative domain is field.

Proof. Let R be a strongly local commutative domain and a be any element of R. If $a \in R \backslash \text{Rad}(R)$, we can write $Ra = R$ because R is local. Therefore, a is an invertible element of R. Suppose that $a \in \text{Rad}(R)$. It follows from Proposition 9 that $a^2 \in (\text{Rad}(R))^2 = 0$. By the hypothesis, we get $a = 0$. Hence, R is field.

3. SS-Supplemented Modules

It is known that a ring R is semiperfect if and only if every finitely generated R-module is (amply) supplemented (see [7, 42.6]). In this section we obtain new characterizations of semiperfect rings via their ss-supplemented modules.

Recall that for a maximal submodule U of a module M, a submodule V of M is a supplement of U in M if and only if $M = U + V$ and V is local (see [7, 41.1 (3)]). Analogous to that we have:

Proposition 12. Let M be a module and U be a maximal submodule of M. A submodule V of M is an ss-supplement of U in M if and only if $M = U + V$ and V is strongly local.

Proof. Let V be an ss-supplement of U in M. By [7, 41.1.(3)], V is local and $U \cap V = \text{Rad}(V)$ is the unique maximal submodule of V. Since $U \cap V$ is semisimple, we have $\text{Rad}(V) \subseteq \text{Soc}(V)$. Thus V is strongly local.

Conversely, since V is local and $M = U + V$, we can write $U \cap V \subseteq \text{Rad}(V)$. It follows from assumption that $U \cap V$ is semisimple. Hence, V is an ss-supplement of U in M.

Now, we give examples of (amply) supplemented modules which are not (amply) ss-supplemented. We first need the following facts.

Lemma 13. Let M be an ss-supplemented module and N be a small submodule of M. Then $N \subseteq \text{Soc}_s(M)$.

Proof. By the assumption, M is the unique ss-supplement of N in M and so $N \cap M = N$ is semisimple. Hence, $N \subseteq \text{Soc}_s(M)$ by Lemma 2.

The following result is a direct consequence of Lemma 13.

Corollary 14. Let M be an ss-supplemented module and $\text{Rad}(M) \ll M$. Then $\text{Rad}(M) \subseteq \text{Soc}(M)$.

It is well known that every local module is amply supplemented. Now we give an analogous characterization of this fact for amply ss-supplemented modules.

Proposition 15. Every strongly local module is amply ss-supplemented.
Proof. Let M be a strongly local module. Then, M is local and so it is amply supplemented. Note that M has no supplement submodule except for 0 and M. Since $\text{Rad}(M) \subseteq \text{Soc}(M)$, M is amply ss-supplemented.

Proposition 16. Let R be a ring and M be a hollow R-module. M is (amply) ss-supplemented if and only if it is strongly local.

Proof. Suppose that M is ss-supplemented. Let $m \in \text{Rad}(M)$. Then we get $Rm \ll M$. Since M is ss-supplemented, it follows from Lemma 13 that $Rm \subseteq \text{Soc}(M)$. It means that $m \in \text{Soc}(M)$ and so $\text{Rad}(M) \subseteq \text{Soc}(M)$. Suppose that $M = \text{Rad}(M)$. Since $M = \text{Rad}(M) = \text{Soc}(M)$ and the radical of a semisimple module is zero, we have that $M = 0$. This is a contradiction because M is hollow. It means that $M \neq \text{Rad}(M)$, that is, M is local by [7, 41.4]. Therefore M is strongly local. The converse follows from Proposition 15.

Example 17. For any prime integer p, consider the left \mathbb{Z}-module $M = \mathbb{Z}_{p^\infty}$. Note that M is a hollow module which is not local. Since hollow modules are (amply) supplemented, M is (amply) supplemented. However, M is not (amply) ss-supplemented module by Proposition 16.

Every artinian module is supplemented. The next example shows that in general artinian modules need not to be ss-supplemented.

Example 18. Let M be the \mathbb{Z}-module \mathbb{Z}_{p^k}, for p is any prime integer and $k \geq 3$. Note that M is artinian. Since $\text{Soc}(\mathbb{Z}_{p^k}) = \text{Soc}(\mathbb{Z}_p) = \mathbb{Z}_p$ and $\text{Rad}(M) = p\mathbb{Z}_{p^k}$, M is not strongly local and so it is not ss-supplemented by Proposition 16.

Lemma 19. Let M be a supplemented module and $\text{Rad}(M) \subseteq \text{Soc}(M)$. Then M is ss-supplemented.

Proof. Let $U \subseteq M$. Since M is supplemented, there exists a submodule V of M such that $M = U + V$ and $U \cap V \ll V$. Then $U \cap V \subseteq \text{Rad}(V) \subseteq \text{Rad}(M)$ and so $U \cap V$ is semisimple by the assumption. Hence V is an ss-supplement of U in M. It means that M is ss-supplemented.

Theorem 20. Let M be a module with $\text{Rad}(M) \ll M$. Then the following statements are equivalent:

1. M is ss-supplemented,
2. M is supplemented and $\text{Rad}(M)$ has an ss-supplement in M,
3. M is supplemented and $\text{Rad}(M) \subseteq \text{Soc}(M)$.

Proof. (1) \implies (2) It is clear.

(2) \implies (3) It follows from Lemma 13.

(3) \implies (1) By Lemma 19.

Since finitely generated modules have small radical, we have the following result.
Corollary 21. Let \(M \) be a finitely generated module. Then \(M \) is ss-supplemented if and only if it is supplemented and \(\text{Rad}(M) \subseteq \text{Soc}(M) \).

Next, in order to prove that every finite sum of ss-supplemented modules is ss-supplemented, we use the following standard lemma (see, [7, 41.2]).

Lemma 22. Let \(M \) be a module and \(M_1, U \) be submodules of \(M \) with \(M_1 \) ss-supplemented. If \(M_1 + U \) has an ss-supplement in \(M \), \(U \) also has an ss-supplement in \(M \).

Proof. Suppose that \(X \) is an ss-supplement of \(M_1 + U \) in \(M \) and \(Y \) is an ss-supplement of \((X+U) \cap M_1 \) in \(M_1 \). Then \(M = X + Y + U \) and \((X+Y) \cap U \ll X+Y \). Moreover, \(X \cap (Y + U) \) is semisimple as a submodule of the semisimple module \(X \cap (M_1 + U) \). Note that \(Y \cap [(X + U) \cap M_1] = Y \cap (X + U) \) is semisimple. It follows from [3, 8.1.5] that \((X + Y) \cap U \) is semisimple. Hence \(X + Y \) is an ss-supplement of \(U \) in \(M \).

Proposition 23. Let \(M_1, M_2 \) be any submodules of a module \(M \) such that \(M = M_1 + M_2 \). Then if \(M_1 \) and \(M_2 \) are ss-supplemented, \(M \) is ss-supplemented.

Proof. Let \(U \) be any submodule of \(M \). The trivial submodule \(0 \) is ss-supplement of \(M = M_1 + M_2 + U \) in \(M \). Since \(M_1 \) is ss-supplemented, \(M_2 + U \) has an ss-supplement in \(M \) by Lemma 22. Again applying Lemma 22, we also have that \(U \) has an ss-supplement in \(M \). This shows that \(M \) is ss-supplemented.

Using this fact we obtain the following corollary.

Corollary 24. Every finite sum of ss-supplemented modules is ss-supplemented.

Now we give an example of an ss-supplemented module which is not strongly local.

Example 25. The \(\mathbb{Z} \)-module \(M = \mathbb{Z}_4 \oplus \mathbb{Z}_4 \) is ss-supplemented as a sum of strongly local modules. However, \(M \) is not (strongly) local.

Then we have the following proper implications on modules hold:

\[
\text{strongly local} \quad \text{local} \quad \text{ss-supplemented} \quad \text{supplemented}
\]

Proposition 26. If \(M \) is a (amply) ss-supplemented module, then every factor module of \(M \) is (amply) ss-supplemented.
Proof. Let M be an ss-supplemented module and $\frac{M}{L}$ be a factor module of M. By the assumption, for any submodule U of M which contains L, there exists a submodule V of M such that $M = U + V$, $U \cap V << V$ and $U \cap V$ is semisimple. Let $\pi : M \rightarrow \frac{M}{L}$ be the canonical projection. Then we have that $\frac{M}{L} = \frac{U}{L} + \frac{V}{L}$ and $\frac{U}{L} \cap \frac{V}{L} = \frac{(U \cap V) + L}{L} = \pi(U \cap V) << \pi(V) = \frac{V}{L}$ by [7, 19.3(4)]. Since $U \cap V$ is semisimple, it follows from [3, 8.1.5] that $\pi(U \cap V) = \frac{(U \cap V) + L}{L} = \frac{U}{L} \cap \frac{V}{L}$ is semisimple. That is, $\frac{V}{L}$ is an ss-supplement of $\frac{U}{L}$ in $\frac{M}{L}$, as required.

By adapting this argument we can prove similarly that if M is amply ss-supplemented, then so is every factor module of M. \hfill \Box

Recall that a module M is said to be coatomic if every proper submodule of M is contained in a maximal submodule of M. It is easy to see that every coatomic module has small radical.

Let p be a prime integer and consider the localization ring $R = \mathbb{Z}(p) = \{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ and } p \nmid b \}$. Note that R is a local ring. Let M be the left R-module $R(\mathbb{N})$. Then M is the direct sum of local submodules but it is not supplemented. Since R is not perfect, $\text{Rad}(M)$ is not small in M and so M is not also coatomic. However, any arbitrary direct sum of strongly local modules is ss-supplemented and coatomic, as the next result shows.

Theorem 27. Let $M = \bigoplus_{i \in I} M_i$, where each M_i is a strongly local module. Then, M is ss-supplemented and coatomic.

Proof. Since M_i is strongly local for every $i \in I$, it is local and $\text{Rad}(M_i) \subseteq \text{Soc}(M_i)$ and so $\text{Rad}(M) = \bigoplus_{i \in I} \text{Rad}(M_i) \subseteq \bigoplus_{i \in I} \text{Soc}(M_i) = \text{Soc}(M)$ by [7, 21.6 (5) and 21.2 (5)]. Applying Lemma 1, we get that $\text{Rad}(M)$ is a small submodule of M. Since strongly local modules are local, it follows from [10, Theorem 1.4 (A)] that M is supplemented. Hence, M is ss-supplemented by Theorem 20.

Let U be a proper submodule of M. It follows from [7, 41.1 (6)] that U is contained in a maximal submodule of M, that is, M is coatomic. \hfill \Box

Let M be a module. A module N is called M-generated if there exists an epimorphism $f : M(I) \rightarrow N$ for some index set I.

Corollary 28. Let M be a strongly local module. Then every M-generated module is ss-supplemented and coatomic.

Proof. Suppose that N is M-generated. Then, there exists an epimorphism $f : M(I) \rightarrow N$ for some index set I. By Theorem 27, $M(I)$ is ss-supplemented and coatomic. Hence N is ss-supplemented by Proposition 26 and it is coatomic by [10, Lemma 1.5 (a)]. \hfill \Box

Corollary 29. Let R be a left strongly local ring. Then every left R-module is ss-supplemented.
Proof. Since all left R-modules are R-generated, the proof follows from Corollary 28. □

A submodule U of a module M is said to be cofinite if M/U is finitely generated (see [1]). Note that maximal submodules of M are cofinite.

Theorem 30. The following statements are equivalent for a module M:

1. M is the sum of all strongly local submodules,
2. M is ss-supplemented and coatomic,
3. M is coatomic and every cofinite submodule of M has an ss-supplement in M,
4. M is coatomic and every maximal submodule of M has an ss-supplement in M.

Proof. (1) \implies (2) Let $M = \sum_{i \in I} M_i$, where each M_i is strongly local submodules. Put $N = \bigoplus_{i \in I} M_i$. Then, by Theorem 27, N is ss-supplemented and coatomic. Now we consider the epimorphism $f : N \to M$ via $f((m_i)_{i \in I}) = \sum_{i \in I} m_i$ for all $(m_i)_{i \in I} \in N$. It follows from Proposition 26 and [10, Lemma 1.5 (a)] that M is ss-supplemented and coatomic.

(2) \implies (3) \implies (4) are clear.

(4) \implies (1) Let S be the sum of all strongly local submodules of M. Assume that $S \neq M$. Since M is coatomic, there exists a maximal submodule K of M with $S \subseteq K$. By (4), K has an ss-supplement, say V, in M. It follows from Proposition 12 that V is strongly local. Therefore, $V \subseteq S \subseteq K$, a contradiction. □

The following fact is a direct consequence of Theorem 30.

Corollary 31. For a coatomic module M, the following statements are equivalent:

1. M is the sum of all strongly local submodules,
2. M is ss-supplemented,
3. Every cofinite (maximal) submodule of M has an ss-supplement in M.

A ring R is called left max if every non-zero left R-module has a maximal submodule. Note that if R is a left max ring, then every left R-module is coatomic. Using this fact and Corollary 31, we obtain the following result.

Corollary 32. Let R be a left max ring and M be a non-zero left R-module. Then M is the sum of all strongly local submodules of M if and only if it is ss-supplemented.

Proposition 33. Let M be a module. If every submodule of M is ss-supplemented, then M is amply ss-supplemented.

Proof. Let U and V be two submodules of M such that $M = U + V$. Since V is ss-supplemented, there exists a submodule V' of V such that $V = (U \cap V) + V'$, $U \cap V' \ll V'$ and $U \cap V'$ is semisimple. Note that $M = U + V = U + ((U \cap V') + V') =$
$U + V'$. It means that U has ample ss-supplements in M. Hence M is amply ss-supplemented.

Lemma 34. Let M be amply ss-supplemented module and V be an ss-supplement submodule in M. Then V is amply ss-supplemented.

Proof. Let V be an ss-supplement of a submodule U of M. Let X and Y be submodules of V such that $V = X + Y$. Then $M = (U + X) + Y$. Since M is amply ss-supplemented, $U + X$ has an ss-supplement $Y' \subseteq Y$ in M. It follows that $X + Y' \subseteq V$. By the minimality of V, we have $V = X + Y'$. In addition, $X \cap Y' \subseteq (U + X) \cap Y' \ll Y'$, that is, $X \cap Y' \ll Y'$. Since $(U + X) \cap Y'$ is semisimple, $X \cap Y'$ is also semisimple by [3, 8.1.5]. It means that Y' is an ss-supplement of X in V. Finally, V is amply ss-supplemented.

The next result gives a useful characterization of amply ss-supplemented modules.

Theorem 35. Let M be a module. Then, M is amply ss-supplemented if and only if every submodule U of M is of the form $U = X + Y$, where X is ss-supplemented and $Y \subseteq \text{Soc}_s(M)$.

Proof. Let U be a submodule of M. Since M is ss-supplemented, U has an ss-supplement V in M. Then $M = U + V$. By the assumption, there exists a submodule X of U such that X is an ss-supplement of V in M. Put $Y = U \cap V$. Since V is an ss-supplement of U in M, we have that $Y \subseteq \text{Soc}_s(V) \subseteq \text{Soc}_s(M)$. Applying the modular law, we get $U = U \cap M = U \cap (X + V) = X + U \cap V = X + Y$. Note that X is ss-supplemented by Lemma 34.

Conversely, let U be a submodule of M. By the assumption, there exist submodules X and Y of M such that $U = X + Y$, X ss-supplemented and $Y \subseteq \text{Soc}_s(M)$. By Proposition 23, U is ss-supplemented. Hence M is amply ss-supplemented from Proposition 33.

The next result is crucial.

Corollary 36. For a module M, the following statements are equivalent:

1. M is amply ss-supplemented,
2. Every submodule of M is ss-supplemented,
3. Every submodule of M is amply ss-supplemented.

Note that it is not in general true that any submodule of an amply supplemented module is (amply) supplemented. Let R be a local Dedekind domain which is not field. Suppose that $M = R^{(n)}$. Then, M is not (amply) supplemented. The group $F = R \times M$ can be converted to a ring by the following operation: $(x, y) \cdot (x', y') = (xx', xy' + x'y)$ where $x, x' \in R$ and $y, y' \in M$. Then F is a commutative local ring and so F is amply supplemented. Put $L = \{0\} \times M$. Therefore, L is an ideal of F. Hence the submodule L of F is not a (amply) supplemented F-module.
A module M is said to be π-projective if whenever U and V are submodules of M such that $M = U + V$, there exists an endomorphism f of M such that $f(M) \subseteq U$ and $(1 - f)(M) \subseteq V$. Hollow (local) modules and self-projective modules are π-projective and π-projective supplemented modules are amply supplemented. Similarly, we show that π-projective ss-supplemented modules are amply ss-supplemented. The proof is virtually the same that of [7, 41.15], but we give it for completeness.

Proposition 37. Let M be a π-projective and ss-supplemented module. Then M is amply ss-supplemented.

Proof. Let U and V be submodules of M such that $M = U + V$. Since M is π-projective, there exists an endomorphism f of M such that $f(M) \subseteq U$ and $(1 - f)(M) \subseteq V$. Note that $(1 - f)(U) \subseteq U$. Let V' be an ss-supplement of U in M. Then $M = f(M) + (1 - f)(M) = f(M) + (1 - f)(U + V') \subseteq U + (1 - f)(V')$, so that $M = U + (1 - f)(V')$. Note that $(1 - f)(V')$ is a submodule of V. Let $y \in U \cap (1 - f)(V')$. Then, $y \in U$ and $y = (1 - f)(x) = x - f(x)$ for some $x \in V'$. Next $x = y + f(x) \in U$ so that $y \in (1 - f)(U \cap V')$. Since $U \cap V' << V'$, $U \cap (1 - f)(V') = (1 - f)(U \cap V') << (1 - f)(V')$ by [7, 19.3(4)]. By [3, 8.1.5], $U \cap (1 - f)(V') = (1 - f)(U \cap V')$ is semisimple because $U \cap V'$ is semisimple. Thus $(1 - f)(V')$ is an ss-supplement of U in M. Therefore M is amply ss-supplemented module.

Since every projective module is π-projective, the following result follows from Proposition 37 and Corollary 36.

Corollary 38. Any submodule of a projective ss-supplemented module is ss-supplemented.

Now, we characterize the rings whose modules are ss-supplemented. Firstly, we need the following lemmas.

Lemma 39. Let M be a projective module. Then M is ss-supplemented if and only if it is supplemented and $\text{Rad}(M) \subseteq \text{Soc}(M)$.

Proof. Suppose that M is projective supplemented module. Therefore we have $\text{Rad}(M) << M$ by [7, 42.5]. Then the proof is obvious from Theorem 20. □

Lemma 40. Let R be a ring. Then every left R-module is ss-supplemented if and only if every left R-module is the sum of all strongly local submodules.

Proof. Assume that every left R-module M is ss-supplemented. Then, by [7, 43.9], R is left perfect. This implies that R is a left max ring. Applying Corollary 32, M is the sum of all strongly local submodules of M. The converse follows from Theorem 30. □
Theorem 41. The following statements are equivalent for a ring R:

1. R is ss-supplemented,
2. R is semiperfect and $\text{Rad}(R) \subseteq \text{Soc}(R)$,
3. R is semilocal and $\text{Rad}(R) \subseteq \text{Soc}(R)$,
4. Every projective left R-module is (amply) ss-supplemented,
5. Every left R-module is (amply) ss-supplemented,
6. Every left R-module is the sum of all strongly local submodules,
7. R is a finite sum of strongly local submodules,
8. Every maximal left ideal of R has an ss-supplement in R.

Proof. (1) \implies (2) \implies (3) By Corollary 21 and [7, 42.6].
(3) \implies (4) Let M be a projective R-module. Then, by [7, 21.17 (2)], we can write $\text{Rad}(M) = \text{Rad}(R)M \subseteq \text{Soc}(R)M = \text{Soc}(M)$. From [7, 43.9] and Lemma 39, the proof is completed.
(4) \implies (5) follows [7, 18.6] and Proposition 26.
(5) \implies (6) By Lemma 40.
(6) \implies (7) is obvious.
(7) \implies (8) By Theorem 30.
(8) \implies (1) By Corollary 31.

References

Current address: Engin Kaynar: Amasya University, Vocational School of Technical Sciences, 05100 Amasya, Turkey
E-mail address: engin_kaynar05@hotmail.com
ORCID Address: http://orcid.org/0000-0002-1955-1326

Current address: Hamza Çalışci: Ondokuz Mayıs University, Faculty of Education, Department of Mathematics, 55139, Kurupelit/Atakum, Samsun, Turkey
E-mail address: hcalisici@omu.edu.tr
ORCID Address: http://orcid.org/0000-0002-9897-9012

Current address: Ergül Türkmen: Amasya University, Faculty of Art and Science, Department of Mathematics, 05100 Ipekkoy, Amasya, Turkey
E-mail address: ergulturkmen@hotmail.com
ORCID Address: http://orcid.org/0000-0002-7082-1176