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Abstract

In this paper, we consider a matrix operator

H{,Vu = (=)' + V(x)u,
where (—A)!is a diagonal s xs matrix, whose diagonal elements are the scalar polyharmonic
operators, V is the operator of multiplication by a symmetric sXs matrix, V(x) is
periodic with respect to an arbitrary lattice and s = 2, x = (x1,%y,...,%4) € R%, d = 2, %< I<1.
We obtain asymptotic formulae of arbitrary order for the non- resonance eigenvalues of this operator.

Keywords: system of polyharmonic operators, periodic, eigenvalue, asymptotic.

0z
Bu calismada, x = (%1, %5, ...,x5) € R, d =2, s = 2, %< | < 1 olmak iizere,

H({, qu = (-D'u + V(x)u
matris operatdriiniin resonans olmayan 6zdegerleri icin keyfi dereceden asimptotik formiilleri elde
edilmistir. Bu gosterimde; (—A)! dioganal elemanlar1 skaler poliharmonik operatér olan diagonal
s Xs matris, potansiyel V (x) keyfi bir lattise gére periodik ve simetrik bir s Xs matristir.

Anahtar Kelimeler: poliharmonik operatir sistemi, periodik, 6zdeger, asimptotik.

1. Introduction in L,°(R%), where (—A)'is a diagonal s Xs
matrix, its diagonal elements being the scalar
polyharmonic operators; V(x) = (v;;(x)), i,j =
1,2,..,s, is a symmetric s X s matrix, V = VT
H(, q)u = (—A)'u + V(x)u (1) ands=2,x=(xy,%...,xq) ER?, d > 2.

For % < | < 1, we consider the operator
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We suppose that each entry v;;(x)is a real
valued function of W;"(K) and is periodic with
respect to the same arbitrary lattice Q , K =
R4\ is a fundamental domain of Q and

m >80 (@ +20)3¢ 1 +230 4 d + 1.

Let ['={y € R%: (y,w) € 2rZ,Vw € Q} be the
dual lattice of Q and K*=R%/T be its
fundamental domain. It is well known that the
spectral analysis of H(l,q) can be reduced to
studying the operators H;(l,q) defined by the
differential expression (1) in L,°(K) and the
quasiperiodic condition

u(x +w) = ety (x),
u(x) = (w (0, uy (%), .., us(x)), x €K. 2)

Here, - denotes the innerproduct in R<.

weQteK,

The spectrum of the operator H;(l, q) consists of
the eigenvalues A;(t) <A(t) <.. and
spec(H(l,q)) =Up-1 {Ap(t):t € K*}. Let W, . (x)
denote  the eigenfunction of H.(l,q)
corresponding to the eigenvalue A,(t). The
eigenvalues of the unpertubed operator H;(l,0)
are |y + t|?' and the corresponding eigenspaces
are

E]/.t = Span{(by.t,l(x): cD]/,t,Z ), ..., (I)y't'm(x)},
@, . (x) = (0,..,0,e!¥+D%,0,..,0),
=125,

for y €T, t € K*. We note that the non-zero
component e!¥+D% of g, , ;(x) stands in the jth
component.

It is convenient to define a periodic
function v;;(x) in W™ (K) as a function satisfying
the relation

Tyer i, P+ 1y +¢7™) < oo, (3)
where

vij, = (vij(x),ei”"‘) = fK v (x)e” ¥ dx,

(.,.) is the inner product in L,(K). Moreover,
for a big parameter p, we can write

v (%) = Xyerpn) Uijyeiy'x + 0(p7P%) (4)

and define

M;; = Yy er |Uijy| < oo, (5)

forall i,j=12,..,s, where p=m—-d, a>0
and

F(p®) ={re0<|y+t| <p
Ify=0 v, = fK v;j(x) dx and V, = Wij,) =
fK V(x)dx is a symmetric s X s matrix.

The aim of this paper is to obtain the high energy
asymptotics of the non-resonance eigenvalues
(roughly, the ones far away from the diffraction
planes {x € R%:||x|?' — |x + b|?!| < p}) of the
operator (1) for arbitrary % <l<1 and

arbitrary d =2, where the potential V(x)
satisfies (3).

Due to its physical importance, the most
significant progress has been achieved in the
case of the Schrodinger operator; i.e.,, the case
l=1 in (1). For the first time asymptotic
formulae for the eigenvalues of the periodic
(with respect to an arbitrary lattice) Schrodinger
operator are obtained in the papers [1-4] by 0.A.
Veliev. Another proof of asymptotic formulae for
quasiperiodic boundary conditions in two and
three dimensional cases are obtained in [5, 6, 7,
8]. The asymptotic formulae for the eigenvalues
of the Schrodinger operator with periodic
boundary conditions are obtained in [9]. When
this operator is considered with Dirichlet
boundary conditions on  2-dimensional
rectangle, the high energy asymptotics of the
eigenvalues are obtained in [10]. In papers [11,
12, 13], we obtained the formulae for the

eigenvalues of the Schrodinger operator
considered with Dirichlet and Neumann
boundary conditions on a d-dimensional

parallelepiped, for arbitrary d > 2.

The high energy asymptotics of eigenvalues of
H(l,q) for 4l >d+ 1 (d = 2) are obtained by
Yu. Karpeshina in [14] and for arbitrary { > 1
(d = 2) by 0.A. Veliev in [15], where he claimed
that the asumption [ = 1 can be replaced by [ >
Ny, g for some number n,, ; < 1 that depends on
m  (the smoothness of g(x)) and d (the
dimension) without giving any technical details.

For the matrix case,s > 1, d=> 2, [l > 1and 4l >
d + 1, asymptotic formulae for the eigenvalues of
the operator (1) are obtained in [16].
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In this paper, we obtain the asymptotic formulae
of non-resonance eigenvalues of (1) when %<

1<1, (g = %). s> 2.
2. Material and Method

We use the same method introduced by
0.A.Veliev in his papers [3,4,15] and define the
following parameters:

a
() = Grznyee

a (D) = 3a(l), (6)

where [ = % +a,0<a< % . By these notations
(4) becomes

(X)) = Lyrer(pamy 171'J'y/eiy"x +0(p7P*®), (7)

where  T(p“®) = {y €3:0 <y +1t| < p“®},

p =m —d and p is a large parameter.

In the sequal, ¢y, ¢, c3,... denote the positive
constants whose exact values are inessential
(they do not dependent on p). Additionally, by
|a| ~ p,we mean that there exist c;, ¢; such that

cip < lal < cyp.

We divide the eigenvalues |y +t|?! of the
unperturbed operator into two groups. In order
to define these groups, we introduce the
following sets:

Vi(pm®) =
{x € R%:||x|? — |x + b|?| < p= (1},

Ef(p™®,p) = Vi(p®®),
ber(pp®)

Ut(p™®,p) = RN\EL (p* D, p),

k
() v,

Y1V Vi€ (pp®)  i=1

Ef(p*®,p) =

where the intersection N%; KL (p®®) in Ef is
taken over ¥y,¥2,...,¥x Wwhich are linearly
independent vectors and the length of y; is not
greater than the length of the other vectors in

I' Nny;R . The set U'(p*:®, p) is said to be a non-
resonance domain and the eigenvalue |y + t|?!
is called a non-resonance eigenvalue if y €
U (p*®, p). The domains Vi (p*:®), for all b €
T'(pp*®), are called resonance domains and the

eigenvalue |y + t|?
¥ € Vy(p™®).

Remark If x € R%, |x| ~ p andy; € I then

is a resonance eigenvalue if

|x + y1| ~ p and by the Mean Value Theorem
|28 = o +y1 | = 2D (|x)* =[x + 711 (8)

where & ~p. Therefore for %< 1<1,
Vi (p®) c Y2 (p*®O=242)  from which we
have
(o W™ enfey (o O-2142)),
Ul(pai(l)_ZH'z,p) c Ul(pal(l),p), (9)
fork =1,2,...
As noted in the Remark1 of the paper [15], the
expression (9) implies that the non-resonance
domain U'(p®:®,p) has asymptotically full
measure in R%Y in the sense that
wU' P Op)n B))
u(B(p))
{x € R%: |x| = p}, if
a (D) -2l+2+da(l) <1—a() (10)
holds. By the definitions (6) of a(l) and a; (1)
the condition (10) holds.

— 1 asp - oo, where B(p) =

From now on, we assume that y € U(p®®, p)
with |y +t| ~p. To prove the asymptotic
formulae for eigenvalue Ay(t) of the operator
H(l,q), we use the following well-known
formula:

(An(0) - |Y + %) < Wy, D>
=< Wy, V)P, >,
(11)

where <:-> denotes the inner product in
L, 5(K). We substitute the decomposition (7) of
v;j(x) into the formula (11) to obtain

M@ =y + 12DV, j,v)
S
ZZ Z Uijylc(NJ L:)’+V1)
i=1 ylel"(pa(l))
+0(p~Pe®),
where ¢(N,i,y) =< Wy, @, >. If we isolate
the terms with the coefficient c¢(N, i, y); that is,

the terms with y; = 0 foreachi = 1,2,...,s,then
we get
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(Ay = [y+e1)e(N, j, ) =
Yiz1 vij,c(N,i,y) +
Xi=1 Xy er(pe®) Vi, ¢(Nj,¥ + 1)

+0(p~P%). 12)

Also, (11) together with (7) imply

L < l:[JN't, V¢~’t" >
c(N,j,7) = ———2 =

An(t) = |7+t

_ c(N,i,y+y1)
= Ziz1 Zyer(pe®) Vil Ry
+0(p W), (13)

o T o
for every vector y € 3 satisfying the condition

~ 1
[An(®) = 7 + %] > 2 p=® (14)

which is called the iterability condition. Note
that, if y € U'(p*:®,p) and

1
[An(®) = Iy + 1% < 5p40, (15)

then (14) holds for # =y + b, Vb € T'(pp*®).
Hence, when y; € F(p“(l)), we may substitute
y +y; for 7 in (13) and then the equation (12)
becomes

Ay @) — |y + eV, j, y) = Bi-y vij,c(N, i, %)

c(N, i,y +v1 +72)

+ Vi Vi
L Wy "2y, A (@) = |y + 7, + E]E
i1,i2=1 yy,y,€r(p*D)

+0(p~Pe®),

By isolating the terms with coefficient c(N, i,, y)
in the last equation, we obtain
N
U@ = [y + PN, j,1) = D w1y, e, ,7)

i=1

c(N,iy)

S .. L R AL A A—
+ Xl Zyﬂzer(ﬂ““)) vll‘hvlz”yz An(O)=ly+y +t|?

Y11¥2=0
+

C(N! iZ!y + Y1 + VZ)

If we write this equation forj = 1,2,...,sand i =
1,2,...,s, after the first step of the iteration, we
obtain the following system:

[(An () = Iy + t1*)I = Vo]A(N, y)
= S*A(N,y) + R* + 0(p7P*®),
where [ is the s X s identity matrix,
AN, y) = (c(N,j,y)),

St = (sjll-) is the s X s matrix whose entries are
1 _ Vs Viijy1Yiiryz
St = Zii=1 Zysyaer(o“®) Goatoy-lyys +7

Y11y2=0

and R = (rjl) is the vector whose components
are
1_
’r) B .
Viyjy1 Vigirya CWNol2 Y +¥1+72)

(AN @) —|y +v1 + [

s
2i1riz= 1 2]/1']/2 EF(Pa(l))

J,i=12,...,s.

In this way, if we repeate the iteration p; = [pTH]

times and each time we isolate the terms with
coefficient c(N, iy, y), we have

[(An@®) = ly + 1D = VJAWN,y) =
(ERL, SHYA(N,y) + RPr + 0(p~PeW),
(16)
where

sk(AN(t))=(s;§(AN(t)), k=1,..,p, ji=
1, .

Sﬁ (AN (t)) =

N

S,
17

ZY1;Y2v--~;Yk+1EF(Pa([))

ig,i2,mmik=1
Yit¥et+Vi41=0

Ui1jY1vi2i1Y2' " Uiik}’k+1
AN@ = [y + 7+t o A (@O = [y +ya + v+ Y

RP1 = (r],pl)j

2.

i102,00ipy +1=1

and (18)

P1 _
7= 2.

Y1.¥2¥py+1€T(p°0)

Yisjy - Uip1+1ip1Vp1+1C(N’ lp+Y Y+t yp1+1)

i162=1 y;,y,€T(p*D)

+0(pPa),

v v ,
Wy, Ry Ay () = |y + v + E[2E A (® = Iy + v+t (A = [y + 71+ + 1y, + 1)
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Since the vectors y; € ['(p*®), we have |b| =
ly1 + ¥ot... +yi| <pp®D, foralli =1,2,...,pq,
in (17) and (18). Therefore, (14) together with
(5) imply
Sk(AN (D) = o(p—kal(l)), RP1 = o(p—plal(l))
(19)
for k = 1,2,...,p1. To obtain (19), we have only
used the iterability condition in (14); that is,
Av(©) €1 =[ly + 11 =50, Iy + ] +
%p“l(l)]. Hence, we may conclude that
s*(a) = 0(p~ka®),
¥ S @ =0(p™u®), vael (20)
and

[D(An,¥) = S(@ p)]AWN, ) = 0(p7*®), (21)

where D(Ay,y) = (Ay(t) — |y + t|*)I =V, and
S(a,py) = XhL, S*(a). We note that since V is
symmetric, V, and S(a,p;) are symmetric real
valued matrices; hence D(Ay,y) —S(a,py) is a
symmetric real valued matrix.

We denote the eigenvalues of V), counted with
multiplicity, and the corresponding orthonormal
eigenvectors by A4;<1,<--<A1; and
w1, Wy, ..., W, respectively. Thus

Vowi = Aiwi, wj * wj = 61]

We let 8; = B;(Ay, v, a) denote an eigenvalue of

the matrix D(Ay,¥) —S(a,p;) and f;=
fi(Ay,v,a) its corresponding normalized
eigenvector. That is,

[D(Aw,v) = S(a,p)Ifi = Bifis (22)

where f; - fj = 6,1, = 1,2,...,s.

3. Results

Lemma 1 Suppose %< I<1,yeUYp*®,p)
and |y +t| ~p.

(@) Let S; be an eigenvalue of the matrix
D(Ay,v) —S(a,p;) and f; = (ﬂl,fiz,...,fis) its
corresponding normalized eigenvector. Then
there exists an integer N = N; such that Ay(t)
satisfies (15) and

—(d-1

AN, Y) - fil > c3p 2. (23)

(b) Let Ay (t) be an eigenvalue of the operator
H.(l,V) satisfying the inequality (15). Then there
exists an eigenfunction @, ;;(x) of the operator
H.(l,0) such that

—(d-1

[c(N,L,y)| > cap 2 (24)

Proof. (a) By a well-known result from
perturbation theory, the Nth eigenvalue of the
operator H;(l,V) lies in M-neighborhood of the
Nth eigenvalue of the operator H;(l,0); that is,
there is an integer N such that

A (D) = Iy + 6|2 < 5p O,

On the other hand, since H;({,V) is a self adjoint
operator, the eigenfunctions {Wy.(x)}y-=1 of
H.(L,V) form an orthonormal basis for L? (K). By
using Parseval’s relation, we have

” Z§=1 fij(by,t,j ”2:
S
z:1\1:|AN(t)—|y+t|21|<§p011<l> | <Zj=1 fijPyjo Pue >
2
%+ By o-ty+eptiztpeme | <
Yi=1 fij Py P > 2.

Now, we estimate the last expression in (25). By
using the Cauchy-Schwartz inequality and (11),
we get

(25)

S
| < Z [ij Py Pue > 2

1 =1
N AN (D) =y +t[2 25001 ® J

IAn(0) =y +t[2!|25pe1®
S

< > [i il ) IV, )]

NilAN (D) ly+t (2 2gpaa® T=1 j=1
S
2
_ Z | < le,t' Vq)y,t,j > |

L o [An() = v+t
N:|AN (O —ly+t|H2gp 2 ® =

S
|Z fij < @yejy P > |2
Jj=1

<
pal(l)
2

)—2

N:| AN ()= ly+t|2!z

C
pa®
z
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S
Z | < Wye VD, > |2
j=1

s
1
< (Epou(l))—ZZ I V(Dy,t,j ”2
j=1

from which, together with (5), we obtain
ZN:|AN(t)_|V+t|Zl|2%Pa1(l) | <Xj=1 fij Py e >

| = 0(p=20®),

It follows from the last equation and (25) that
2:1\1:|AN(t)—|y+t|21|<§p011<l> I < Z§=1 fij @yt e >

= 2:1\1:|AN(t)—Iy+t|2’|<§p“‘1(’) AN, V) fil* =

1—0(p~2a®), (26)
On the other hand, if a ~ p, then the number of
y Eg satisfying |[|y|? —a?| <1 is less than
csp?~1. Therefore, the number of eigenvalues of
H:(1,0) lying in (a® —1,a?+ 1) is less than
cep®l. By this result and the result of
perturbation theory, the number of eigenvalues
Ay(t) of H,(I,V) in the interval [|y+t|? —
%p“i(l), ly +t|? +%p“1(l)] is less than c,p% 1.
Thus

1-0(p~2u®) =
Z [A(N,Y) - fil?
N:lA(D)=ly+t[2<3p@®

<cp*HAW,Y) - fil?
from which we get (23).

(27)

(b) Since H,(l, 0) isaselfadjoint operator the set
of eigenfunctions {®,;;(x)},eri=1,2,..m Of
H(1,0) forms an orthonormal basis for L,*(K).
By Parseval’s relation, we have

|l Wy, 2=
1 leN L) > 12 +

(28)

Ly ian(@)-ly el <Lpea® 2
Z . 1 2‘?: C(N i )2.
vt~y +eiztpa Zist €N LY)]

We estimate the last expression in (28). Hence
forafixedi = 1,2, ..., s, using (11) together with
(5) we get

N

> PN AR

yiAN(O-ly +t[2l|2gpea® 151

S
| <Wyp VO, > |2
[An () = ly+t]?Y?

)

VilAn (@)=l +t[2zgpa® =1

<
1
~ paa(Dy-2 Z
GP)
VAN O -ly+t[2|25pe®
S
DIV, @y >
i=1
< GpUO) 2 VW, 12 (29)
that is,

> D leinP

V:|AN(t)_|V+t|21|2%pa1(l) i=1
= 0(p~2a ),

From the last equality and (28), we obtain

> Z le(N, i, )2

VilAN @ -ly ]2 <gper® =1
=1- 0(p—2a1(l))_

Arguing as in the proof of part(a), we get

1-0(p~2*x0) =
Ey:|AN(t)—|y+t|Zl|<%p“1(l) Zi?:l |C(NJ i; )/)lz S

C8pd_1 |C(N' i' }/)lz
from which (24) follows.

Theorem 2 Suppose %< <1,y € U(p*®, p)
and |y +t| ~p.

(a) For each eigenvalue 4; of the matrix Vj, there
exists an eigenvalue Ay(t) of the operator
H.(l,V) satisfying

Ay@® =y +t1? + 4+ 0(p~ =), (30

(b) For each eigenvalue Ay(t) of the operator
H.(LV) satisfying (15), there exists an
eigenvalue 4; of the matrix V;, satisfying (30).

Proof. (a) By Lemma(la), there exists an
eigenvalue Ay(t) of the operator H.(l,V)
satisfying (15); thatis, Ay (t) € I and (23) holds.
Thus, we consider the equation (21) for a =
Ay(t); thatis,

[D(Ay,¥) = S(Ay, pD)IAWN, y) = 0(p~PeD),
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Multiplying both sides of the above equation by
fi gives

BilAN,y) - fi] = 0(p~P*®).
By using the inequality (23) in the above
equation, we get

b= 0(p =10,
(31)
Since D(Ay,y) and S(Ay, p1) are symmetric real

valued matrices, by a well known result in matrix
theory (see [13]),

1B = (An (&) — Iy + ¢ = )| <I S(Ay, po) I
which together with (18) imply that

Bi = Ay (t) — ly+t|* = 4; + 0(p~4®).
(32)

Hence, by choosing p > zda—_(zl) + 1 and using (32)

and (31), we get the result.
(b) By Lemma(lb), there exists @, ;;(x)
satisfying (24) from which we have

—(d-1)
HAN, ) 1> cop™ 7. (33)

Now, we consider the equation (16) for these
(N, y) pairs
[(An(®) = ly+t1?DI = VoJA(N,y) =
S, PDAN,Y) + 0(pP¢0).
- _1 - 2lyf —
First, we apply Yl [(An(@) = ly+t]“DI
Vo]~* to both sides of the above equation. Next,

we take the norm of both sides and use (33) to
obtain the following inequality

P1
1 < [(Ay(E) = ly+t12) = Vo]~ 1l Z Sk |

k=1
+ [(AN () = [y+tPDI = Vo] ™!

1 0G0,
By estimation (20) and choosing p > Zda_(?) +1
we get
1<

1 e
X g 0P,

Hence,

min [Ay(6) = [y + 2 = A4l < ci0p™ 9,
1=12,.,s

where minimum (maximum) is taken over all
eigenvalues of the matrix V,, from which we
obtain the result.

In the interest of saving space, we use the
notation

Ay = [+ + Ll By N,

where
Fo=0, F=S'(ly+t?' + 4),
Fi=S(ayrj) j=2. (34)

Then, we have
I Fj lI= 0(p~*®) (35)

forall j=12,...,.p—c, c= [zda—_(zl)] + 1. Indeed,

since Fy = 0, | Fy ll= 0 and if we assume that

Il F;—y lI= 0(p~ W), then since a, € I, by (20),

we have || F; l= 0(p~%®).

By (35), we have a, , + 0(p~/%1() € I. Thus, we

leta =a,, + 0(p~ /M) in (20), to get
[D(n,¥) = S(ay, + 0(p74 D), p ) |JAWN, v)

= 0(p7P*O). (36)

We add and subtract the term FA(N,y) =

S(ay 1, DA(N,y) into the left hand side of the
equation (36) to obtain

[D(An, ) = FIANN,y) — EjA(N,y) =
0(p~P*®), (37)

where

E; = [S(ayx + 0(p774 W), j) = S(ay . /)]

P1
+( Z S*(y i+l Fyy 1| +0(p~ 1% 0))),

i=j+1

By (20), we have
b1
Y 55 (ayu+ 0(p710)) = 0(p-U),
i=j+1
(38)
If we prove that
I S(ayx +0(p74®),j) = S(ayxj) I
= 0(p—(i+1)a1(l))_ (39)
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then it follows from (38) and (39) that

I Ej lI= 0(p~UDa®), (40)
Since a, , € I, we have
layx +0(p~7%D) — |y + yi+... +ye+t|2

1
> Zpm),
5P

1
laye = Iy + yat...+ye ] > 2p0®, (41)

for all y, € T(p*®) and t = 1,2,...,p;. We first
calculate the order of the first term of the
summation in (39). To do this, we consider each
entry of this term, and use (41) and (5):

Issi(ay i + 0~ D)) — sk (aypl

<

S

2.

i1=1 y;,y,er(p*®)
Y1+y2=0

Vi, Vi, 10 (p 701D

Proof. (a) By Lemma(1a), there exist Ay (t) and
Wy t(x) satisfying (15) and (23), respectively.
We prove the theorem by induction. For k = 1,
we obtain the result by Theorem(2a).

Now, assume that for k = j — 1 the formula (42)
is true; that is,

Ay(® = |y +t|* + A+ Fy |
+0(p~ /M), (43)

Let 8; be an eigenvalue of the matrix D(Ay,y) —
S((ayx +0(p~ 7 ®),py). If we multiply both
sides of the equation (36) by its corresponding
normalized eigenvector f;, and use (23), then we
obtain

Bi = 0(p~ =94,
On the other hand, the matrix
D(Ay,¥) = S((ayx +0(p/®),py)
in (36) is decomposed as follows

D(An,v) = S((ayx + 0(p~/4®),py)
= D(Avy) — F —

(44)

@y + 0= D) — |y +yy + 12Dy, — Iy +v1 + t[2)]

< ¢ pUDmO),
foreachn,i = 1,2,..., s, which implies

I S*(ay. +0(p~ /1)) — S (ay ) II=
0(p~U+Da®),

Therefore, by direct calculations, it can be easily
seen that

I S*(ayx + 0(p74®)) = ¥ (ay ) 1=
0(p~Utk+Dai (D)

from which we obtain (39).
Theorem 3 Suppose % <l<1,yeU'(p*®,p)
and |y +t| ~p.

(a) For any eigenvalue 4;, i =1,2,...,s of the
matrix Vj, there exits an eigenvalue Ay (t) of the
operator H.(l,V) satisfying the following
formula:

Ay(@® = |y + |2 + A+l Fe_q |l
+0(p~ru®),

where Fj,_; isgivenby (34),k =1,2,..,p —c.

(42)

(b) For any eigenvalue Ay(t) of the operator
H.(l,V) satisfying (15), there is an eigenvalue
A; of the matrix V;, satisfying (42).

Thus, by (40), (44) and a well known result in
matrix theory,

|8 = (An (@ = C(ly + e+ 20)| <

[ 1:} [ +0(p—(1'+1)a1(l))_
where 1 <j+1<p—c, we get the proof of
(42).

(b) Again, we prove this part of the theorem by
induction. For j = 1, we obtain the result by
Theorem(2b).

Now, assume that for k = j — 1 the formula (42)
is true. To prove (42) for k =j, we use the
equation (37) and the definition of the matrix
D(Ay,v) and get

[(An(®) = ly + t1*)] = D;JA(N, y)
= EA(N,y) + 0(p7*®),
where D; =V, + F;.

i 1 - 2lyf —
First, we apply AT [(An(@) = |y + t]*DI
D]-]‘1 to both sides of the above equation and
then, take the norm of both sides and use the
estimations (33) and (40) to obtain

1<

732



<

Lo s _ Ty e
28 [Ay (8) = [y + ¢1% = 4]

or
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AN = Iy + 129 = Dy~
Il [0(p~U+Da®)]

+ [(An(®) = |y + t1?D1 = D] 7!
[ [0(p—(p—6)a(l))]

1

min [Ay(t) =y +t1* = L)
i=1,2,.,8

< ¢ppp~UHD@®,

where minimum is taken over all eigenvalues
2;(j) of the matrix D;, 1 < j + 1 < p — c. By the
last inequality and the well known result in
matrix theory, |1;(j) — A;| <l F; Il and the result
follows.
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