On Some Generalized Deferred Cesàro Means-II

Mikail Et

1 Faculty of Science, Department of Mathematics, Firat University, Elazig, Turkey, ORCID: 0000-0001-8292-7819

* Corresponding Author E-mail: mikailet68@gmail.com

Abstract: In this study, using the generalized difference operator \(\Delta^m \), we introduce some new sequence spaces and investigate some topological properties of these sequence spaces

Keywords: Difference sequence, Deferred Cesaro mean.

1 Introduction

Let \(w \) be the set of all sequences of real or complex numbers and \(\ell_\infty \), \(c \) and \(c_0 \) be respectively the Banach spaces of bounded, convergent and null sequences \(x = (x_k) \) with the usual norm \(\| x \|_\infty = \sup |x_k| \), where \(k \in \mathbb{N} = \{1, 2, \ldots\} \), the set of positive integers. Also by \(\ell_b \), \(\ell_s \) and \(\ell_p \); we denote the spaces of all bounded, convergent, absolutely summable and \(p \)-absolutely summable sequences, respectively.

A sequence space \(X \) with a linear topology is called a \(K \)-space provided each of the maps \(p_k : X \rightarrow \mathbb{C} \) defined by \(p_k (x) = x_i \) is continuous for each \(i \in \mathbb{N} \), where \(\mathbb{C} \) denotes the complex field. A \(K \)-space \(X \) is called an \(FK \)-space provided \(X \) is a complete linear metric space. An \(FK \)-space whose topology is normable is called a \(BK \)-space. We say that an \(FK \)-space \(X \) has \(AK \) (or has the \(AK \) property), if \((e_k) \) (the sequence of unit vectors) is a Schauder bases for \(X \).

The notion of difference sequence spaces was introduced by Kizmaz [1] and the notion was generalized by Et and Çolak [2]. Later on Et and Nuray [3] generalized these sequence spaces to the following sequence spaces:

Let \(X \) be any sequence space and let \(m \) be a non-negative integer. Then,

\[
\Delta^m (X) = \{ x = (x_k) : (\Delta^m x_k) \in X \}
\]

\[
\Delta^0 x = (x_k), \Delta^m x = (\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}) \quad \text{and so} \quad \Delta^m x_k = \sum_{i=0}^{m} (-1)^i \binom{m}{i} x_{k+i}, \text{ is a Banach space normed by}
\]

\[
\| x \|_\Delta = \sum_{i=1}^{\infty} |x_i| + \| \Delta^m x_k \|_\infty.
\]

If \(x \in X (\Delta^m) \) then there exists one and only one \(y = (y_k) \in X \) such that

\[
x_k = \sum_{i=1}^{k-m} (-1)^m \binom{k-i-1}{m-1} y_i = \sum_{i=1}^{k} (-1)^m \binom{k+m-i-1}{m-1} y_i-m, \quad y_{m+1} = y_{2m} = \cdots = y_0 = 0
\]

for sufficiently large \(k \), for instance \(k > 2m \). Recently, a large amount of work has been carried out by many mathematicians regarding various generalizations of sequence spaces. For a detailed account of sequence spaces one may refer to ([2-13]).

In 1932, Agnew [4] introduced the concept of deferred Cesaro mean of real (or complex) valued sequences \(x = (x_k) \) defined by

\[
(D_{p,q} x)_n = \frac{1}{q(n) - p(n)} \sum_{k=p(n)+1}^{q(n)} x_k, \quad n = 1, 2, 3, \ldots,
\]

where \(p = \{ p(n) \} \) and \(q = \{ q(n) \} \) are the sequences of non-negative integers satisfying

\[
p(n) < q(n) \quad \text{and} \quad \lim_{n \to \infty} q(n) = \infty.
\]

198 c

ISSN: 2651-544X

http://dergipark.gov.tr/cpost
2 Topological Properties of $X(\Delta^m)$

In this section we prove some results involving the sequence spaces $C_0^d(\Delta^m), C_1^d(\Delta^m)$ and $C_\infty^d(\Delta^m)$.

Definition 1. Let m be a fixed non-negative integer and let $\{p(n)\}$ and $\{q(n)\}$ be two sequences of non-negative integers satisfying the condition (1). We define the following sequence spaces:

$$C_0^d(\Delta^m) = \left\{ x = (x_k) : \lim_{n} \frac{1}{(q(n) - p(n))} \sum_{k=p(n)+1}^{q(n)} \Delta^m x_k = 0 \right\},$$

$$C_1^d(\Delta^m) = \left\{ x = (x_k) : \lim_{n} \frac{1}{(q(n) - p(n))} \sum_{k=p(n)+1}^{q(n)} (\Delta^m x_k - L) = 0 \right\},$$

$$C_\infty^d(\Delta^m) = \left\{ x = (x_k) : \sup_{n} \left(\frac{1}{(q(n) - p(n))} \sum_{k=p(n)+1}^{q(n)} \Delta^m x_k \right) < \infty \right\}.$$

The above sequence spaces contain some unbounded sequences for $m \geq 1$, for example let $x = (k^m)$, then $x \in C_\infty^d(\Delta^m)$, but $x \notin \ell_\infty$.

Theorem 1. The sequence spaces $C_0^d(\Delta^m), C_1^d(\Delta^m)$ and $C_\infty^d(\Delta^m)$ are Banach spaces normed by

$$\|x\|_\Delta = \sum_{i=1}^{m} |x_i| + \sup_{n} \frac{1}{(q(n) - p(n))} \sum_{k=p(n)+1}^{q(n)} \Delta^m x_k.$$

Proof: Proof follows from Theorem 1 of Et and Nuray [3].

Theorem 2. $X(\Delta^{m-1}) \subset X(\Delta^m)$ and the inclusion is strict for $X = C_0^d, C_1^d$ and C_∞^d.

Proof: The inclusions part of the proof are easy. To see that the inclusions are strict, let $m = 2$ and $q(n) = n, p(n) = 0$ and consider a sequence defined by $x = (k^2)$, then $x \in C_1^d(\Delta^2)$, but $x \notin C_1^d(\Delta)$ (if $x = (k^2)$, then $(\Delta^2 x_k) = (2, 2, 2, ...)$).

Theorem 3. The inclusions $C_0^d(\Delta^m) \subset C_1^d(\Delta^m) \subset C_\infty^d(\Delta^m)$ are strict.

Proof: First inclusion is easy. Second inclusion follows from the following inequality

$$\frac{1}{(q(n) - p(n))} \sum_{k=p(n)+1}^{q(n)} \Delta^m x_k \leq \frac{1}{(q(n) - p(n))} \sum_{k=p(n)+1}^{q(n)} \Delta^m x_k - L + \frac{1}{(q(n) - p(n))} \sum_{k=p(n)+1}^{q(n)} L \leq \frac{1}{(q(n) - p(n))} \sum_{k=p(n)+1}^{q(n)} \Delta^m x_k - L + L.$$

For strict the inclusion, observe that $x = (1, 0, 1, 0, ...) \in C_\infty^d(\Delta^m)$, but $x \notin C_1^d(\Delta^m)$ (if $x = (1, 0, 1, 0, ...)$, then $(\Delta^m x_k) = (-1)^{m+1} 2^{m+1}$).

Theorem 4. $C_1^d(\Delta^m)$ is a closed subspace of $C_\infty^d(\Delta^m)$.
Proof: Proof follows from Theorem 4 of Et and Nuray [3].

Theorem 5. $C^d_{\infty}(\Delta^m)$ is a nowhere dense subset of $C^d_{\infty}(\Delta^m)$.

Proof: Proof follows from the fact that $C^d_{\infty}(\Delta^m)$ is a proper and complete subspace of $C^d_{\infty}(\Delta^m)$.

Theorem 6. $C^d_{\infty}(\Delta^m)$ is not separable, in general.

Proof: Suppose that $C^d_{\infty}(\Delta^m)$ is separable for some $m \geq 1$, for example let $m = 2$ and $q(n) = n, p(n) = 0$. In this case $C^d_{\infty}(\Delta^2)$ is separable. In Theorem 5, Bhardwaj et al. [5] show that $C^d_{\infty}(\Delta^2)$ is not separable. So $C^d_{\infty}(\Delta^m)$ is not separable, in general.

Theorem 7. $C^d_{\infty}(\Delta^m)$ does not have Schauder basis. separable, in general.

Proof: Proof follows from the fact that if a normed space has a Schauder basis, then it is separable.

Theorem 8. $C^d_{\infty}(\Delta^m)$ is separable.

Proof: Proof follows from Theorem 5 of Et and Nuray [3].

3 Acknowledgement

This research was supported by Management Union of the Scientific Research Projects of Firat University under the Project Number: FUBAB FF.19.15. We would like to thank Firat University Scientific Research Projects Unit for their support.

4 References