

FT64

End Tidal Carbon Dioxide (EtCO₂) Measurement in Newborns (When?, Where? and How?)

Assoc. Prof. Dilek Dilli

Neonatologist

Respiratory diseases in newborns are common clinical problems, especially in preterm infants. Formerly, the only method to evaluate the adequacy of ventilation and oxygenation was by assessment of arterial blood gas (ABG) in these patients. ABG, which is a painful and time consuming procedure, provides intermittent, not continuous data, that limits its use in documenting transient events. Therefore, noninvasive systems such as pulse oximetry to determine oxygenation, and transcutaneous carbon dioxide (PtcCO₂) monitoring and end-tidal CO_2 (EtCO₂) measurement to evaluate the CO_2 status of critically ill neonates have become increasingly popular. The EtCO₂ monitoring has some clear advantages over the transcutaneous CO_2 monitoring, such as a much faster response time to changes in blood CO_2 levels, internal calibrating ability and no thermal injury to the fragile skin of the newborn.

EtCO₂ measurement is based on the principle that CO₂ will be detected during expiration from a correctly placed endotracheal tube (ETT). EtCO₂ can be detected by capnography, capnometry or colorimetric devices. The presence of EtCO₂ was detected significantly quicker by a capnograph than the time to reach the EtCO₂ level when a colour change would be first observed using a colorimetric device. Besides, contamination of colorimetric device with gastric fluid, surfactant or medications such as atropine and epinephrine can lead to falsepositive results. Capnography is done by either side stream or main stream gas sampling; low flow capnography with side stream (Microstream) technology is the preferred system in NICU. A diagram of a normal capnogram is seen in Fig. 1. Most neonatal studies have shown a good correlation between EtCO₂ and PaCO₂ (r=0.8), even in preterm infants. This correlation falls with significant respiratory failure. In conjunction with ABG analysis, capnography can provide valuable information about ventilation/perfusion (V/Q) disturbances of the lung.

Normal Capnogram (Fig. 1)

Phase I (inspiratory baseline) reflects inspired gas, which is normally devoid of carbon dioxide Phase II (expiratory upstroke) a rapid rise in CO₂ concentration as anatomical dead space is replaced with alveolar gas

Phase III is the alveolar plateau. PCO_2 of the last alveolar gas sampled at the airway opening is called the $EtCO_2$

Phase 0 is the inspiratory downstroke, the beginning of the next inspiration

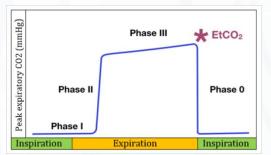


Fig. 1: Diagram of a normal capnogram that includes the inspiratory and expiratory phase (Ref. 1).

Indications for Use of End-Tidal CO₂ Monitoring

-To confirm correct ETT placement: One of the most common causes of neonatal intubation failure is inadvertent oesophageal intubation, which can have catastrophic consequences. The mostly used methods of correct placement of ETT include chest wall rise with inflations, auscultation of air entry, the appearance of condensation in the tube during expiration and improvements in oxygen saturation, colour and heart rate. Some of these signs, are subjective. The addition of CO₂ detection using the colorimetric device is a very useful adjunct to clinical assessment; with an oesophageal tube little or no CO₂ is present. However, 'good EtCO₂ reading' does not give good information about the exact position of the endotracheal tube in the airway, i.e. an ETT could be too high or low (main stem bronchus) with an acceptable EtCO₂. -During transport from secondary to tertiary care centers: Due to the nature of transport, inadvertent extubation may occur at any point enroute. The noisy environments of the ambulance or helicopter makes evaluation of ETT position difficult. Continuous use of portable CO_2 monitors during transport would provide an effective visual check of ETT position and effectively reassure team members. Further, it indirectly confirms ventilation and circulation.

-Integrity of ventilation: Capnography can identify disconnections in the ventilatory circuit instantaneously before O_2 and CO_2 levels change in the blood. During the course of IPPV in infants with no spontaneous breathing, EtCO₂ falls to zero instantaneously following the disconnections in the circuit and sounds an alarm. Corrective measures can be instituted immediately before irreversible damage is caused by prolonged hypoxia.

-Occlusion and displacement of ETT: Capnography can detect a total occlusion or accidental extubation. Total occlusion or displacement of ETT produces loss of CO_2 waveform in capnography. Ventilation through partially kinked or obstructed tube produces distortions in CO_2 waveform (prolonged phase II and steeper phase III, and irregular height of the CO_2 tracings.

-Apnea monitor: Accurate information about the rate and rhythm of respiration can be obtained by sampling CO_2 from respired gases using nasal adaptors. During apnea of either type, the CO_2 concentration at the sampling site falls rapidly and can be instantaneously detected by capnography. Therefore CO_2 monitoring serves as a reliable apnea monitor in neonates.

-Non-invasive monitoring of the arterial PaCO₂: In infants breathing spontaneously, the EtCO₂ values range from 36-40 mmHg. Normally EtCO₂, as sampled from the nasal cavity in neonates, with healthy lungs breathing spontaneously is a good estimate of PaCO₂. The (arterial-endotracheal; a-ET) PCO₂ gradient can vary from - 0.65 mmHg to 2.4 mmHg. In preterm infants the gradient may be 3.5 mmHg. Alveolar hypoventilation increases PaCO₂ as well as EtCO₂. Capnography also serves as a useful device to monitor PaCO₂ during mechanical ventilation of intubated neonates. It is prudent to establish the relationship of EtCO₂ to PaCO₂ initially by blood gas analysis. Thereafter, changes in PaCO₂ may be assumed to occur in parallel with those in EtCO₂ thus avoiding repeated ABG's.

-Weaning: Capnography can be used to evaluate the trend of PaCO₂, breathing pattern, and importantly the consistency of breathing before extubation. Ventilator rates can be gradually decreased to the lowest point at which the patient can comfortably breathe and maintain adequate alveolar ventilation.

-To demonstrate return of spontaneous circulation (ROSC) during cardiac arrest: During cardiac arrest, circulation ceases and $EtCO_2$ gradually disappears, reappearing only when circulation is restored either by effective cardiopulmonary resuscitation or cardiac function. During cardiopulmonary resuscitation, a positive test confirms placement of the ETT within the airway, whereas a negative test indicates either oesophageal placement or airway intubation with poor or absent pulmonary blood flow.

-Monitoring the course of Pulmonary Disease: In neonates with respiratory disease, the (a-Et)PCO₂ difference becomes wider, as for example, in infants with bronchopulmonary

dysplasia (BPD), where the gradient may be as much as 9 mmHg. The (a-Et)PCO₂ gradient has been used to assess the effectiveness of diuretic therapy in the improvement in V/Q status of the lung in infants with BPD. The gradient may also be used to assess the improvement in lung function following surfactant therapy in newborns with respiratory distress syndrome (RDS). The shape of capnogram also gives information about V/Q status of the lung. Increased V/Q mismatch is suggested by an increase in the slope of phase III.

Physiological and technical limitations of capnography in newborns:

In newborns, the short exhalation times, low tidal volumes and high impact of apparatus dead space hamper EtCO₂ measurements. Newborns require faster CO₂ sensors and low suction flow for side stream measurements. In addition, EtCO₂ is not feasible in high-frequency oscillators or jet ventilators as the volume of each breath is less than dead space. The interpretations of values be challenging EtCO₂ may in infants with cardiac anomalies, pulmonary hypoperfusion, myocardial dysfunction, or hypoxaemia after asphyxia. False negative results may also occur in severely hypocarbic neonates especially those weighing <1 kg. Many NICUs utilize PtcCO₂ as a primary means of PaCO₂ monitoring. Finally, the widespread acceptance of capnography for neonates requires new, well designed studies to demonstrate its clinical value and various diagnostic possibilities in these patients.

References:

- 1- <u>Aminiahidashti</u> H et al. Applications of End-Tidal Carbon Dioxide (ETCO2) Monitoring in Emergency Department; a Narrative Review. <u>Emerg (Tehran)</u>. 2018; 6(1): e5.
- 2- <u>Selby ST</u> An Update on End-Tidal CO2 Monitoring. <u>Pediatr Emerg Care.</u> 2018 Dec;34(12):888-892.
- 3- Scrivens A et al. Is waveform capnography reliable in neonates? Arch Dis Child. 2019 Jul;104(7):711-715.
- 4- Lin HJ et al. End-tidal carbon dioxide measurement in preterm infants with low birth weight. PLoS One. 2017 Oct 17;12(10):e0186408.

