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ABSTRACT 
 

In this study, composite hydroxyapatite (HA)-gelatin microspheres (SD-HA-Gel) were produced for bone substitution 

applications. The polymer network within the HA matrix would be facilitated as a drug carrier system and can develop the cell-

microsphere interactions due to the excellent biological properties of gelatin. Gelatin functionalized HA microspheres and bare 

HA granules (as a reference) with 8 µm average size were produced by spray drying process. The morphology, thermal 

properties, chemical and phase structure of the produced powders were analyzed by SEM, TG-DTA, FTIR and XRD methods. 

SD-HA-Gel microspheres presented spherical morphology and hollow/core-shell cross-section and consisted of HA 

nanoparticles and gelatin molecules together according to the SEM, FTIR and XRD studies. Thermal analyze results showed 

that gelatin evolved from the microspheres at ~300 °C. The effect of gelatin on the crystallization and high temperature stability 

of HA was studied by XRD analysis and Rietveld Refinement investigations. Gelatin was released from the microspheres after 

immersion for 14 days in phosphate buffer saline (PBS) solution. 
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1. INTRODUCTION 
 

Calcium phosphate (CaP) family members, such as hydroxyapatite and tricalcium phosphate having 

various Ca/P ratios, are commonly used bioactive ceramics owing to their outstanding biological 

properties. Hydroxyapatite (HA, Ca10(PO4)6(OH)2), resembling the main component of bone and teeth, 

has been emerged for decades owing to the capability to bond to the host tissue, osteointegration, 

osteoconduction, and etc. Despite its superior features, the inherent brittle nature of HA limits its usage 

in load-bearing applications; therefore, it can be used as a small defect size bone filler, orthopedic 

coating and drug carrier [1–6].  

 

HA is further functionalized via therapeutic ion substitutions and blending with bioresorbable polymers. 

Sr2+ [7], Zn2+ [8], Ag+ [9], and recently a combination of multiple ions [10] were introduced into the HA 

crystal, which may alter the physical structure of HA and ultimately develop biological or mechanical 

properties [11, 12]. Addition of a biodegradable polymer (collagen, chitosan, PLLA) also enhances the 

biological features of the bioceramics such as biocompatibility, biosorption and cell affinity [13–15]. 

Bioceramics-especially CaPs- can be combined with biodegradable polymers to mimic the organic and 

inorganic components of bone [16]. Moreover, the abundant surface OH- and Ca+2 ions provide 

nanostructured CaPs for loading a drug or gene. CaPs can be arranged as targeting nanocarriers through 

surface functionalization [17]. 

 

Gelatin (Gel), being denatured collagen, stimulates cellular adhesion, proliferation and differentiation 

[18]. The RGD sequence (tripeptide sequence) of gelatin interacts with the extracellular matrix proteins 

of bone and improves osteoblast adhesion and mineralization [19, 20]. Gelatin shows superior properties 
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such as good biodegradation, biocompatibility, availability, low cost and can be used safely in 

biomedicine [21]. HA is a favorable filler to gelatin matrix, and HA-gelatin composites are proposed as 

a bone substitute material due to good cell adhesion and proliferation [22]. Fang et al. [23] prepared 

stromal cell derived factor 1 added biomimetic HA-gelatin microspheres and found that the 

microspheres enhanced the alveolar bone regeneration. Chen et al [24] fabricated chitosan-gelatin-HA 

core-shell nanofibers to mimic the extracellular matrix of bone and observed that the composite 

nanofibers improved the osteoblast cells growth and gelatin incorporation increased the hydroxyapatite 

mineralization on the nanofibers. Hikmawati et al. [25] produced streptomycin loaded 

gelatin/hydroxyapatite injectable bone substitute material that was nontoxic to BHK-21 fibroblast and 

hepatocyte cells and presented antibacterial activity against S. aureus. 

 

Spray drying (SD) is a versatile tool to produce HA granules to be used as a feedstock in thermal 

spraying [26] dental resin filler [27] protein [28] and drug [29] carries. In this technique, a prepared 

slurry was dried as a free-flowing powder, granule or agglomerate [30]. During the process, the slurry 

is atomized and subsequently dried in a hot chamber and finally is collected in a jar as a dried product 

[26]. Normally, polymers are utilized in the spray drying process to bind the particles within the spray 

dried granules together against disintegration. Polymers provides mechanical strength to the granules 

and evolves during post sintering process. More recently, biopolymers have been employed in the spray 

drying of HA to further functionalize the granules. SD facilitates to produce composite polymer-HA 

granules such as chitosan-HA [31], ε-polylysine-HA [32], PVA-HA [33]. 

 

To the best of the author’s knowledge, there have been limited studies on spray drying of HA-Gelatin 

microspheres. Chang [34] produced HA-Gelatin composite via spray precipitation method. Bielefeldt et 

al. [35] fabricated compressed blocks via spray-dried 20% gelatin incorporated HA microgranules and 

investigated flexural strength. Sun and Lu [36] formulated HA-gelatin via SD method; however, gelatin 

used as a pore-forming agent and removed through thermal treatment. In this study, SD-HA-Gelatin 

composite granules were produced to be used potentially as a bone substitute material with drug loading 

capability. The spray-dried microspheres were analyzed in terms of morphology, phase and chemical 

structure and thermal behavior. The gelatin could be further loaded with a drug or therapeutic ions. The 

gelatin network within the composite microgranules would not only develop the biological properties 

of HA but deliver loaded drugs/therapeutic ions into the damaged tissues.  

 

2. MATERIALS and METHODS 

 

Experimental work includes three main parts: 1. Synthesis of HA nanoparticles via precipitation, 2: 

Spray drying of HA and HA-gelatin (HA-Gel) composite microgranules and 3: Characterization of the 

microparticles. 

 

2.1. Synthesis of HA Nanoparticles 

 

Pure HA nanoparticles were synthesized via precipitation as described at our previous study [26]. 

Summarily, individual Ca(NO3)2.4H2O (98%, Merck) and (NH4)2HPO4 (98%, Merck) aqueous solutions 

were prepared and afterwards (NH4)2HPO4 solution was poured into the Ca(NO3)2 solution. The pH was 

adjusted to 10.75 by NH4OH solution and prepared HA suspension were mechanically stirred for 24 h 

at room temperature and precipitated for another 24 h. The HA wet cake was filtered and washed several 

times with de-ionized water and the nanoparticles were directly used in the spray drying process.  

 

2.2. Spray Drying of HA and HA-Gelatin microgranules 

 

Producing of bare HA microgranules: A slurry containing 5 wt. % HA nanoparticles was peristaltically 

pumped in a two-fluid external nozzle and atomized via pressured air into the hot spray dryer chamber 
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(Nubilosa) according to the parameters in Table 1. Dried product (in this case bare HA) was collected 

at the bottom of the chamber in a glass jar. 

 
Table 1. Spray drying parameters for producing of HA and SD-HA-Gel microspheres 

Inlet temperature 

(°C) 

Outlet temperature 

(°C) 

Atomization 

pressure (bar) 

Feeding rate 

(rpm) 

HA rate 

(wt. %) 

180 90 3 10 5 

 

Producing of HA-Gel microgranules: 5 wt. % gelatin was dissolved in 1 vol. % acetic acid aqueous 

solution at 40 °C. Then, prepared gelatin solution was poured into the HA slurry and mixed for 1 h at 

room temperature. Finally, HA-Gel slurry involving 5 wt. % HA nanoparticles and 5 wt. gelatin was 

spray dried with the same parameters in Table 1. The producing of gelatin functionalized HA composite 

granules were schematized in Figure 1. 

 

 
 

Figure 1. Schematic illustration of the producing route for gelatin functionalized HA granules 

 

2.3. Characterization of the Granules 

 

The surface and cross section morphology of the granules were monitored by scanning electron 

microscope (SEM, Tescan Vega II). For cross-section SEM investigations, the granules were embedded 

in an epoxy resin and polished via a cloth containing 1 µm Al2O3 particles. The elemental mapping was 

applied on the embedded granules by energy dispersive X-ray (EDX, Bruker) spectroscopy attached at 

the SEM. The chemical structure of the granules was analyzed by Fourier transform infrared 

spectroscopy (FTIR, Shimadzu IRAffinity-1S). The transmittance mode was employed at FTIR with 4 

cm-1 resolution. The thermal behavior of the granules was examined by simultaneous thermogravimetric 

(TG) and differential thermal analyzer (DTA, Shimadzu DTG-60). The granules were heated up to 1500 

°C at a 5 °C/min ramping rate in the air atmosphere. The spray dried samples were directly used in the 

thermal analyze experiments without any further drying. The crystal structure of the spray dried and 

heat treated granules was analyzed by X-ray diffraction analysis (XRD, Panalytical Cu Kα Empyrean 

Diffractometer). The diffractometer operated at 45kV and 40mA and data collected at a step size and 

time of 0.026° and 22 s, respectively. The size distribution of the granules was measured by a dry laser 

particle size analyzer (Microtrac S3500). To analyze the degradation behavior of the gelatin, 200 mg 

SD-HA-Gel composite granules were directly immersed in the 50 mL of phosphate buffered saline 

(PBS) solution at 37 °C (pH 7.4) for 14 d. 1 PBS tablet (Sigma) was dissolved in 200 mL of deionized 

water according to the supplier recipe. After 14 d immersion, the granules were taken from the solution, 

dried in an oven, and characterized by FTIR to analyze the releasing of gelatin by controlling the change 
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of gelatin’s characteristic bands and SEM to visualize possible morphology change after liberating of 

the gelatin molecules.  

 

3. RESULTS and DISCUSSION 

 

It is well known that hollow, donut and spherical microgranules can be formulated via spray drying 

process [37]. Figure 2 illustrates the surface and cross-section SEM images of bare HA and SD-HA-Gel 

composite microgranules. Spray-dried HA microgranules (SD-HA) had spherical surface morphology 

and solid cross-section. Generally, polymer binders were used in the spray drying procedure to increase 

the mechanical integrity of the granules. Ben et al. [38] observed that PVB modification above 0.5 wt. 

% enhanced the mechanical integrity of the spray dried tri-calcium phosphate granules. In this study, no 

disaggregated pure HA granule was observed that may be attributed to the higher surface energy of the 

nanoparticles providing the energy to preserve the integrity of the granules. Both HA and SD-HA-Gel 

granules presented identical size distributions (d10: 2.5 µm, d50: 8 µm and d90: 18 µm). I selected spray 

drying and slurry parameters to produce granules with relatively smaller sizes to suspend them in the 

solutions with ease. SD-HA-Gel composite microspheres (SD-HA-Gel) commonly presented spherical 

morphology, and some hollow microspheres can also be seen. However, the cross-section microstructure 

of SD-HA-Gel differed from the SD-HA, i.e., it was predominantly composed of hollow microspheres. 

The spherical morphology of the spray dried granules can be transformed to hollow, donut, apple like 

morphologies by the relatively higher binder amount [16,38]. During the drying process, water and 

binder (in this case gelatin) move toward to the atomized droplet surface. Afterwards, the particles and 

binder form a dense shell around the droplet and left an internal void. The difference of pressure between 

the ambient atmosphere and the internal void causes to collapse one part of the granule and 

consequently, a hollow granule forms [39]. 

 

 

Figure 2. SEM images of A-B) Bare HA and C-D) SD-HA-Gel composite microspheres 

 

Some of the SD-HA-Gel had a core-shell structure that the microgranule composed of a shell at the outer 

surface and a dense inherent core (Figure 3) The EDX mapping shows that Ca, P and O were enriched 
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at the outer surface and the core of the microgranules. The formation of this morphology can be 

attributed to the segregation of the polymer and ceramic particles (in this case, gelatin and HA) to the 

outer surface of the droplet during spray drying [40]. Consequently, it can be inferred from Figure 2 and 

Figure 3 that the introducing of gelatin into the HA slurry led to change the cross-section morphology 

to a mix of hollow and core-shell microstructures. Sinha et al. [41] pointed out the formation of the 

ruptured granules with thicker shell by the breaking of the granules due to the increased internal pressure 

and the development of the hollow microspheres by the porous structure of the shell. 

 

 

Figure 3. SEM cross-section morphology and elemental mapping images 

 

Figure 4 demonstrates the FTIR spectra of the spray-dried and heat-treated microgranules. It was 

investigated that FTIR spectrum of the spray-dried bare HA microgranules matches with that of the 

hydroxyapatite: The bands at around 603, 960, and 1020 cm-1 were attributed to the P-O bands, whereas, 

the peaks at 630 and 3572 cm-1 were assigned to the hydroxyl group. A broad water band at about 3400 

cm-1 showed that spray dried bare HA granules were not completely dried. The carbonate peaks around 

870 cm-1, and between 1400-1550 cm-1 appeared due to the synthesis procedure and disappeared after 

the heat treatment (Figure 4B) [10,42–44]. SD-HA-Gel microgranules had not only similar P-O bands 

with those of neat HA but also new peaks between 1225-1750 cm-1 (within the dotted circle in Figure 

4A) that can appear due to the gelatin incorporation. The peaks at ~1650 cm-1 (Amide-I) and 1540 cm-1 

(Amide-II), were assigned to the C=O stretching, N-H bending and C-H stretching, while, the peak at 

1450 cm-1 corresponded to the C-O stretching of gelatin molecules [45,46]. Furthermore, it was observed 

that the intensities of carbonate band at around 1400 cm-1 and water band at about 3400 cm-1 were 

relatively higher in the FTIR spectrum of SD-HA-Gel microgranules. FTIR results proved that spray-

dried HA-Gel microgranules (SD-HA-Gel) contain HA particles and gelatin molecules. Most of the 

gelatin evolved from the SD-HA-Gel microstructure by the heat treatment at 1000 °C, as expected 

(Figure 4B) [36]. It was investigated that the intensity of hydroxyl band at 630 cm-1 for SD-HA-Gel 

microgranules decreased after the heat treatment. Hence, it can be concluded that gelatin incorporation 

into the microgranules caused further dehydroxylation of hydroxyapatite crystals. Similarly, Shu et al. 

[47] reported that introducing of gelatin during the precipitation process of HA reduced in the intensity 

of the hydroxyl bands.   
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Figure 4. FTIR spectra of micro granules A) after spray drying and B) after heat treatment at 1000 °C 

 

Figure 5 shows the TG and DTA profiles of the SD-HA and SD-HA-Gel microgranules. Three main 

sections of weight loss can be seen in the TG of SD-HA. The first mass loss up to 500 °C corresponded 

to the removal of physically adsorbed water, lattice water and synthesis by-product. The second mass 

loss-up to 1400 °C- can be attributed to the decarbonization (evolving of CO3
2-) and gradual 

dehydroxylation of the apatite structure. The endothermic DTA peak at 1459 °C demonstrated that 

produced SD-HA decomposed to other calcium phosphates (TCP and TTCP) at this temperature 

[7,26,48]. The thermal behavior of the SD-HA-Gel up to 250 °C was quite similar to that of the SD-HA. 

However, above this temperature up to 450 °C, a sharp mass loss can be noticed (Figure 5). Normally, 

5 wt. % gelatin introduced into the HA granules, however, the mass loss difference between the pure 

SD-HA and SD-HA-Gel was approximately 10 wt. %. As mentioned in the FTIR section, SD-HA-Gel 

granules involved more water molecules and carbonate groups than pure HA. However, the higher mass 

loss at the temperature range 250 °C-450 °C can be assigned to the liberation of water molecules due to 

the fact that carbonate groups generally evolved from the HA at relatively higher temperatures [49]. The 

higher amount of water molecules could be retained in the granules by adsorbing to the gelatin 

molecules. On the other hand, the gelatin film formed on the granules during spray drying may retard 

the migration of the water from the inner side of the granules. There was an exothermic peak at this 

temperature range composed two integrated peaks at 278 °C and at ~350 °C in DTA graphic of SD-HA-

Gel. This mass loss and the exothermic peak can be assigned to the burning and releasing of the gelatin 

in the microgranules [50,51]. It could be suggested that at the first stage, most of the gelatin molecules 

absorbed on the SD-HA-Gel microgranules evolved and then the residual gelatin inside the granules 

released at relatively higher temperatures. The TG and DTA profiles of SD-HA-Gel was similar to those 

of SD-HA above 450 °C. Solely, it was investigated that SD-HA-Gel microgranules lost more mass than 

pure HA at the temperature ranges 500 °C-900 °C due to the releasing higher amount of carbonate 

groups. The incorporation of the gelatin into the HA slightly reduced the decomposition temperature 

from 1459 °C to 1442 °C. It can be concluded from the TG-DTA and FTIR results that gelatin can be 

successfully incorporated into the microgranules. 
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Figure 5. TG and DTA profiles of the spray-dried granules 

 

Figure 6 illustrates the XRD spectra of the spray-dried and heat-treated SD-HA and SD-HA-Gel 

microgranules. The XRD spectrum of SD-HA (Figure 6A) presented characteristic diffraction peaks at 

2𝜃 25.4°, 31.7°, 34° and 39.8° matches with the (002), (211), (202) and (310) crystalline planes of HA 

phase (PDF 09-432 XRD card), respectively [52,53]. In the available literature, it was reported that the 

effect of gelatin on the crystal structure of the HA was multifold: Gelatin reduced the crystallinity/crystal 

size of the HA nanoparticles when it was added during the precipitation of HA [54]. Otherwise, mixing 

of the gelatin directly with HA nanoparticles showed no effect on the crystal structure of the HA [55] . 

In this study, gelatin was incorporated in the spray drying slurry containing HA nanoparticles. Therefore, 

gelatin incorporation did not affect the crystal structure of HA that SD-HA-Gel had exactly the same 

XRD spectra with that of the SD-HA (Figure 6A). The precipitated HA had fine crystallites/ low 

crystallinity. Hence, the XRD spectra of SD-HA and SD-HA-Gel had broad diffraction peaks [56]. SD-

HA and SD-HA-Gel presented ~5 nm average crystal size calculated by the Rietveld refinement 

analysis. The heat treatment at 1000 °C increased the crystallite sizes/crystallinity and thus, the 

diffraction peaks were sharpened (Figure 6B). The XRD spectra of the heat-treated SD-HA and SD-

HA-Gel were well-matched with the crystalline HA (PDF 09-432). Furthermore, a peak corresponding 

to the α-TCP phase was determined in the XRD pattern of the SD-HA, whereas CaO phase was 

monitored in the XRD spectrum of SD-HA-Gel granules. SD-HA was composed of 96.7% HA and 3.3% 

TCP, respectively according to the Rietveld Refinement analysis. It is well-known that precipitated 

carbonated apatite (calcium deficient HA) is commonly decomposed to a mixture of HA and TCP at 

elevated temperatures [57]. However, SD-HA-Gel microgranules consisted 98.9% HA and 1.1% CaO 

phases. The incorporation of gelatin influenced the crystallization and changed the thermal 

decomposition behavior of the precipitated HA to a different manner due to the possible interaction of 

Ca ions with gelatin molecules [47]. 
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Figure 6. XRD spectra of the A) spray-dried and B) heat-treated microgranules 

 

Figure 7 demonstrates the surface SEM image and FTIR spectrum of the SD-HA-Gel after immersion 

in PBS solution for 14 days. It can be seen from Figure 7A that some of the nano HA particles were 

disintegrated from the granule surface due to the dissolution of the gelatin into the PBS from the outer 

surface of the granules. Figure 7B shows the FTIR spectra of the SD-HA-Gel before and after immersion 

in PBS solution. Some of the FTIR peaks vanished after the immersion in PBS solution for 14 days 

when compared to those of spray-dried HA-Gel microgranules. These FTIR peaks were related to the 

gelatin molecules, and thus it was determined that gelatin was released into the PBS solution. The release 

of the gelatin into the physiological medium may develop the biological properties of the microgranules. 

Moreover, gelatin can be used as a matrix for drugs/genes or therapeutic ions, which can provide a 

controlled local release of drugs or therapeutic ions with the dissolution of gelatin. For instance, Sirivat 

and Paradee [58] utilized gelatin-coated Fe3O4 nanoparticles for cancer drug mercaptopurine delivery. 

Rahmanian et al. [59] prepared gelatin-tricalcium phosphate scaffold for loading with the zoledronic 

acid drug. 

 

 
 

Figure 7. A) SEM micrograph and B) FTIR of the microgranules after the immersion for 14 days 

 

 

 

 



Baştan / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 22 (1) – 2021 

 

18 

4. CONCLUSION 

 

In this study, gelatin functionalized hollow and core/shell hydroxyapatite (SD-HA-Gel) microspheres 

were produced by the spray drying process. The formation of hollow and core/shell morphology by 

spray drying was studied. The granules were characterized in terms of surface and cross-section 

morphology, thermal behavior, and chemical structure. Moreover, the effect of gelatin incorporation to 

the crystallization and thermal stability of HA was investigated by XRD and Rietveld Refinement 

analysis. The conclusions about this study are listed below: 

 

1. FTIR and TG-DTA results proved that SD-HA-Gel microspheres were composed of HA and 

gelatin together and gelatin evolved from the microspheres between 250 °C-450 °C.  

2. Gelatin incorporation affected the crystal structure of HA insignificantly according to the XRD 

results. After heat treatment at 1000 °C, both SD-HA and SD-HA-Gel microspheres presented 

dominantly crystalline apatite structure. The effect of gelatin on the thermal stability and 

decomposition of HA should be further evaluated. 

3. Most of the gelatin in the SD-HA-Gel microspheres was released into the PBS solution after the 

immersion for 14 days. 

4. The in-vitro bioactivity (simulated body fluid test and cell tests) should be further evaluated. A 

drug or therapeutic ion would be loaded to gelatin matrix, and the drug release capability of the 

microspheres can be investigated at future studies. 

5. The amount of gelatin would be adjusted in future studies to show the effect of gelatin loading 

on the morphology, drug loading and releasing capacity and the in-vitro bioactivity of the 

granules.  
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