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Abstract
In this paper, we consider the first-order dynamic equation as the following:

x∆(t) +
m∑

i=1
pi(t)x (τi(t)) = 0, t ∈ [t0, ∞)T

where pi ∈ Crd

(
[t0, ∞)T,R+) , τi ∈ Crd ([t0, ∞)T,T) (i = 1, 2, . . . , m) and τi(t) ≤

t, limt→∞ τi(t) = ∞. When the delay terms τi(t) (i = 1, 2, . . . , m) are not necessar-
ily monotone, we present new sufficient conditions for the oscillation of first-order delay
dynamic equations on time scales.
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1. Introduction
As is well known, after Stefan Hilger [15], [16] introduced the theory of dynamic equa-

tions on time scales (or measure chain) in his Ph.D. thesis in 1988, a lot of papers have
been devoted to this subject field. Especially, the oscillatory behaviour of solutions of
differential/difference and dynamic equations has been studied by many authors. See, for
example, [1–34] and the references cited therein. Consider the first-order delay dynamic
equation

x∆(t) +
m∑

i=1
pi(t)x (τi(t)) = 0, t ∈ [t0, ∞)T, (1.1)

where T is a time scale unbounded above with t0 ∈ T, pi ∈ Crd([t0, ∞)T,R+
0 ), τi ∈

Crd([t0, ∞)T,T) (i = 1, 2, . . . , m) are not necessarily monotone such that
τi(t) ≤ t for all t ∈ T, lim

t→∞
τi(t) = ∞. (1.2)

A function p : T → R is called positively regressive (we write p ∈ R+) if it is rd-continuous
and satisfies 1 + µ(t)p(t) > 0 for all t ∈ T, where µ : T → R+

0 is the graininess function
defined by µ(t) := σ(t) − t with the forward jump operator σ : T → T defined by σ(t) =
inf{s ∈ T : s > t} for t ∈ T. A point t ∈ T is called right-dense if σ(t) = t (or equivalently
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µ(t) = 0) holds, otherwise it is called right-scattered. The readers are referred to Bohner
and Peterson [2] for further details concerning the time scales calculus.

A function x : T → R is called a solution of the equation (1.1), if x(t) is delta differ-
entiable for t ∈ Tκ and satisfies equation (1.1) for t ∈ Tκ. We say that a solution x of
equation (1.1) has a generalized zero at t if x(t) = 0 or if µ(t) > 0 and x(t)x(σ(t)) < 0.
Let supT = ∞ and then a nontrivial solution x of equation (1.1) is called oscillatory on
[t, ∞) if it has arbitrarily large generalized zeros in [t, ∞).

For m = 1, equation (1.1) reduces to

x∆(t) + p(t)x (τ(t)) = 0, t ∈ [t0, ∞)T. (1.3)

Now, we give some well-known tests on oscillatory behaviour of (1.3). In 2002, Zhang and
Deng [32], using the cylinder transforms, proved that if τ(t) is eventually nondecreasing
and

lim sup
t→∞

sup
λ∈E

{λe−λp(t, τ(t))} < 1,

where E = {λ : λ > 0, 1 − λp(t)µ(t) > 0} and in 2005, Bohner [4], using exponential
functions notation, proved that if τ(t) is eventually nondecreasing and

lim sup
t→∞

sup
−λp∈R+

{λe−λp(t, τ(t))} < 1,

where

e−λp (t, τ(t)) = exp


t∫

τ(t)

ξµ(s)(−λp(s))∆s

 ,

and

ξh(z) =
{

Log(1+hz)
h , if h ̸= 0

z , if h = 0
,

then all solutions of equation (1.3) are oscillatory.
In 2005, Zhang et al. [33] and in 2006, Şahiner and Stavroulakis [27], using different

technique, obtained that if τ(t) is eventually nondecreasing and

lim sup
t→∞

σ(t)∫
τ(t)

p(s)∆s > 1, (1.4)

then all solutions of equation (1.3) are oscillatory. In 2005, Zhang et al. [33] (See also
Agarwal and Bohner [1, Theorem 1]) established the following result. Assume that τ(t) is
eventually nondecreasing and

m := lim inf
t→∞

t∫
τ(t)

p(s)∆s >
1
e

, (1.5)

then all solutions of (1.3) oscillate.
In 2006, Şahiner and Stavroulakis [27] found out that if τ(t) is eventually nondecreasing,

lim inf
t→∞

t∫
τ(t)

p(s)∆s > c and lim sup
t→∞

t∫
τ(t)

p(s)∆s > 1 − c2

4
, (1.6)

where c ∈ (0, 1)R, then every solution of equation (1.3) oscillates. Furthermore, Agarwal
and Bohner [1] improved the condition (1.6) as follows:
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If τ(t) is eventually nondecreasing,

lim inf
t→∞

t∫
τ(t)

p(s)∆s > c and lim sup
t→∞

t∫
τ(t)

p(s)∆s > 1 −
(
1 −

√
1 − c

)2
(1.7)

where c ∈ (0, 1)R, then every solution of equation (1.3) oscillates.
Also, in 2016, Karpuz and Öcalan [19] enhanced the condition (1.7) by extending the

second integral condition to the larger interval [τ(t), t]T as the following:
Assume that τ(t) is eventually nondecreasing and

lim inf
t→∞

t∫
τ(t)

p(s)∆s > c and lim sup
t→∞

σ(t)∫
τ(t)

p(s)∆s > 1 −
(
1 −

√
1 − c

)2
, (1.8)

where c ∈ (0, 1)R. Then every solution of equation (1.3) oscillates.
Zhang et al. [33] established the following result. Assume that τ(t) is eventually non-

decreasing and m ∈ [0, 1
e ] (where m is defined by (1.5)). Moreover, if

lim sup
t→∞

σ(t)∫
τ(t)

p(s)∆s >
1 + ln λ1

λ1
− 1 − m −

√
1 − 2m − m2

2
, (1.9)

where λ1 ∈ [1, e] is the unique root of the equation λ = emλ, then all solutions of equation
(1.3) are oscillatory. It is obvious that, since

1 + ln λ1
λ1

≤ 1 for λ1 ∈ [1, e],

the condition (1.9) implies

lim sup
t→∞

σ(t)∫
τ(t)

p(s)∆s > 1 − 1 − m −
√

1 − 2m − m2

2
. (1.10)

Clearly, when 0 < c ≤ 1
e , it is easy to verify that

1 − c −
√

1 − 2c − c2

2
>
(
1 −

√
1 − c

)2
>

c2

4
and therefore the condition (1.10) is weaker than the conditions (1.6) and (1.8).

Now, we assume that τ(t) is not necessarily monotone. Set

h(t) = sup
s≤t

τ(s), t ∈ T, t ≥ 0. (1.11)

Clearly, h(t) is nondecreasing and τ(t) ≤ h(t) for all t ≥ 0.
In 2017, Öcalan, Özkan and Yıldız [24, Theorem 2.2] studied the equation (1.3) when

τ(t) is not necessarily monotone and obtained the following result.

Theorem A. If

lim sup
t→∞

σ(t)∫
h(t)

p(s)∆s > 1, (1.12)

where h(t) is defined by (1.11), then every solution of (1.3) is oscillatory.

Finally, Öcalan [25, Corollary 2.4] established the following result when τ(t) is not
necessarily monotone.
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Theorem B. If

lim inf
t→∞

t∫
h(t)

p(s)∆s = lim inf
t→∞

t∫
τ(t)

p(s)∆s >
1
e

, (1.13)

where h(t) is defined by (1.11), then all solutions of (1.3) oscillate.

A slight modification in the proofs of Theorems A and B leads to the following result.

Theorem 1.1. Assume that all the conditions of Theorems A and B hold. Then
(i) the dynamic inequality

x∆(t) + p(t)x (τ(t)) ≤ 0, t ∈ [t0, ∞)T
has no eventually positive solutions;
(ii) the dynamic inequality

x∆(t) + p(t)x (τ(t)) ≥ 0, t ∈ [t0, ∞)T
has no eventually negative solutions.

2. Main results
In this section, we present some new sufficient conditions for the oscillation of all so-

lutions of (1.1), under the assumption that the arguments τi(t) (i = 1, 2, . . . , m) are not
necessarily monotone. Set

hi(t) = sup
s≤t

{τi(s)} and h(t) = max
1≤i≤m

{hi(t)} , t ∈ T, t ≥ 0. (2.1)

Clearly, hi(t) (i = 1, 2, . . . , m) are nondecreasing and τi(t) ≤ hi(t) ≤ h(t) (i = 1, 2, . . . , m)
for all t ≥ 0.

The following lemma was given by Şahiner and Stavroulakis [27].

Lemma 2.1. Assume that f : T → R is rd-continuous, g : T → R is nonincreasing and
τ : T → T is nondecreasing. If b < u, then

σ(u)∫
b

f(s)g(τ(s))∆s ≥ g(τ(u))
σ(u)∫
b

f(s)∆s.

The following result is easily obtained by using the similar way in the proof of Lemma
2.3 in [24].

Lemma 2.2. Assume that (2.1) holds and α > 0. Then, we have

α := lim inf
t→∞

t∫
h(t)

m∑
i=1

pi(s)∆s = lim inf
t→∞

t∫
τ(t)

m∑
i=1

pi(s)∆s,

where τ(t) = max1≤i≤m {τi(t)} , t ∈ T, t ≥ 0.

Theorem 2.3. Assume that −
m∑

i=1
pi ∈ R+. If τi(t) (i = 1, 2, . . . , m) are not necessarily

monotone and

lim sup
t→∞

σ(t)∫
h(t)

m∑
i=1

pi(s)∆s > 1 (2.2)

or

lim inf
t→∞

t∫
τ(t)

m∑
i=1

pi(s)∆s >
1
e

, (2.3)
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where h(t) is defined by (2.1) and τ(t) = max1≤i≤m {τi(t)}. Then all solutions of (1.1)
oscillate.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x(t) of (1.1). Since −x(t) is also a solution of (1.1), we can confine our discussion only
to the case where the solution x(t) is eventually positive. Then, there exists t1 > t0 such
that x(t), x (τi(t)) > 0 (i = 1, 2, . . . , m), for all t ≥ t1. Thus, from (1.1) we have

x∆(t) = −
m∑

i=1
pi(t)x (τi(t)) ≤ 0 for all t ≥ t1,

which means that x(t) is an eventually nonincreasing function. In view of this and τi(t) ≤
τ(t) (i = 1, 2, . . . , m), (1.1) gives

x∆(t) +
(

m∑
i=1

pi(t)
)

x (τ(t)) ≤ 0, t ≥ t1.

Comparing (2.2) and (2.3), we obtain a contradiction to Theorem 1.1. Thus, the proof of
the theorem is completed. �

Now, we consider the case where 0 < α ≤ 1
e . Then, we will obtain new oscillatory

condition for all solutions of (1.1). We need the following lemma to establish our result.
When the case τi(t) (i = 1, 2, . . . , m) are not necessarily monotone, the following lemma
can be easily obtained by using the similar process in [33, Lemma 2.4]. So, the proof of
the following result is omitted here.

Lemma 2.4. Assume that τi(t) (i = 1, 2, . . . , m) are not necessarily monotone. Let 0 ≤
α ≤ 1

e and x(t) be an eventually positive solution of Eq.(1.1). Then, we get

lim inf
t→∞

x (σ(t))
x (h(t))

≥ 1 − α −
√

1 − 2α − α2

2
, (2.4)

where h(t) is defined by (2.1) and τ(t) = max1≤i≤m {τi(t)} .

Theorem 2.5. Assume that −
m∑

i=1
pi ∈ R+ and 0 ≤ α ≤ 1

e . If τi(t) (i = 1, 2, . . . , m) are

not necessarily monotone and

lim sup
t→∞

σ(t)∫
h(t)

m∑
i=1

pi(s)∆s > 1 − 1 − α −
√

1 − 2α − α2

2
, (2.5)

where h(t) is defined by (2.1). Then all solutions of (1.1) oscillate.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x(t) of (1.1). Since −x(t) is also a solution of (1.1), we can confine our discussion only
to the case where the solution x(t) is eventually positive. Then, there exists t1 > t0 such
that x(t), x (τi(t)) > 0 (i = 1, 2, . . . , m), for all t ≥ t1. Thus, from (1.1) we have

x∆(t) = −
m∑

i=1
pi(t)x (τi(t)) ≤ 0 for all t ≥ t1,

which means that x(t) is an eventually nonincreasing function. In view of this and τi(t) ≤
hi(t) ≤ h(t)(i = 1, 2, . . . , m), Eq.(1.1) gives

x∆(t) +
m∑

i=1
pi(t)x (h(t)) ≤ 0, t ≥ t1. (2.6)
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Integrating (2.6) from h(t) to σ(t) and taking into account the facts that the function h(t)
is nondecreasing and the function x(t) is nonincreasing, we obtain

x(σ(t)) − x(h(t)) +
σ(t)∫

h(t)

m∑
i=1

pi(s)x (h(s)) ∆s ≤ 0.

Therefore, by using Lemma 2.1, we get

x(σ(t)) − x(h(t)) + x(h(t))
σ(t)∫

h(t)

m∑
i=1

pi(s)∆s ≤ 0

or

x(σ(t)) + x(h(t))

 σ(t)∫
h(t)

m∑
i=1

pi(s)∆s − 1

 ≤ 0.

Consequently,
σ(t)∫

h(t)

m∑
i=1

pi(s)∆s ≤ 1 − x (σ(t))
x (h(t))

,

which gives

lim sup
t→∞

σ(t)∫
h(t)

m∑
i=1

pi(s)∆s ≤ 1 − lim inf
t→∞

x (σ(t))
x (h(t))

(2.7)

and by (2.4), (2.7) leads to

lim sup
t→∞

σ(t)∫
h(t)

m∑
i=1

pi(s)∆s ≤ 1 − 1 − α −
√

1 − 2α − α2

2
,

which contradicts with (2.5). The proof of the theorem is completed. �

Example 2.6. Let m = 1, h ∈ Z and T = hZ = {hk : k ∈ Z}, where h > 0. Then, we
have

σ(t) = t + h, µ(t) = h and x∆(t) = x(t + h) − x(t)
h

for t ∈ T. Thus, Eq.(1.1) becomes
x(t + h) − x(t)

h
+ p(t)x (τ(t)) = 0, t ∈ {hk : k ∈ Z}.

Let τ(t) = t − 2 and h = 2. Since p(t) ∈ {hk : k ∈ Z}, we assume

p(2t) = 0.18 and p(2t + 2) = 0.27, t = 0, 2, 4, . . .

When T = hZ, from (iii) in [2, Theorem 1.79], we have the following.
b∫
a

f(t)∆t =
b
h

−1∑
k= a

h

f(kh)h for a < b. (2.8)

So, by using (2.8), we observe that, for τ(t), p(t) ∈ {hk : k ∈ Z}.

α := lim inf
t→∞

t∫
τ(t)

p(s)∆s = lim inf
t→∞

t
2 −1∑

j= t−2
2

p(2j)2 = lim inf
t→∞

2p(t − 2) = 0.36 ≯
1
e
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and

β := lim sup
t→∞

σ(t)∫
h(t)

p(s)∆s = lim sup
t→∞

t+2
2 −1∑

j= t−2
2

p(2j)2 = lim sup
t→∞

2[p(t − 2) + p(t)] = 0.9 ≯ 1

shows that Theorem 2.3 fails. On the other hand,

β = 0.9 ≯ 1 −
(
1 −

√
1 − 0.36

)2
= 0.96

demonstrates that the condition (1.8) doesn’t hold. However, since

β = 0.9 > 1 − 1 − 0.36 −
√

1 − 2(0.36) − (0.36)2

2
= 0.873 91,

every solution oscillates by Theorem 2.5.

References
[1] R.P. Agarwal and M. Bohner, An oscillation criterion for first order delay dynamic

equations, Funct. Differ. Equ. 16 (1), 11-17, 2009.
[2] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction

with Applications, Birkhauser, Boston, 2001.
[3] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales,

Birkhauser, Boston, 2003.
[4] M. Bohner, Some oscillation criteria for first order delay dynamic equations, Far East

J. Appl. Math. 18 (3), 289-304, 2005.
[5] G.E. Chatzarakis, R. Koplatadze and I.P. Stavroulakis, Oscillation criteria of first

order linear difference equations with delay argument, Nonlinear Anal. 68, 994-1005,
2008.

[6] G.E. Chatzarakis, R. Koplatadze and I.P. Stavroulakis, Optimal oscillation criteria
for first order difference equations with delay argument, Pacific J. Math. 235, 15-33,
2008.

[7] G.E. Chatzarakis, Ch.G. Philos and I.P. Stavroulakis, On the oscillation of the solu-
tions to linear difference equations with variable delay, Electron. J. Differ. Equ. 2008
(50), 1-15, 2008.

[8] G.E. Chatzarakis, Ch.G. Philos and I. P. Stavroulakis, An oscillation criterion for
linear difference equations with general delay argument, Port. Math. 66 (4), 513-533,
2009.

[9] A. Elbert and I.P. Stavroulakis, Oscillations of first order differential equations with
deviating arguments, Univ of Ioannina TR No 172, 1990, Recent trends in differential
equations, 163-178, World Sci. Ser. Appl. Anal., 1, World Sci. Publishing Co., 1992.

[10] L.H. Erbe and B.G. Zhang, Oscillation of first order linear differential equations with
deviating arguments, Differential Integral Equations 1, 305-314, 1988.

[11] L.H. Erbe and B.G. Zhang, Oscillation of discrete analogues of delay equations, Dif-
ferential Integral Equations 2, 300-309, 1989.

[12] L.H. Erbe, Qingkai Kong and B.G. Zhang, Oscillation Theory for Functional Differ-
ential Equations, Marcel Dekker, New York, 1995.

[13] N. Fukagai and T. Kusano, Oscillation theory of first order functional differential
equations with deviating arguments, Ann. Mat. Pura Appl. 136, 95-117, 1984.

[14] I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Ap-
plications, Clarendon Press, Oxford, 1991.

[15] S. Hilger, Ein MaXkettenkalkWul mit Anwendung auf Zentrumsmannigfaltigkeiten,
Ph.D. thesis, Universtat Wurzburg, 1988.

[16] S. Hilger, Analysis on measure chainsa unified approach to continuous and discrete
calculus, Results in Mathematics 18, 1856, 1990.



Oscillation criteria for first-order dynamic equations 325

[17] J. Jaroš and I.P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain
J. Math. 29, 139-145, 1999.

[18] C. Jian, Oscillation of linear differential equations with deviating argument, Math.
Pract. Theor. 1, 32-41, 1991 (in Chinese).

[19] B. Karpuz and Ö. Öcalan, New oscillation tests and some refinements for first-order
delay dynamic equations, Turkish J. Math. 40 (4), 850-863, 2016.

[20] B. Karpuz, Sharp oscillation and nonoscillation tests for linear difference equations,
J. Difference Equ Appl. 23 (12), 1929-1942, 2017.

[21] R.G. Koplatadze and T.A. Chanturija, Oscillating and monotone solutions of first-
order differential equations with deviating arguments, (Russian), Differentsial’nye
Uravneniya 8, 1463-1465, 1982.

[22] M.K. Kwong, Oscillation of first-order delay equations, J. Math. Anal. Appl. 156,
274-286, 1991.

[23] G.S. Ladde, V. Lakshmikantham and B.G. Zhang, Oscillation theory of differential
equations with deviating arguments, Monographs and Textbooks in Pure and Applied
Mathematics, vol. 110, Marcel Dekker, Inc., New York, 1987.

[24] Ö. Öcalan, U.M. Özkan and M.K. Yıldız, Oscillatory solutions for dynamic equations
with non-monotone arguments, J. Math. Comput. Sci. 7 (4), 725-738, 2017.

[25] Ö. Öcalan, Oscillation of first-order dynamic equations with nonmonotone delay,
Math. Methods Appl. Sci. 43 (7), 3954-3964, 2020.

[26] Ch.G. Philos and Y.G. Sficas, An oscillation criterion for first-order linear delay
differential equations, Canad. Math. Bull. 41, 207-213, 1998.

[27] Y. Şahiner and I.P. Stavroulakis, Oscillations of first order delay dynamic equations,
Dynam. Systems Appl. 15 (3-4), 645-655, 2006.

[28] J.S. Yu and Z.C. Wang, Some further results on oscillation of neutral differential
equations, Bull. Aust. Math. Soc. 46, 149-157, 1992.

[29] J.S. Yu, Z.C. Wang, B.G. Zhang and X.Z. Qian, Oscillations of differential equations
with deviating arguments, PanAmerican Math. J. 2, 59-78, 1992.

[30] B.G. Zhang and C.J. Tian, Oscillation criteria for difference equations with un-
bounded delay, Comput. Math. Appl. 35 (4), 19-26, 1998.

[31] B.G. Zhang and C.J. Tian, Nonexistence and existence of positive solutions for dif-
ference equations with unbounded delay, Comput. Math. Appl. 36, 1-8, 1998.

[32] B.G. Zhang and X. Deng, Oscillation of delay differential equations on time scales,
Math. Comput. Modelling 36 (11-13), 1307-1318, 2002.

[33] B.G. Zhang, X. Yan and X. Liu, Oscillation criteria of certain delay dynamic equa-
tions on time scales, J. Difference Equ. Appl. 11 (10), 933-946, 2005.

[34] Y. Zhou and Y.H. Yu, On the oscillation of solutions of first order differential equa-
tions with deviating arguments, Acta Math. Appl. Sinica 15 (3), 288-302, 1999.


