

RESEARCH ARTICLE

# Oscillation criteria for first-order dynamic equations with nonmonotone delays

Nurten Kılıç<sup>1</sup>, Özkan Öcalan<sup>\*2</sup>

<sup>1</sup>Kütahya Dumlupınar University, Faculty of Science and Arts, Department of Mathematics, 43100, Kütahya, Turkey

<sup>2</sup>Akdeniz University, Faculty of Science, Department of Mathematics, 07058 Antalya, Turkey

# Abstract

In this paper, we consider the first-order dynamic equation as the following:

$$x^{\Delta}(t) + \sum_{i=1}^{m} p_i(t) x (\tau_i(t)) = 0, \ t \in [t_0, \infty)_{\mathbb{T}}$$

where  $p_i \in C_{rd}([t_0,\infty)_{\mathbb{T}},\mathbb{R}^+)$ ,  $\tau_i \in C_{rd}([t_0,\infty)_{\mathbb{T}},\mathbb{T})$  (i = 1, 2, ..., m) and  $\tau_i(t) \leq t$ ,  $\lim_{t\to\infty} \tau_i(t) = \infty$ . When the delay terms  $\tau_i(t)$  (i = 1, 2, ..., m) are not necessarily monotone, we present new sufficient conditions for the oscillation of first-order delay dynamic equations on time scales.

#### Mathematics Subject Classification (2020). 34C10, 34N05, 39A12, 39A21

Keywords. dynamic equations, nonmonotone delay, oscillation, time scales

#### 1. Introduction

As is well known, after Stefan Hilger [15], [16] introduced the theory of dynamic equations on time scales (or measure chain) in his Ph.D. thesis in 1988, a lot of papers have been devoted to this subject field. Especially, the oscillatory behaviour of solutions of differential/difference and dynamic equations has been studied by many authors. See, for example, [1–34] and the references cited therein. Consider the first-order delay dynamic equation

$$x^{\Delta}(t) + \sum_{i=1}^{m} p_i(t) x\left(\tau_i(t)\right) = 0, \quad t \in [t_0, \infty)_{\mathbb{T}},$$
(1.1)

where  $\mathbb{T}$  is a time scale unbounded above with  $t_0 \in \mathbb{T}$ ,  $p_i \in C_{rd}([t_0,\infty)_{\mathbb{T}},\mathbb{R}_0^+)$ ,  $\tau_i \in C_{rd}([t_0,\infty)_{\mathbb{T}},\mathbb{T})$  (i = 1, 2, ..., m) are not necessarily monotone such that

 $\tau_i(t) \le t \text{ for all } t \in \mathbb{T}, \quad \lim_{t \to \infty} \tau_i(t) = \infty.$  (1.2)

A function  $p: \mathbb{T} \to \mathbb{R}$  is called positively regressive (we write  $p \in \mathbb{R}^+$ ) if it is rd-continuous and satisfies  $1 + \mu(t)p(t) > 0$  for all  $t \in \mathbb{T}$ , where  $\mu: \mathbb{T} \to \mathbb{R}_0^+$  is the graininess function defined by  $\mu(t) := \sigma(t) - t$  with the forward jump operator  $\sigma: \mathbb{T} \to \mathbb{T}$  defined by  $\sigma(t) =$  $\inf\{s \in \mathbb{T} : s > t\}$  for  $t \in \mathbb{T}$ . A point  $t \in \mathbb{T}$  is called right-dense if  $\sigma(t) = t$  (or equivalently

<sup>\*</sup>Corresponding Author.

Email addresses: nurten.kilic@dpu.edu.tr (N. Kılıç), ozkanocalan@akdeniz.edu.tr (Ö. Öcalan) Received: 13.01.2020; Accepted: 10.06.2020

 $\mu(t) = 0$  holds, otherwise it is called right-scattered. The readers are referred to Bohner and Peterson [2] for further details concerning the time scales calculus.

A function  $x : \mathbb{T} \to \mathbb{R}$  is called a solution of the equation (1.1), if x(t) is delta differentiable for  $t \in \mathbb{T}^{\kappa}$  and satisfies equation (1.1) for  $t \in \mathbb{T}^{\kappa}$ . We say that a solution x of equation (1.1) has a generalized zero at t if x(t) = 0 or if  $\mu(t) > 0$  and  $x(t)x(\sigma(t)) < 0$ . Let  $\sup \mathbb{T} = \infty$  and then a nontrivial solution x of equation (1.1) is called oscillatory on  $[t, \infty)$  if it has arbitrarily large generalized zeros in  $[t, \infty)$ .

For m = 1, equation (1.1) reduces to

$$x^{\Delta}(t) + p(t)x(\tau(t)) = 0, \quad t \in [t_0, \infty)_{\mathbb{T}}.$$
(1.3)

Now, we give some well-known tests on oscillatory behaviour of (1.3). In 2002, Zhang and Deng [32], using the cylinder transforms, proved that if  $\tau(t)$  is eventually nondecreasing and

$$\limsup_{t \to \infty} \sup_{\lambda \in E} \left\{ \lambda e_{-\lambda p}(t, \tau(t)) \right\} < 1,$$

where  $E = \{\lambda : \lambda > 0, 1 - \lambda p(t)\mu(t) > 0\}$  and in 2005, Bohner [4], using exponential functions notation, proved that if  $\tau(t)$  is eventually nondecreasing and

$$\limsup_{t \to \infty} \sup_{-\lambda p \in \mathbb{R}^+} \left\{ \lambda e_{-\lambda p}(t, \tau(t)) \right\} < 1,$$

where

$$e_{-\lambda p}(t,\tau(t)) = \exp\left\{\int_{\tau(t)}^{t} \xi_{\mu(s)}(-\lambda p(s))\Delta s\right\},\,$$

and

$$\xi_h(z) = \begin{cases} \frac{\log(1+hz)}{h} & \text{, if } h \neq 0\\ z & \text{, if } h = 0 \end{cases},$$

then all solutions of equation (1.3) are oscillatory.

In 2005, Zhang et al. [33] and in 2006, Şahiner and Stavroulakis [27], using different technique, obtained that if  $\tau(t)$  is eventually nondecreasing and

$$\limsup_{t \to \infty} \int_{\tau(t)}^{\sigma(t)} p(s)\Delta s > 1, \tag{1.4}$$

then all solutions of equation (1.3) are oscillatory. In 2005, Zhang et al. [33] (See also Agarwal and Bohner [1, Theorem 1]) established the following result. Assume that  $\tau(t)$  is eventually nondecreasing and

$$m := \liminf_{t \to \infty} \int_{\tau(t)}^{t} p(s) \Delta s > \frac{1}{e}, \tag{1.5}$$

then all solutions of (1.3) oscillate.

In 2006, Şahiner and Stavroulakis [27] found out that if  $\tau(t)$  is eventually nondecreasing,

$$\liminf_{t \to \infty} \int_{\tau(t)}^{t} p(s)\Delta s > c \quad \text{and} \quad \limsup_{t \to \infty} \int_{\tau(t)}^{t} p(s)\Delta s > 1 - \frac{c^2}{4}, \tag{1.6}$$

where  $c \in (0,1)_{\mathbb{R}}$ , then every solution of equation (1.3) oscillates. Furthermore, Agarwal and Bohner [1] improved the condition (1.6) as follows:

If  $\tau(t)$  is eventually nondecreasing,

$$\liminf_{t \to \infty} \int_{\tau(t)}^{t} p(s)\Delta s > c \quad \text{and} \quad \limsup_{t \to \infty} \int_{\tau(t)}^{t} p(s)\Delta s > 1 - \left(1 - \sqrt{1 - c}\right)^2 \tag{1.7}$$

where  $c \in (0, 1)_{\mathbb{R}}$ , then every solution of equation (1.3) oscillates.

Also, in 2016, Karpuz and Öcalan [19] enhanced the condition (1.7) by extending the second integral condition to the larger interval  $[\tau(t), t]_{\mathbb{T}}$  as the following: Assume that  $\tau(t)$  is eventually nondecreasing and

$$\liminf_{t \to \infty} \int_{\tau(t)}^{t} p(s)\Delta s > c \quad \text{and} \quad \limsup_{t \to \infty} \int_{\tau(t)}^{\sigma(t)} p(s)\Delta s > 1 - \left(1 - \sqrt{1 - c}\right)^2, \tag{1.8}$$

where  $c \in (0,1)_{\mathbb{R}}$ . Then every solution of equation (1.3) oscillates.

Zhang et al. [33] established the following result. Assume that  $\tau(t)$  is eventually nondecreasing and  $m \in [0, \frac{1}{e}]$  (where m is defined by (1.5)). Moreover, if

$$\limsup_{t \to \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s > \frac{1 + \ln \lambda_1}{\lambda_1} - \frac{1 - m - \sqrt{1 - 2m - m^2}}{2}, \tag{1.9}$$

where  $\lambda_1 \in [1, e]$  is the unique root of the equation  $\lambda = e^{m\lambda}$ , then all solutions of equation (1.3) are oscillatory. It is obvious that, since

$$\frac{1+\ln\lambda_1}{\lambda_1} \le 1 \text{ for } \lambda_1 \in [1,e],$$

the condition (1.9) implies

$$\limsup_{t \to \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s > 1 - \frac{1 - m - \sqrt{1 - 2m - m^2}}{2}.$$
 (1.10)

Clearly, when  $0 < c \leq \frac{1}{e}$ , it is easy to verify that

$$\frac{1 - c - \sqrt{1 - 2c - c^2}}{2} > \left(1 - \sqrt{1 - c}\right)^2 > \frac{c^2}{4}$$

and therefore the condition (1.10) is weaker than the conditions (1.6) and (1.8).

Now, we assume that  $\tau(t)$  is not necessarily monotone. Set

$$h(t) = \sup_{s \le t} \tau(s), \ t \in \mathbb{T}, \ t \ge 0.$$

$$(1.11)$$

Clearly, h(t) is nondecreasing and  $\tau(t) \leq h(t)$  for all  $t \geq 0$ .

In 2017, Öcalan, Özkan and Yıldız [24, Theorem 2.2] studied the equation (1.3) when  $\tau(t)$  is not necessarily monotone and obtained the following result.

# Theorem A. If

$$\limsup_{t \to \infty} \int_{h(t)}^{\sigma(t)} p(s) \Delta s > 1, \qquad (1.12)$$

where h(t) is defined by (1.11), then every solution of (1.3) is oscillatory.

Finally, Öcalan [25, Corollary 2.4] established the following result when  $\tau(t)$  is not necessarily monotone.

Theorem B. If

$$\liminf_{t \to \infty} \int_{h(t)}^{t} p(s)\Delta s = \liminf_{t \to \infty} \int_{\tau(t)}^{t} p(s)\Delta s > \frac{1}{e},$$
(1.13)

where h(t) is defined by (1.11), then all solutions of (1.3) oscillate.

A slight modification in the proofs of Theorems A and B leads to the following result.

**Theorem 1.1.** Assume that all the conditions of Theorems A and B hold. Then (i) the dynamic inequality

 $x^{\Delta}(t) + p(t)x(\tau(t)) \le 0, \quad t \in [t_0, \infty)_{\mathbb{T}}$ 

has no eventually positive solutions;

(ii) the dynamic inequality

$$x^{\Delta}(t) + p(t)x\left(\tau(t)\right) \ge 0, \quad t \in [t_0, \infty)_{\mathbb{T}}$$

has no eventually negative solutions.

### 2. Main results

In this section, we present some new sufficient conditions for the oscillation of all solutions of (1.1), under the assumption that the arguments  $\tau_i(t)$  (i = 1, 2, ..., m) are not necessarily monotone. Set

$$h_i(t) = \sup_{s \le t} \{\tau_i(s)\}$$
 and  $h(t) = \max_{1 \le i \le m} \{h_i(t)\}, t \in \mathbb{T}, t \ge 0.$  (2.1)

Clearly,  $h_i(t)$  (i = 1, 2, ..., m) are nondecreasing and  $\tau_i(t) \le h_i(t) \le h(t)$  (i = 1, 2, ..., m) for all  $t \ge 0$ .

The following lemma was given by Şahiner and Stavroulakis [27].

**Lemma 2.1.** Assume that  $f : \mathbb{T} \to \mathbb{R}$  is rd-continuous,  $g : \mathbb{T} \to \mathbb{R}$  is nonincreasing and  $\tau : \mathbb{T} \to \mathbb{T}$  is nondecreasing. If b < u, then

$$\int_{b}^{\sigma(u)} f(s)g(\tau(s))\Delta s \ge g(\tau(u)) \int_{b}^{\sigma(u)} f(s)\Delta s.$$

The following result is easily obtained by using the similar way in the proof of Lemma 2.3 in [24].

**Lemma 2.2.** Assume that (2.1) holds and  $\alpha > 0$ . Then, we have

$$\alpha := \liminf_{t \to \infty} \int_{h(t)}^{t} \sum_{i=1}^{m} p_i(s) \Delta s = \liminf_{t \to \infty} \int_{\tau(t)}^{t} \sum_{i=1}^{m} p_i(s) \Delta s,$$

where  $\tau(t) = \max_{1 \le i \le m} \{\tau_i(t)\}, t \in \mathbb{T}, t \ge 0.$ 

**Theorem 2.3.** Assume that  $-\sum_{i=1}^{m} p_i \in \mathbb{R}^+$ . If  $\tau_i(t)$  (i = 1, 2, ..., m) are not necessarily monotone and

$$\limsup_{t \to \infty} \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_i(s) \Delta s > 1$$
(2.2)

or

$$\liminf_{t \to \infty} \int_{\tau(t)}^{t} \sum_{i=1}^{m} p_i(s) \Delta s > \frac{1}{e},$$
(2.3)

where h(t) is defined by (2.1) and  $\tau(t) = \max_{1 \le i \le m} \{\tau_i(t)\}$ . Then all solutions of (1.1) oscillate.

**Proof.** Assume, for the sake of contradiction, that there exists a nonoscillatory solution x(t) of (1.1). Since -x(t) is also a solution of (1.1), we can confine our discussion only to the case where the solution x(t) is eventually positive. Then, there exists  $t_1 > t_0$  such that x(t),  $x(\tau_i(t)) > 0$  (i = 1, 2, ..., m), for all  $t \ge t_1$ . Thus, from (1.1) we have

$$x^{\Delta}(t) = -\sum_{i=1}^{m} p_i(t) x(\tau_i(t)) \le 0 \text{ for all } t \ge t_1,$$

which means that x(t) is an eventually nonincreasing function. In view of this and  $\tau_i(t) \le \tau(t)$  (i = 1, 2, ..., m), (1.1) gives

$$x^{\Delta}(t) + \left(\sum_{i=1}^{m} p_i(t)\right) x(\tau(t)) \le 0, \ t \ge t_1.$$

Comparing (2.2) and (2.3), we obtain a contradiction to Theorem 1.1. Thus, the proof of the theorem is completed.  $\hfill \Box$ 

Now, we consider the case where  $0 < \alpha \leq \frac{1}{e}$ . Then, we will obtain new oscillatory condition for all solutions of (1.1). We need the following lemma to establish our result. When the case  $\tau_i(t)$  (i = 1, 2, ..., m) are not necessarily monotone, the following lemma can be easily obtained by using the similar process in [33, Lemma 2.4]. So, the proof of the following result is omitted here.

**Lemma 2.4.** Assume that  $\tau_i(t)$  (i = 1, 2, ..., m) are not necessarily monotone. Let  $0 \le \alpha \le \frac{1}{e}$  and x(t) be an eventually positive solution of Eq.(1.1). Then, we get

$$\liminf_{t \to \infty} \frac{x\left(\sigma(t)\right)}{x\left(h(t)\right)} \ge \frac{1 - \alpha - \sqrt{1 - 2\alpha - \alpha^2}}{2},\tag{2.4}$$

where h(t) is defined by (2.1) and  $\tau(t) = \max_{1 \le i \le m} \{\tau_i(t)\}$ .

**Theorem 2.5.** Assume that  $-\sum_{i=1}^{m} p_i \in \mathbb{R}^+$  and  $0 \le \alpha \le \frac{1}{e}$ . If  $\tau_i(t)$  (i = 1, 2, ..., m) are not necessarily monotone and

$$\limsup_{t \to \infty} \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_i(s) \Delta s > 1 - \frac{1 - \alpha - \sqrt{1 - 2\alpha - \alpha^2}}{2}, \tag{2.5}$$

where h(t) is defined by (2.1). Then all solutions of (1.1) oscillate.

**Proof.** Assume, for the sake of contradiction, that there exists a nonoscillatory solution x(t) of (1.1). Since -x(t) is also a solution of (1.1), we can confine our discussion only to the case where the solution x(t) is eventually positive. Then, there exists  $t_1 > t_0$  such that x(t),  $x(\tau_i(t)) > 0$  (i = 1, 2, ..., m), for all  $t \ge t_1$ . Thus, from (1.1) we have

$$x^{\Delta}(t) = -\sum_{i=1}^{m} p_i(t) x(\tau_i(t)) \le 0 \text{ for all } t \ge t_1,$$

which means that x(t) is an eventually nonincreasing function. In view of this and  $\tau_i(t) \le h_i(t) \le h(t)(i = 1, 2, ..., m)$ , Eq.(1.1) gives

$$x^{\Delta}(t) + \sum_{i=1}^{m} p_i(t) x\left(h(t)\right) \le 0, \quad t \ge t_1.$$
(2.6)

Integrating (2.6) from h(t) to  $\sigma(t)$  and taking into account the facts that the function h(t) is nondecreasing and the function x(t) is nonincreasing, we obtain

$$x(\sigma(t)) - x(h(t)) + \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_i(s) x(h(s)) \Delta s \le 0.$$

Therefore, by using Lemma 2.1, we get

$$x(\sigma(t)) - x(h(t)) + x(h(t)) \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_i(s) \Delta s \le 0$$

or

$$x(\sigma(t)) + x(h(t)) \left[ \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_i(s) \Delta s - 1 \right] \le 0.$$

Consequently,

$$\int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_i(s) \Delta s \le 1 - \frac{x(\sigma(t))}{x(h(t))},$$

which gives

$$\limsup_{t \to \infty} \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_i(s) \Delta s \le 1 - \liminf_{t \to \infty} \frac{x(\sigma(t))}{x(h(t))}$$
(2.7)

and by (2.4), (2.7) leads to

$$\limsup_{t \to \infty} \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_i(s) \Delta s \le 1 - \frac{1 - \alpha - \sqrt{1 - 2\alpha - \alpha^2}}{2},$$

which contradicts with (2.5). The proof of the theorem is completed.

**Example 2.6.** Let m = 1,  $h \in \mathbb{Z}$  and  $\mathbb{T} = h\mathbb{Z} = \{hk : k \in \mathbb{Z}\}$ , where h > 0. Then, we have

$$\sigma(t) = t + h, \ \mu(t) = h \text{ and } x^{\Delta}(t) = \frac{x(t+h) - x(t)}{h}$$

for  $t \in \mathbb{T}$ . Thus, Eq.(1.1) becomes

$$\frac{x(t+h) - x(t)}{h} + p(t)x(\tau(t)) = 0, \quad t \in \{hk : k \in \mathbb{Z}\}.$$

Let  $\tau(t) = t - 2$  and h = 2. Since  $p(t) \in \{hk : k \in \mathbb{Z}\}$ , we assume

$$p(2t) = 0.18$$
 and  $p(2t+2) = 0.27$ ,  $t = 0, 2, 4, \dots$ 

When  $\mathbb{T} = h\mathbb{Z}$ , from (iii) in [2, Theorem 1.79], we have the following.

$$\int_{a}^{b} f(t)\Delta t = \sum_{k=\frac{a}{h}}^{\frac{b}{h}-1} f(kh)h \quad \text{for} \quad a < b.$$

$$(2.8)$$

So, by using (2.8), we observe that, for  $\tau(t)$ ,  $p(t) \in \{hk : k \in \mathbb{Z}\}$ .

$$\alpha := \liminf_{t \to \infty} \int_{\tau(t)}^{t} p(s) \Delta s = \liminf_{t \to \infty} \sum_{j=\frac{t-2}{2}}^{\frac{t}{2}-1} p(2j) 2 = \liminf_{t \to \infty} 2p(t-2) = 0.36 \neq \frac{1}{e}$$

and

K

$$\beta := \limsup_{t \to \infty} \int_{h(t)}^{\sigma(t)} p(s) \Delta s = \limsup_{t \to \infty} \sum_{j=\frac{t-2}{2}}^{\frac{t+2}{2}-1} p(2j) 2 = \limsup_{t \to \infty} 2[p(t-2) + p(t)] = 0.9 \neq 1$$

shows that Theorem 2.3 fails. On the other hand,

$$\beta = 0.9 \neq 1 - \left(1 - \sqrt{1 - 0.36}\right)^2 = 0.96$$

demonstrates that the condition (1.8) doesn't hold. However, since

$$\beta = 0.9 > 1 - \frac{1 - 0.36 - \sqrt{1 - 2(0.36) - (0.36)^2}}{2} = 0.873\,91,$$

every solution oscillates by Theorem 2.5.

# References

- R.P. Agarwal and M. Bohner, An oscillation criterion for first order delay dynamic equations, Funct. Differ. Equ. 16 (1), 11-17, 2009.
- [2] M. Bohner and A. Peterson, *Dynamic Equations on Time Scales: An Introduction with Applications*, Birkhauser, Boston, 2001.
- [3] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
- [4] M. Bohner, Some oscillation criteria for first order delay dynamic equations, Far East J. Appl. Math. 18 (3), 289-304, 2005.
- [5] G.E. Chatzarakis, R. Koplatadze and I.P. Stavroulakis, Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal. 68, 994-1005, 2008.
- [6] G.E. Chatzarakis, R. Koplatadze and I.P. Stavroulakis, Optimal oscillation criteria for first order difference equations with delay argument, Pacific J. Math. 235, 15-33, 2008.
- [7] G.E. Chatzarakis, Ch.G. Philos and I.P. Stavroulakis, On the oscillation of the solutions to linear difference equations with variable delay, Electron. J. Differ. Equ. 2008 (50), 1-15, 2008.
- [8] G.E. Chatzarakis, Ch.G. Philos and I. P. Stavroulakis, An oscillation criterion for linear difference equations with general delay argument, Port. Math. 66 (4), 513-533, 2009.
- [9] A. Elbert and I.P. Stavroulakis, Oscillations of first order differential equations with deviating arguments, Univ of Ioannina TR No 172, 1990, Recent trends in differential equations, 163-178, World Sci. Ser. Appl. Anal., 1, World Sci. Publishing Co., 1992.
- [10] L.H. Erbe and B.G. Zhang, Oscillation of first order linear differential equations with deviating arguments, Differential Integral Equations 1, 305-314, 1988.
- [11] L.H. Erbe and B.G. Zhang, Oscillation of discrete analogues of delay equations, Differential Integral Equations 2, 300-309, 1989.
- [12] L.H. Erbe, Qingkai Kong and B.G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
- [13] N. Fukagai and T. Kusano, Oscillation theory of first order functional differential equations with deviating arguments, Ann. Mat. Pura Appl. 136, 95-117, 1984.
- [14] I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
- [15] S. Hilger, Ein MaXkettenkalkWul mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universitat Wurzburg, 1988.
- [16] S. Hilger, Analysis on measure chainsa unified approach to continuous and discrete calculus, Results in Mathematics 18, 1856, 1990.

324

- [17] J. Jaroš and I.P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain J. Math. 29, 139-145, 1999.
- [18] C. Jian, Oscillation of linear differential equations with deviating argument, Math. Pract. Theor. 1, 32-41, 1991 (in Chinese).
- [19] B. Karpuz and Ö. Öcalan, New oscillation tests and some refinements for first-order delay dynamic equations, Turkish J. Math. 40 (4), 850-863, 2016.
- B. Karpuz, Sharp oscillation and nonoscillation tests for linear difference equations, J. Difference Equ Appl. 23 (12), 1929-1942, 2017.
- [21] R.G. Koplatadze and T.A. Chanturija, Oscillating and monotone solutions of firstorder differential equations with deviating arguments, (Russian), Differentsial'nye Uravneniya 8, 1463-1465, 1982.
- [22] M.K. Kwong, Oscillation of first-order delay equations, J. Math. Anal. Appl. 156, 274-286, 1991.
- [23] G.S. Ladde, V. Lakshmikantham and B.G. Zhang, Oscillation theory of differential equations with deviating arguments, Monographs and Textbooks in Pure and Applied Mathematics, vol. 110, Marcel Dekker, Inc., New York, 1987.
- [24] O. Ocalan, U.M. Ozkan and M.K. Yıldız, Oscillatory solutions for dynamic equations with non-monotone arguments, J. Math. Comput. Sci. 7 (4), 725-738, 2017.
- [25] Ö. Öcalan, Oscillation of first-order dynamic equations with nonmonotone delay, Math. Methods Appl. Sci. 43 (7), 3954-3964, 2020.
- [26] Ch.G. Philos and Y.G. Sficas, An oscillation criterion for first-order linear delay differential equations, Canad. Math. Bull. 41, 207-213, 1998.
- [27] Y. Şahiner and I.P. Stavroulakis, Oscillations of first order delay dynamic equations, Dynam. Systems Appl. 15 (3-4), 645-655, 2006.
- [28] J.S. Yu and Z.C. Wang, Some further results on oscillation of neutral differential equations, Bull. Aust. Math. Soc. 46, 149-157, 1992.
- [29] J.S. Yu, Z.C. Wang, B.G. Zhang and X.Z. Qian, Oscillations of differential equations with deviating arguments, PanAmerican Math. J. 2, 59-78, 1992.
- [30] B.G. Zhang and C.J. Tian, Oscillation criteria for difference equations with unbounded delay, Comput. Math. Appl. 35 (4), 19-26, 1998.
- [31] B.G. Zhang and C.J. Tian, Nonexistence and existence of positive solutions for difference equations with unbounded delay, Comput. Math. Appl. 36, 1-8, 1998.
- [32] B.G. Zhang and X. Deng, Oscillation of delay differential equations on time scales, Math. Comput. Modelling 36 (11-13), 1307-1318, 2002.
- [33] B.G. Zhang, X. Yan and X. Liu, Oscillation criteria of certain delay dynamic equations on time scales, J. Difference Equ. Appl. 11 (10), 933-946, 2005.
- [34] Y. Zhou and Y.H. Yu, On the oscillation of solutions of first order differential equations with deviating arguments, Acta Math. Appl. Sinica 15 (3), 288-302, 1999.