Oscillation criteria for first-order dynamic equations with nonmonotone delays

Nurten Kılıç ${ }^{1}$ (D), Özkan Öcalan*2 ©
${ }^{1}$ Kütahya Dumlupinar University, Faculty of Science and Arts, Department of Mathematics, 43100, Kütahya, Turkey
${ }^{2}$ Akdeniz University, Faculty of Science, Department of Mathematics, 07058 Antalya, Turkey

Abstract

In this paper, we consider the first-order dynamic equation as the following: $$
x^{\Delta}(t)+\sum_{i=1}^{m} p_{i}(t) x\left(\tau_{i}(t)\right)=0, t \in\left[t_{0}, \infty\right)_{\mathbb{T}}
$$ where $p_{i} \in C_{r d}\left(\left[t_{0}, \infty\right) \mathbb{T}, \mathbb{R}^{+}\right), \tau_{i} \in C_{r d}\left(\left[t_{0}, \infty\right)_{\mathbb{T}}, \mathbb{T}\right)(i=1,2, \ldots, m)$ and $\tau_{i}(t) \leq$ $t, \lim _{t \rightarrow \infty} \tau_{i}(t)=\infty$. When the delay terms $\tau_{i}(t)(i=1,2, \ldots, m)$ are not necessarily monotone, we present new sufficient conditions for the oscillation of first-order delay dynamic equations on time scales.

Mathematics Subject Classification (2020). 34C10, 34N05, 39A12, 39A21
Keywords. dynamic equations, nonmonotone delay, oscillation, time scales

1. Introduction

As is well known, after Stefan Hilger [15], [16] introduced the theory of dynamic equations on time scales (or measure chain) in his Ph.D. thesis in 1988, a lot of papers have been devoted to this subject field. Especially, the oscillatory behaviour of solutions of differential/difference and dynamic equations has been studied by many authors. See, for example, $[1-34]$ and the references cited therein. Consider the first-order delay dynamic equation

$$
\begin{equation*}
x^{\Delta}(t)+\sum_{i=1}^{m} p_{i}(t) x\left(\tau_{i}(t)\right)=0, \quad t \in\left[t_{0}, \infty\right)_{\mathbb{T}}, \tag{1.1}
\end{equation*}
$$

where \mathbb{T} is a time scale unbounded above with $t_{0} \in \mathbb{T}, p_{i} \in C_{r d}\left(\left[t_{0}, \infty\right) \mathbb{T}, \mathbb{R}_{0}^{+}\right), \tau_{i} \in$ $C_{r d}\left(\left[t_{0}, \infty\right)_{\mathbb{T}}, \mathbb{T}\right)(i=1,2, \ldots, m)$ are not necessarily monotone such that

$$
\begin{equation*}
\tau_{i}(t) \leq t \text { for all } t \in \mathbb{T}, \quad \lim _{t \rightarrow \infty} \tau_{i}(t)=\infty \tag{1.2}
\end{equation*}
$$

A function $p: \mathbb{T} \rightarrow \mathbb{R}$ is called positively regressive (we write $p \in \mathcal{R}^{+}$) if it is rd-continuous and satisfies $1+\mu(t) p(t)>0$ for all $t \in \mathbb{T}$, where $\mu: \mathbb{T} \rightarrow \mathbb{R}_{0}^{+}$is the graininess function defined by $\mu(t):=\sigma(t)-t$ with the forward jump operator $\sigma: \mathbb{T} \rightarrow \mathbb{T}$ defined by $\sigma(t)=$ $\inf \{s \in \mathbb{T}: s>t\}$ for $t \in \mathbb{T}$. A point $t \in \mathbb{T}$ is called right-dense if $\sigma(t)=t$ (or equivalently

[^0]$\mu(t)=0)$ holds, otherwise it is called right-scattered. The readers are referred to Bohner and Peterson [2] for further details concerning the time scales calculus.

A function $x: \mathbb{T} \rightarrow \mathbb{R}$ is called a solution of the equation (1.1), if $x(t)$ is delta differentiable for $t \in \mathbb{T}^{\kappa}$ and satisfies equation (1.1) for $t \in \mathbb{T}^{\kappa}$. We say that a solution x of equation (1.1) has a generalized zero at t if $x(t)=0$ or if $\mu(t)>0$ and $x(t) x(\sigma(t))<0$. Let $\sup \mathbb{T}=\infty$ and then a nontrivial solution x of equation (1.1) is called oscillatory on $[t, \infty)$ if it has arbitrarily large generalized zeros in $[t, \infty)$.

For $m=1$, equation (1.1) reduces to

$$
\begin{equation*}
x^{\Delta}(t)+p(t) x(\tau(t))=0, \quad t \in\left[t_{0}, \infty\right)_{\mathbb{T}} . \tag{1.3}
\end{equation*}
$$

Now, we give some well-known tests on oscillatory behaviour of (1.3). In 2002, Zhang and Deng [32], using the cylinder transforms, proved that if $\tau(t)$ is eventually nondecreasing and

$$
\limsup _{t \rightarrow \infty} \sup _{\lambda \in E}\left\{\lambda e_{-\lambda p}(t, \tau(t))\right\}<1,
$$

where $E=\{\lambda: \lambda>0,1-\lambda p(t) \mu(t)>0\}$ and in 2005, Bohner [4], using exponential functions notation, proved that if $\tau(t)$ is eventually nondecreasing and

$$
\limsup _{t \rightarrow \infty} \sup _{-\lambda p \in \mathcal{R}^{+}}\left\{\lambda e_{-\lambda p}(t, \tau(t))\right\}<1
$$

where

$$
e_{-\lambda p}(t, \tau(t))=\exp \left\{\int_{\tau(t)}^{t} \xi_{\mu(s)}(-\lambda p(s)) \Delta s\right\},
$$

and

$$
\xi_{h}(z)= \begin{cases}\frac{\log (1+h z)}{h} & , \text { if } h \neq 0 \\ z & , \text { if } h=0\end{cases}
$$

then all solutions of equation (1.3) are oscillatory.
In 2005, Zhang et al. [33] and in 2006, Şahiner and Stavroulakis [27], using different technique, obtained that if $\tau(t)$ is eventually nondecreasing and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s>1 \tag{1.4}
\end{equation*}
$$

then all solutions of equation (1.3) are oscillatory. In 2005, Zhang et al. [33] (See also Agarwal and Bohner [1, Theorem 1]) established the following result. Assume that $\tau(t)$ is eventually nondecreasing and

$$
\begin{equation*}
m:=\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>\frac{1}{e}, \tag{1.5}
\end{equation*}
$$

then all solutions of (1.3) oscillate.
In 2006, Şahiner and Stavroulakis [27] found out that if $\tau(t)$ is eventually nondecreasing,

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>c \text { and } \limsup _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>1-\frac{c^{2}}{4} \tag{1.6}
\end{equation*}
$$

where $c \in(0,1)_{\mathbb{R}}$, then every solution of equation (1.3) oscillates. Furthermore, Agarwal and Bohner [1] improved the condition (1.6) as follows:

If $\tau(t)$ is eventually nondecreasing,

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>c \text { and } \limsup _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>1-(1-\sqrt{1-c})^{2} \tag{1.7}
\end{equation*}
$$

where $c \in(0,1)_{\mathbb{R}}$, then every solution of equation (1.3) oscillates.
Also, in 2016, Karpuz and Öcalan [19] enhanced the condition (1.7) by extending the second integral condition to the larger interval $[\tau(t), t]_{\mathbb{T}}$ as the following:
Assume that $\tau(t)$ is eventually nondecreasing and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>c \text { and } \limsup _{t \rightarrow \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s>1-(1-\sqrt{1-c})^{2} \tag{1.8}
\end{equation*}
$$

where $c \in(0,1)_{\mathbb{R}}$. Then every solution of equation (1.3) oscillates.
Zhang et al. [33] established the following result. Assume that $\tau(t)$ is eventually nondecreasing and $m \in\left[0, \frac{1}{e}\right]$ (where m is defined by (1.5)). Moreover, if

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s>\frac{1+\ln \lambda_{1}}{\lambda_{1}}-\frac{1-m-\sqrt{1-2 m-m^{2}}}{2} \tag{1.9}
\end{equation*}
$$

where $\lambda_{1} \in[1, e]$ is the unique root of the equation $\lambda=e^{m \lambda}$, then all solutions of equation (1.3) are oscillatory. It is obvious that, since

$$
\frac{1+\ln \lambda_{1}}{\lambda_{1}} \leq 1 \text { for } \lambda_{1} \in[1, e] \text {, }
$$

the condition (1.9) implies

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s>1-\frac{1-m-\sqrt{1-2 m-m^{2}}}{2} \tag{1.10}
\end{equation*}
$$

Clearly, when $0<c \leq \frac{1}{e}$, it is easy to verify that

$$
\frac{1-c-\sqrt{1-2 c-c^{2}}}{2}>(1-\sqrt{1-c})^{2}>\frac{c^{2}}{4}
$$

and therefore the condition (1.10) is weaker than the conditions (1.6) and (1.8).
Now, we assume that $\tau(t)$ is not necessarily monotone. Set

$$
\begin{equation*}
h(t)=\sup _{s \leq t} \tau(s), \quad t \in \mathbb{T}, t \geq 0 . \tag{1.11}
\end{equation*}
$$

Clearly, $h(t)$ is nondecreasing and $\tau(t) \leq h(t)$ for all $t \geq 0$.
In 2017, Öcalan, Özkan and Yıldız [24, Theorem 2.2] studied the equation (1.3) when $\tau(t)$ is not necessarily monotone and obtained the following result.

Theorem A. If

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} p(s) \Delta s>1, \tag{1.12}
\end{equation*}
$$

where $h(t)$ is defined by (1.11), then every solution of (1.3) is oscillatory.
Finally, Öcalan [25, Corollary 2.4] established the following result when $\tau(t)$ is not necessarily monotone.

Theorem B. If

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{h(t)}^{t} p(s) \Delta s=\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>\frac{1}{e} \tag{1.13}
\end{equation*}
$$

where $h(t)$ is defined by (1.11), then all solutions of (1.3) oscillate.
A slight modification in the proofs of Theorems A and B leads to the following result.
Theorem 1.1. Assume that all the conditions of Theorems A and B hold. Then
(i) the dynamic inequality

$$
x^{\Delta}(t)+p(t) x(\tau(t)) \leq 0, \quad t \in\left[t_{0}, \infty\right)_{\mathbb{T}}
$$

has no eventually positive solutions;
(ii) the dynamic inequality

$$
x^{\Delta}(t)+p(t) x(\tau(t)) \geq 0, \quad t \in\left[t_{0}, \infty\right)_{\mathbb{T}}
$$

has no eventually negative solutions.

2. Main results

In this section, we present some new sufficient conditions for the oscillation of all solutions of (1.1), under the assumption that the arguments $\tau_{i}(t)(i=1,2, \ldots, m)$ are not necessarily monotone. Set

$$
\begin{equation*}
h_{i}(t)=\sup _{s \leq t}\left\{\tau_{i}(s)\right\} \quad \text { and } \quad h(t)=\max _{1 \leq i \leq m}\left\{h_{i}(t)\right\}, t \in \mathbb{T}, t \geq 0 . \tag{2.1}
\end{equation*}
$$

Clearly, $h_{i}(t)(i=1,2, \ldots, m)$ are nondecreasing and $\tau_{i}(t) \leq h_{i}(t) \leq h(t)(i=1,2, \ldots, m)$ for all $t \geq 0$.

The following lemma was given by Şahiner and Stavroulakis [27].
Lemma 2.1. Assume that $f: \mathbb{T} \rightarrow \mathbb{R}$ is rd-continuous, $g: \mathbb{T} \rightarrow \mathbb{R}$ is nonincreasing and $\tau: \mathbb{T} \rightarrow \mathbb{T}$ is nondecreasing. If $b<u$, then

$$
\int_{b}^{\sigma(u)} f(s) g(\tau(s)) \Delta s \geq g(\tau(u)) \int_{b}^{\sigma(u)} f(s) \Delta s
$$

The following result is easily obtained by using the similar way in the proof of Lemma 2.3 in [24].

Lemma 2.2. Assume that (2.1) holds and $\alpha>0$. Then, we have

$$
\alpha:=\liminf _{t \rightarrow \infty} \int_{h(t)}^{t} \sum_{i=1}^{m} p_{i}(s) \Delta s=\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} \sum_{i=1}^{m} p_{i}(s) \Delta s,
$$

where $\tau(t)=\max _{1 \leq i \leq m}\left\{\tau_{i}(t)\right\}, t \in \mathbb{T}, t \geq 0$.
Theorem 2.3. Assume that $-\sum_{i=1}^{m} p_{i} \in \mathcal{R}^{+}$. If $\tau_{i}(t)(i=1,2, \ldots, m)$ are not necessarily monotone and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_{i}(s) \Delta s>1 \tag{2.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} \sum_{i=1}^{m} p_{i}(s) \Delta s>\frac{1}{e} \tag{2.3}
\end{equation*}
$$

where $h(t)$ is defined by (2.1) and $\tau(t)=\max _{1 \leq i \leq m}\left\{\tau_{i}(t)\right\}$. Then all solutions of (1.1) oscillate.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution $x(t)$ of (1.1). Since $-x(t)$ is also a solution of (1.1), we can confine our discussion only to the case where the solution $x(t)$ is eventually positive. Then, there exists $t_{1}>t_{0}$ such that $x(t), x\left(\tau_{i}(t)\right)>0(i=1,2, \ldots, m)$, for all $t \geq t_{1}$. Thus, from (1.1) we have

$$
x^{\Delta}(t)=-\sum_{i=1}^{m} p_{i}(t) x\left(\tau_{i}(t)\right) \leq 0 \text { for all } t \geq t_{1}
$$

which means that $x(t)$ is an eventually nonincreasing function. In view of this and $\tau_{i}(t) \leq$ $\tau(t)(i=1,2, \ldots, m),(1.1)$ gives

$$
x^{\Delta}(t)+\left(\sum_{i=1}^{m} p_{i}(t)\right) x(\tau(t)) \leq 0, \quad t \geq t_{1}
$$

Comparing (2.2) and (2.3), we obtain a contradiction to Theorem 1.1. Thus, the proof of the theorem is completed.

Now, we consider the case where $0<\alpha \leq \frac{1}{e}$. Then, we will obtain new oscillatory condition for all solutions of (1.1). We need the following lemma to establish our result. When the case $\tau_{i}(t)(i=1,2, \ldots, m)$ are not necessarily monotone, the following lemma can be easily obtained by using the similar process in [33, Lemma 2.4]. So, the proof of the following result is omitted here.

Lemma 2.4. Assume that $\tau_{i}(t)(i=1,2, \ldots, m)$ are not necessarily monotone. Let $0 \leq$ $\alpha \leq \frac{1}{e}$ and $x(t)$ be an eventually positive solution of Eq.(1.1). Then, we get

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{x(\sigma(t))}{x(h(t))} \geq \frac{1-\alpha-\sqrt{1-2 \alpha-\alpha^{2}}}{2} \tag{2.4}
\end{equation*}
$$

where $h(t)$ is defined by (2.1) and $\tau(t)=\max _{1 \leq i \leq m}\left\{\tau_{i}(t)\right\}$.
Theorem 2.5. Assume that $-\sum_{i=1}^{m} p_{i} \in \mathcal{R}^{+}$and $0 \leq \alpha \leq \frac{1}{e}$. If $\tau_{i}(t)(i=1,2, \ldots, m)$ are not necessarily monotone and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_{i}(s) \Delta s>1-\frac{1-\alpha-\sqrt{1-2 \alpha-\alpha^{2}}}{2} \tag{2.5}
\end{equation*}
$$

where $h(t)$ is defined by (2.1). Then all solutions of (1.1) oscillate.
Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution $x(t)$ of (1.1). Since $-x(t)$ is also a solution of (1.1), we can confine our discussion only to the case where the solution $x(t)$ is eventually positive. Then, there exists $t_{1}>t_{0}$ such that $x(t), x\left(\tau_{i}(t)\right)>0(i=1,2, \ldots, m)$, for all $t \geq t_{1}$. Thus, from (1.1) we have

$$
x^{\Delta}(t)=-\sum_{i=1}^{m} p_{i}(t) x\left(\tau_{i}(t)\right) \leq 0 \text { for all } t \geq t_{1}
$$

which means that $x(t)$ is an eventually nonincreasing function. In view of this and $\tau_{i}(t) \leq$ $h_{i}(t) \leq h(t)(i=1,2, \ldots, m)$, Eq.(1.1) gives

$$
\begin{equation*}
x^{\Delta}(t)+\sum_{i=1}^{m} p_{i}(t) x(h(t)) \leq 0, \quad t \geq t_{1} \tag{2.6}
\end{equation*}
$$

Integrating (2.6) from $h(t)$ to $\sigma(t)$ and taking into account the facts that the function $h(t)$ is nondecreasing and the function $x(t)$ is nonincreasing, we obtain

$$
x(\sigma(t))-x(h(t))+\int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_{i}(s) x(h(s)) \Delta s \leq 0 .
$$

Therefore, by using Lemma 2.1, we get

$$
x(\sigma(t))-x(h(t))+x(h(t)) \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_{i}(s) \Delta s \leq 0
$$

or

$$
x(\sigma(t))+x(h(t))\left[\int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_{i}(s) \Delta s-1\right] \leq 0 .
$$

Consequently,

$$
\int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_{i}(s) \Delta s \leq 1-\frac{x(\sigma(t))}{x(h(t))}
$$

which gives

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_{i}(s) \Delta s \leq 1-\liminf _{t \rightarrow \infty} \frac{x(\sigma(t))}{x(h(t))} \tag{2.7}
\end{equation*}
$$

and by (2.4), (2.7) leads to

$$
\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} \sum_{i=1}^{m} p_{i}(s) \Delta s \leq 1-\frac{1-\alpha-\sqrt{1-2 \alpha-\alpha^{2}}}{2}
$$

which contradicts with (2.5). The proof of the theorem is completed.
Example 2.6. Let $m=1, h \in \mathbb{Z}$ and $\mathbb{T}=h \mathbb{Z}=\{h k: k \in \mathbb{Z}\}$, where $h>0$. Then, we have

$$
\sigma(t)=t+h, \quad \mu(t)=h \text { and } x^{\Delta}(t)=\frac{x(t+h)-x(t)}{h}
$$

for $t \in \mathbb{T}$. Thus, Eq.(1.1) becomes

$$
\frac{x(t+h)-x(t)}{h}+p(t) x(\tau(t))=0, \quad t \in\{h k: k \in \mathbb{Z}\} .
$$

Let $\tau(t)=t-2$ and $h=2$. Since $p(t) \in\{h k: k \in \mathbb{Z}\}$, we assume

$$
p(2 t)=0.18 \text { and } p(2 t+2)=0.27, \quad t=0,2,4, \ldots
$$

When $\mathbb{T}=h \mathbb{Z}$, from (iii) in [2, Theorem 1.79], we have the following.

$$
\begin{equation*}
\int_{a}^{b} f(t) \Delta t=\sum_{k=\frac{a}{h}}^{\frac{b}{h}-1} f(k h) h \text { for } a<b . \tag{2.8}
\end{equation*}
$$

So, by using (2.8), we observe that, for $\tau(t), p(t) \in\{h k: k \in \mathbb{Z}\}$.

$$
\alpha:=\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s=\liminf _{t \rightarrow \infty} \sum_{j=\frac{t-2}{2}}^{\frac{t}{2}-1} p(2 j) 2=\liminf _{t \rightarrow \infty} 2 p(t-2)=0.36 \ngtr \frac{1}{e}
$$

and

$$
\beta:=\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} p(s) \Delta s=\limsup _{t \rightarrow \infty} \sum_{j=\frac{t-2}{2}}^{\frac{t+2}{2}-1} p(2 j) 2=\limsup _{t \rightarrow \infty} 2[p(t-2)+p(t)]=0.9 \ngtr 1
$$

shows that Theorem 2.3 fails. On the other hand,

$$
\beta=0.9 \ngtr 1-(1-\sqrt{1-0.36})^{2}=0.96
$$

demonstrates that the condition (1.8) doesn't hold. However, since

$$
\beta=0.9>1-\frac{1-0.36-\sqrt{1-2(0.36)-(0.36)^{2}}}{2}=0.87391
$$

every solution oscillates by Theorem 2.5.

References

[1] R.P. Agarwal and M. Bohner, An oscillation criterion for first order delay dynamic equations, Funct. Differ. Equ. 16 (1), 11-17, 2009.
[2] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
[3] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
[4] M. Bohner, Some oscillation criteria for first order delay dynamic equations, Far East J. Appl. Math. 18 (3), 289-304, 2005.
[5] G.E. Chatzarakis, R. Koplatadze and I.P. Stavroulakis, Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal. 68, 994-1005, 2008.
[6] G.E. Chatzarakis, R. Koplatadze and I.P. Stavroulakis, Optimal oscillation criteria for first order difference equations with delay argument, Pacific J. Math. 235, 15-33, 2008.
[7] G.E. Chatzarakis, Ch.G. Philos and I.P. Stavroulakis, On the oscillation of the solutions to linear difference equations with variable delay, Electron. J. Differ. Equ. 2008 (50), 1-15, 2008.
[8] G.E. Chatzarakis, Ch.G. Philos and I. P. Stavroulakis, An oscillation criterion for linear difference equations with general delay argument, Port. Math. 66 (4), 513-533, 2009.
[9] A. Elbert and I.P. Stavroulakis, Oscillations of first order differential equations with deviating arguments, Univ of Ioannina TR No 172, 1990, Recent trends in differential equations, 163-178, World Sci. Ser. Appl. Anal., 1, World Sci. Publishing Co., 1992.
[10] L.H. Erbe and B.G. Zhang, Oscillation of first order linear differential equations with deviating arguments, Differential Integral Equations 1, 305-314, 1988.
[11] L.H. Erbe and B.G. Zhang, Oscillation of discrete analogues of delay equations, Differential Integral Equations 2, 300-309, 1989.
[12] L.H. Erbe, Qingkai Kong and B.G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
[13] N. Fukagai and T. Kusano, Oscillation theory of first order functional differential equations with deviating arguments, Ann. Mat. Pura Appl. 136, 95-117, 1984.
[14] I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
[15] S. Hilger, Ein MaXkettenkalkWul mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universtat Wurzburg, 1988.
[16] S. Hilger, Analysis on measure chainsa unified approach to continuous and discrete calculus, Results in Mathematics 18, 1856, 1990.
[17] J. Jaroš and I.P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain J. Math. 29, 139-145, 1999.
[18] C. Jian, Oscillation of linear differential equations with deviating argument, Math. Pract. Theor. 1, 32-41, 1991 (in Chinese).
[19] B. Karpuz and Ö. Öcalan, New oscillation tests and some refinements for first-order delay dynamic equations, Turkish J. Math. 40 (4), 850-863, 2016.
[20] B. Karpuz, Sharp oscillation and nonoscillation tests for linear difference equations, J. Difference Equ Appl. 23 (12), 1929-1942, 2017.
[21] R.G. Koplatadze and T.A. Chanturija, Oscillating and monotone solutions of firstorder differential equations with deviating arguments, (Russian), Differentsial'nye Uravneniya 8, 1463-1465, 1982.
[22] M.K. Kwong, Oscillation of first-order delay equations, J. Math. Anal. Appl. 156, 274-286, 1991.
[23] G.S. Ladde, V. Lakshmikantham and B.G. Zhang, Oscillation theory of differential equations with deviating arguments, Monographs and Textbooks in Pure and Applied Mathematics, vol. 110, Marcel Dekker, Inc., New York, 1987.
[24] Ö. Öcalan, U.M. Özkan and M.K. Yıldız, Oscillatory solutions for dynamic equations with non-monotone arguments, J. Math. Comput. Sci. 7 (4), 725-738, 2017.
[25] Ö. Öcalan, Oscillation of first-order dynamic equations with nonmonotone delay, Math. Methods Appl. Sci. 43 (7), 3954-3964, 2020.
[26] Ch.G. Philos and Y.G. Sficas, An oscillation criterion for first-order linear delay differential equations, Canad. Math. Bull. 41, 207-213, 1998.
[27] Y. Şahiner and I.P. Stavroulakis, Oscillations of first order delay dynamic equations, Dynam. Systems Appl. 15 (3-4), 645-655, 2006.
[28] J.S. Yu and Z.C. Wang, Some further results on oscillation of neutral differential equations, Bull. Aust. Math. Soc. 46, 149-157, 1992.
[29] J.S. Yu, Z.C. Wang, B.G. Zhang and X.Z. Qian, Oscillations of differential equations with deviating arguments, PanAmerican Math. J. 2, 59-78, 1992.
[30] B.G. Zhang and C.J. Tian, Oscillation criteria for difference equations with unbounded delay, Comput. Math. Appl. 35 (4), 19-26, 1998.
[31] B.G. Zhang and C.J. Tian, Nonexistence and existence of positive solutions for difference equations with unbounded delay, Comput. Math. Appl. 36, 1-8, 1998.
[32] B.G. Zhang and X. Deng, Oscillation of delay differential equations on time scales, Math. Comput. Modelling 36 (11-13), 1307-1318, 2002.
[33] B.G. Zhang, X. Yan and X. Liu, Oscillation criteria of certain delay dynamic equations on time scales, J. Difference Equ. Appl. 11 (10), 933-946, 2005.
[34] Y. Zhou and Y.H. Yu, On the oscillation of solutions of first order differential equations with deviating arguments, Acta Math. Appl. Sinica 15 (3), 288-302, 1999.

[^0]: *Corresponding Author.
 Email addresses: nurten.kilic@dpu.edu.tr (N. Kılıç), ozkanocalan@akdeniz.edu.tr (Ö. Öcalan) Received: 13.01.2020; Accepted: 10.06.2020

