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Discharge coefficient equation to calculate the leakage from pipe networks 

Ömer EKMEKCİOĞLU 1*, Eyyup Ensar BAŞAKIN 1, Mehmet ÖZGER1*  

ABSTRACT: With the increasing of urbanization, water distribution networks play an important role 

in human life and the effective use of water resources. Therefore, studies have been made for the 

optimization of water distribution networks in some fields such as pressure management and leakage 

control. In this context, the discharge coefficient, which is one of the components of the hydraulic 

calculations, is a very significant parameter in calculating the losses. In this study, a new equation has 

been proposed to calculate the discharge coefficient. Computer simulations were done by using ANSYS 

Fluent and discharge coefficient values were determined for round holes. Firstly, the model validated 

with theoretical Toricelli (orifice) equation and then, the model was run for number of scenarios 

according to various internal pressure and hole areas. The model results were formulated by means of 

regression equations. To satisfy the dimensional homogeneity, the ratio of the hole area to the pipe cross-

sectional area, area ratio (r), and the ratio of the internal pressure to the external pressure, pressure ratio 

(p), were used. In this study, easy to use discharge coefficient equation was proposed to calculate the 

leakage losses in water distribution networks. With the help of this equation, the discharge coefficient 

can be calculated precisely for different pressure values and leakage areas rather thantaken as a constant 

value. Thus, the calculation of the leakage flow rate will be more accurate. Furthermore, it is concluded 

that the dicharge coefficient varies between 0.65 and 0.72. There is also inverse realtionship between 

discharge coefficient and pressure and discharge coefficient and leakage area. 
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INTRODUCTION  

One of the most crucial point for the efficient use of water resources is to avoid the loss of leakage 

in water distribution networks. In this respect, with the emergence of leakage problems, the researchers 

focused on behaviors of the leaks and the reduction of leakage flowrates due to the leaks. Particularly, 

studies on pressure management have gained popularity (Sturm and Thornton, 2015; Thornton and 

Lambert, 2007; Xu et al., 2014; Fontana et al., 2017; Lydon et al., 2017; Samir et al., 2017; Monsef et 

al., 2018). As a result of the studies on pressure management, a serious improvements have been 

observed in the service capacity of the water distribution networks. While making progress with these 

studies, studies have been carried out in order to put the problem on a correct basis. Consequently, the 

orifice equation examined in detail for the calculation of leakage flow rate. 

Toricelli equation, i.e. orifice equation, is the basis of the studies that have been carried out in the 

leakage in water distribution networks. Toricelli equation represents to the relationship between pressure 

and leakage flow rate which is based on the principle of conservation of energy. The pipe leaks 

physically coincide with the orifice equation, since they display orifice characteristics. 

According to the orifice equation and the relationship between pressure and loss due to leakage 

can expressed as follows: 

𝑄 = 𝐶𝑑 × 𝐴 ×  √2𝑔ℎ                                                                                                      (1) 

where, 𝑄 is the leakage flow rate, Cd is the discharge coefficient, A is the leakage area, g is the 

acceleration due to the gravity and h represents the pressure head.  

By considering that the orifice equation can also wrote as (May, 1994): 

𝑄𝐿 = 𝐶 × ℎ𝑁1                                                                                                                 (2) 

in which C is the leakage coefficient and it consists of Cd, A and (2g)0.5. 𝑁1 denotes the leakage 

exponent.  

Studies had been carried out about the leakage area (May, 1994; Cassa et al., 2010; Cassa and Van 

Zyl, 2013; Ssozi et al., 2015; Fox et al., 2016&2017; De Marchis et al., 2016; Van Zyl and Malde, 2017; 

Van Zyl et al., 2017, Kabaasha et al., 2018; Nsanzubuhoro et al., 2017; Butterfield et al., 2018) and 

studies about leakage exponent (Germanopoulos, 1985; Walski et al., 2006&2009; Greyvenstein and J. 

E. van Zyl, 2007; Van Zyl and Clayton, 2017) made contribution to better understanding of the leakage 

behavior and leakage flowrate.  

The pressure-leakage relationship in water distribution networks is not only the topic that studies 

based on, there is also another topic which is emphasized by various researchers, named as discharge 

coefficient. Altoughthe discharge coefficient is considered as the least effective parameter in the 

calculation of leakage flowrate according to many researchers, it is very effective when taken account 

large-scaled. 

Some of the researchers have assumed that discharge coefficient should be accepted as a constant, 

while some of them thought that it may be variable depending on some other parameters. Cassa et al. 

(2010) considered the discharge coefficient as constant, 0.67. Schwaller and van Zyl (2014) showed that 

the discharge coefficients in a water distribution network would take values between 0.5 and 0.8, 

averagely 0.65, with a presumption of normal distribution. For individual leaks, Lambert (2001) stated 

that the assumption of the constant discharge coefficient is not valid for all flow regimes. Therefore, the 

discharge coefficient depends on the laminar, transition and turbulent regime, so the Reynolds number. 
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Furthermore, for the orifice problem for incompressible fluids, it is indicated that the discharge 

coefficient is a function of the hole geometry, area ratio (ratio of orifice area to pipe cross-sectional area) 

and Reynolds number (Idelchik, 2003). In another study that examined the relationship between pressure 

and leakage flowrates, Schwaller and van Zyl (2014) stated that the discharge coefficient is a function 

of the shape of the hole, the material of the pipe, the curvature of the pipe and various physical parameters 

such as pressure. They also stated that the discharge coefficient values in the cracks occurring under 

normal conditions are between 0.5 and 0.8, while only 10% of them is greater than 0.7. In this study, a 

study was carried out on the basis that the discharge coefficient depends on a number of parameters and 

can be written as a function of those parameters. In the numerical analysis, it was observed that the 

discharge coefficient varies with leakage area and pressure.  

In this study, a research has been carried out on the fact that the discharge coefficient depends on 

a number of parameters and can be written as a function number of parameters. Through numerical 

analysis, it was observed that the discharge coefficient varies with leakage hole area and pressure. 

Accordingly, an equation has been proposed to calculate the discharge coefficient related to these 

variables. Therefore, the purpose of this study to formulate discharge coefficient based on the leakage 

area and pressure using a numerical model. 

MATERIALS AND METHODS 

Numerical Model 

ANSYS Fluent software was used in the numerical model. ANSYS Fluent, which can model CFD 

models quickly and cost-effectively, including various complex and large systems such as free surfaces, 

multiple fluid phases, viscous and turbulent flows, uses the finite volumes method for discretization of 

conservation equations. In this study, a numerical analysis was made by taking 1 m unit length and 10 

cm diameter pipe into consideration for the high density polyethylene (HDPE) pipe. Simulations were 

made by changing the hole area under different pressure conditions for round hole (Fig. 1). Different 

discharge coefficient values obtained as a result of simulations are associated with hole area and pressure 

variables.  

 
Figure 1. Model geometry. 

The following assumptions were made in modeling of discharge coefficient. (1) The hole opens to 

the atmosphere. (2) Computations were made for the High Density Polyetylene (HDPE) pipe. (3) Pipe 

length was 1 meter and diameter was 10 cm. (4) Hole area varied between 7.85×10-5 and 4.92×10-4 m². 

(5) The internal pressure of the pipe ranged from 1 bar to 7 bar. The reason for emphasizing the similarity 

of the problem to the orifice equation is due to the similarity to the calculation of the water flow through 
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a hole in a large tank. That is, there is considerable difference between the pipe diameter and the hole 

diameter to make the difference between the velocity values obtained from the continuity equation. 

SIMPLE was used as the solution scheme, since the problem is single phase which means that 

there is full flow in pipe. Least Squares Cell-Based Gradient Evaluation was chosen as a gradient, this 

method yields more successful solutions, particularly in unstructured meshes compared to the other 

methods and it is less time consuming. Second order upwind scheme was chosen for the Momentum, 

Turbulent Kinetic Energy and Turbulent Dissipation Rate. With this scheme, higher accuracy is 

obtained, since the values on the cell surface are evaluated by means of the centroid cells using Taylor 

series expansion. 

      
 

(a)                                                                         (b) 

Figure 2. Mesh created with the ANSYS. a) Plan view b) Cross-section view 

Governing Equations 

ANSYS Fluent solves the conservation of mass and conservation of momentum in cases without 

heat transfer. The mass conservation equation, or continuity equation, is based on the principle of mass 

balance for a fluid particle. It means that rate of increase of mass in fluid element equals to net rate of 

flow of mass into fluid element. Continuity equation for three dimensional cartesian coordinates can be 

written as follows: 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0                                                                               (3) 

in which ρ is the density and u, v and w represent the velocity components on x, y and z directions, 

respectively. Yet, Eq.3 is valid for compressible flows. For incompressible flows Eq.4 can be written as: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                                                                                                         (4) 

Rate of change of momentum is associated with the sum of the forces in the control volume. It 

means that the rate of increase of momentum of fluid particle equals to sum of forces in fluid particle. 

The forces in a fluid particle are divided into two main groups: (i) Surface forces, (bii) Body forces. The 

surface forces include compressive forces, viscous forces and gravitational forces, while the body forces 

contain centrifugal forces, Coriolis forces and electromagnetic forces. Thus, the momentum equation 

can be written for three dimensional cartesian coordinates as follows: 

𝜌
𝐷𝑢

𝐷𝑡
=

𝜕(−𝑝 + 𝜏𝑥𝑥)

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
+ S𝑀𝑥                                                               (5) 

𝜌
𝐷𝑣

𝐷𝑡
=

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕(−𝑝 + 𝜏𝑦𝑦)

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝑆𝑀𝑦                                                               (6) 

𝜌
𝐷𝑤

𝐷𝑡
=

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕(−𝑝 + 𝜏𝑧𝑧)

𝜕𝑧
+ 𝑆𝑀𝑧                                                               (7) 
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where p is the pressure force, τ represents the shear stress and the S is the source term that 

includes all body forces which affects the control volume per unit time. D/Dt denotes the material 

derivative that refers to the sum of the temporal physical properties of a material element, such as 

temperature and momentum. In this study, standard k-epsilon turbulent model is used. Transport 

equations for standard k-epsilon model are given below as turbulent kinetic energy per unit mass (k) and 

turbulent energy dissipation rate per unit mass (ϵ) in Eq.8 and Eq.9, respectively. 

 

where, k is the turbulent kinetic energy, ui represents velocity component in corresponding 

direction, Pk is the generation of turbulence kinetic energy due to the mean velocity gradients, Pb 

represents the generation of turbulence kinetic energy due to buoyancy and  μt is the turbulence(eddy) 

viscosity which is calculated as: 

 

Turbulent Prandtl numbers for k and ϵ : σk, σϵ  and C1ϵ , C2ϵ are constant values that are determined 

at the end of a great deal of iterations as 1.0, 1.3, 1.44, 1.92, respectively. S is the modulus of the mean 

rate-of-strain tensor and define as: 

 

Model Validation 

In numerical simulations, the variation of leakage flow rate was examined according to pressure. 

For this purpose, different pressure values between 1 and 7 bar were applied to a pipe with fixed length 

and diameter and leakage flow rate values were obtained by Fluent at the end of each model simulation. 

Firstly, the results of the model were obtained for all analyzes by using the 1.75 cm diameter round hole 

and 10 cm diameter pipe (Fig. 1), then the results compared with the orifice equation in order to validate 

the model. 

 
Figure 3. The Pressure-Leakage flowreate relationship. 

𝜕

𝜕𝑡
(𝜌𝑘) + 

𝜕

𝜕𝑡𝑖
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] + 𝑃𝑘 + 𝑃𝑏 − 𝜌𝜖 − 𝑌𝑀 + 𝑆𝑘 (8) 
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𝑘
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(9) 

𝜇𝑡 = 𝜌 𝐶𝜇  
𝑘²

𝜖
 (10) 

𝑆 ≡ √2 𝑆𝑖𝑗  𝑆𝑖𝑗 (11) 
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There is an exponential relationship between pressure head and leakage flowrate (Fig. 3). The 

regression equation of the relationship can be identified as follows: 

in which 𝑎 represents the leakage coefficient in orifice equation and b denotes leakage exponent. 

The regression equation given on the graph and the Table 1 reveals that the leakage exponent is close to 

0.5 as stated in the literature. 

Table 1. Model validation results. 

Geometry Diameter (cm) Equation R² 

Round 1.75 y = 0.0007x0.5075 R²=0.99 

Round 2 y = 0.0013x0.5071 R²=0.99 

Secondly, a different fixed hole diameter (2 cm) was considered in the model and the analysis 

were repeated for all aforementioned conditions. Results of this scenario revealed that there are changes 

in the leakage coefficient when it is compared with first scenario. The leakage coefficient was 7×10-4 in 

the first case (Table 1, 1st row), while it was observed as 13×10-4 for the second case (Table 1, 2nd row). 

Leakage coefficient includes constant terms such as (2g)0.5 and hole diameter as well as Cd, discharge 

coefficient. It is concluded that the discharge coefficient varies with changing conditions such as hole 

area and pressure. Therefore, unlike the fact that the discharge coefficient is a constant, it has been 

concluded that it varies depending on the hole area and pressure. 

RESULTS AND DISCUSSION 

After the establishment of the model and validation by Toricelli (orifice) equation, the results were 

attained according to different performed scenarios on same model. In this context, firstly, the change 

in the discharge coefficient with the pressure variation was examined while the area of the round hole 

was kept constant. The flow rate values are obtained by FLEUNT simulations and internal pressure of 

pipe and leak areas are known. Thus, discharge coefficient values were calculated by replacing the 

known values in the orifice equation. It is observed that the discharge coefficient decreases when the 

pressure increases (Fig. 4). It is symbolicly shown as the linear relationship in Fig. 4 in order to 

demonstrate the inverse relationship between to variable.  

 
Figure 4. Variation of discharge coefficient with respect to pressure head. 

Secondly, pressure was kept constant and the variation of the discharge coefficient with hole area 

was investigated. As a result of the simulations, it is found that the discharge coefficient changes 

inversely with the hole area under a constant pressure boundary condition (Fig. 5).  

 

𝑎𝑥𝑏 (12) 
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Figure 5. Variation of discharge coefficient with respect to leakage area. 

As seen in Fig. 4 and Fig. 5, discharge coefficient varies between 0.65 and 0.72. The results 

obtained in this study coincide with the studies in the literature (Table 2). It will be well directed to 

obtain a function on behalf of the discharge coefficient instead of taking as an average value. In addition, 

as seen in Fig. 5, the range of discharge coefficient values which is obtained by changing the hole area 

is greater than the range result from the pressure variation. 

Based on these results, it was decided to choose the independent variables as dimensionless since 

the discharge coefficient is a dimensionless parameter. 

Table 2. Comparison of the calculated discharge coefficient values with the studies in the literature. 

Reference Discharge coefficient values 

Lea (1908) 0.6 

Lambert (2001) 0.75 

Idelchik (2003) 0.97 

Cassa et al. (2010) 0.67 

Schwaller and vanZyl (2014) 0.65 

Schwaller et al.(2015) 0.65 

Fox et al. (2016) 0.64-0.75 

Current study 0.65-0.72 

For this purpose, the dimensionless area, r, giving the ratio of the hole area and the pipe cross-

sectional area and the dimensionless pressure which is the ratio of the internal pressure to the external 

pressure, p, was used to generate the equation (Eq. 13). 

 

in which ALeakage is the hole area, Apipe is the pipe cross section area and Pi, Pe are the internal 

pressure and external pressure, respectively.   

Thus, Eq. 14 can be obtained as follows: 

 

𝑟 =
𝐴𝐿𝑒𝑎𝑘𝑎𝑔𝑒

𝐴𝑃𝑖𝑝𝑒

 ;  𝑝 =
𝑃𝑖

𝑃𝑒
 (13) 

C𝑑 =  𝑓 (
𝐴𝐿𝑒𝑎𝑘𝑎𝑔𝑒

𝐴𝑃𝑖𝑝𝑒

 ;
𝑃𝑖

𝑃𝑒

) = 𝑓(𝑟 ;  𝑝) (14) 
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To obtain a general equation for discharge coefficient, seven different leakage areas and seven 

different pressure values were used to conduct 49 simulations. As a result, linear regression analysis was 

used to find the equation that could be obtained by using the data of the simulation results. In the 

regression equation, r, r², r³, p, p², p0.5 were used as input. In addition, the best matched equation was 

decided upon by the evaluation made according to various performance criteria, such as root mean square 

error (RMSE), mean absolute percentage error (MAPE) and determination coefficient (R²). The results 

of the calculated performance criterias are presented in Table 3. As a result of different analysis to obtain 

best matched equation, Eq. 15 was obtained. 

𝐶𝑑 = 0.396 × 𝑟 − 23.749 × 𝑟2 + 92.264 × 𝑟3 + 0.0026 × 𝑝 + 0.6987 (15) 

Table 3. Performance of the equations derived for the optimum discharge coefficient function. 

Independent Variable RMSE MAPE (%) R2 

r, r2, r3, p 0.073390936 0.799844685 0.9321 

The equations were derived by using the least squares method. The least squares method is a 

parametric method and some conditions must be fulfilled for statistical significance. One of these 

conditions is that the coefficients of equation are significantly different from zero and it is decided by 

taking into consideration of p values. In this study, each coefficient was found smaller than 0.05 at % 95 

confidence interval, as a result of the tests performed. Thus, it demonstrated that all coefficients are 

significantly different from zero. Furhermore, it can be concluded that the proposed equation is not only 

offers practical to use, but also provides accurate results with low number of variables. 

CONCLUSION 

A numerical model was developed by using the finite volume method to investigate the discharge 

coefficient under different scenerios. The factors that have the most effect on this value have been 

determined and it has been found in the simulations that the discharge coefficient is a function of the 

leakage area, pressure and hole geometry. A practical equation was proposed to calculate the discharge 

coefficient according to the hole area and pressure.  

In the proposed equation, hole area and pressure head made dimensionless to satisfy dimensional 

homogeneity. The first dimensionless number is obtained as area ratio, which represents the ratio of the 

leakage area to the pipe cross-sectional area (r), while the second is the pressure ratio (p), which describes 

the ratio of the pipe internal pressure to the external pressure.  

In this study, it is suggested that the discharge coefficient can be calculated with the help of a 

simple equation and this approach will give more accurate results than the calculations made assuming 

that the discharge coefficient is constant. In addition, a contribution has been made to the literature to 

enable better understanding of losses, which are a major problem in water distribution networks. 

The results of the study are listed below: 

• Discharge coefficient varies between 0.65 and 0.72 for round hole. 

• Expression of the proposed equation as a function of dimensionless variables is significant in 

terms of uniformity and practicality  

• The equation obtained for discharge coefficient yielded very high accuracy according to various 

performance indicators. 

• Instead of taking the flow coefficient as a constant in the leakage flow rate calculations, a function 

is obtained from the factors affecting the flow coefficient (pressure and leakage area) and the leakage 

flow rate calculations should be done in this way. 
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In this study, hydraulically, a proposal has been made to provide a more accurate understanding 

of this topic, which has recently been carried out on a considerable number of studies. 
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