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Abstract
In the present paper we introduce new “truncated" hypersingular integral operators
Dα

ϵ f, (ϵ > 0) generated by the modified Poisson semigroup and obtain an explicit inversion
formula for the Flett potentials in framework of Lp–spaces.
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1. Introduction
The importance of the potential operators, in particular Riesz and Bessel potentials,

lies in the fact that they improve the “smoothness" of a function and in this context they
are useful tools in certain function spaces, such as Lipschitz, Sobolev and Hardy spaces.

The Riesz potentials Iαf of a function f are interpreted as the negative fractional powers
of the minus Laplacian (−∆) = −

n∑
k=1

∂2

∂x2
k
, and have the following integral representation

(see, [19, p.117],[16, p.483],[14, p.215])

(Iαf) (x) = 1
γn (α)

∫
Rn

|y|α−n f (x − y) dy, 0 < α < n, (1.1)

where γn (α) = π
n
2 2αΓ (α/2) /Γ ((n − α) /2) .

The Bessel potentials Jαf of a function f are interpreted as the negative fractional
powers of “the strictly positive” operator (E − ∆), E is the identity operator, and they
have the integral representation (see, [19, p.130],[16, p.540])

(Jαf) (x) = 1
βn (α)

∫
Rn

Gα (y) f (x − y) dy, α > 0, (1.2)

with the kernel

Gα (y) =
∫ ∞

0
e

−ξ− |y|2
4ξ ξ

α−n
2 −1dξ, βn (α) = 2nπ

n
2 Γ (α/2) .
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The Riesz and Bessel potentials have the following “one dimensional" integral representa-
tion via the Poisson integral:

(Iαf)(x) = 1
Γ(α)

∫ ∞

0
tα−1(Ptf)(x)dt, (1.3)

(Jαf)(x) =
√

π

Γ(1
2α)

∫ ∞

0
( t

2
)

1
2 (α−1)J 1

2 (α−1)(t)(Ptf)(x)dt, (1.4)

where Jν is the Bessel function of the first kind of order ν and Ptf is the Poisson integral

(Ptf) (x) =
∫
Rn

p (y, t) f (x − y) dy, t > 0, x ∈ Rn (1.5)

with the Poisson kernel p (y, t)

p (y, t) = cnt(
t2 + |y|2

) 1
2 (n+1)

, cn =
Γ
(

1
2 (n + 1)

)
π

1
2 (n+1)

. (1.6)

As seen from (1.3) and (1.4), the Riesz potentials are better suited to the Poisson
kernel than Bessel potentials. However, there are another fractional integral operators
whose behaviours are midway between that of the Bessel and Riesz potentials. These
potentials, that we called the Flett potentials, are introduced by T.M. Flett in the paper
[7] (see also [16, p.541]).

The Flett potentials Fαf of a function f are defined in terms of Fourier transform as

(Fαf )̂ (x) = (1 + |x|)−α f̂ (x) , x ∈ Rn, α > 0, (1.7)

with Fourier multipliers (1 + |x|)−α , whereas the Fourier multipliers of Riesz and Bessel
potentials are |x|−α and (1 + x2)α/2, respectively. These potentials are interpreted as
the negative fractional powers of the operator (E + Λ), where Λ = (−∆)

1
2 and ∆ is the

Laplacian. They have the following integral representation

(Fαf) (x) = (ϕα (y) ∗ f) (x) =
∫
Rn

ϕα (y) f (x − y) dy, (1.8)

where the kernel ϕα (y) has the representation

ϕα (y) = 1
λn (α)

|y|α−n
∫ ∞

0

sαe−s|y|

(1 + s2)
n+1

2
ds, (α > 0) (1.9)

with λn (α) = π(n+1)/2Γ (α) /Γ ((n + 1) /2) .
One of the important problems for the potential operators is to obtain an explicit

inversion formula for them. The hypersingular integral technique, that powerful tool for
inversion of the Bessel and Riesz potentials, was introduced and studied by Stein [18],
Lizorkin [8], Wheeden [21], Samko [15, 16], Nogin[9, 10], Rubin [11–14], Balakrishnan [6]
and many other mathematicians.

We should also mention the papers [1–5, 17], where the explicit inversion formulae for
the ordinary and generalized Riesz, Bessel, parabolic and Flett potentials are obtained by
making use of the relevant wavelet-type transform.

In this paper, inspired by the techniques in the papers [11–13] we introduce the “trun-
cated” hypersingular integral operators Dα

ε f, (ε > 0) generated by modified Poisson semi-
group (see below (2.12)), and obtain an explicit inversion formula for the Flett potentials.
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2. Preliminaries and auxiliary lemmas
Lp (Rn) is the space of the Lebesgue measurable functions on Rn with the finite norm

∥f∥p =
(∫

Rn
|f (x)|p dx

) 1
p

, 1 ≤ p < ∞ ; ∥f∥∞ = ess sup
x∈Rn

|f (x)| .

Here, x = (x1, x2, . . . , xn) ϵ Rn and dx = dx1dx2 . . . dxn . The Fourier and inverse
Fourier transforms of f ∈ L1 (Rn) are defined by

f̂ (x) =
∫
Rn

e−ix·tf (t) dt, x · t = x1t1 + · · · + xntn ; f∨ (t) = (2π)−n f̂ (−t) .

Denote by S = S(Rn) the space of Scwarz test functions. Namely,

S =
{

f ∈ C∞ (Rn) : sup
x∈Rn

∣∣∣∣∣xα ∂β

∂xβ
f(x)

∣∣∣∣∣ < ∞ , for all α, β ∈ Zn
+

}
where x = (x1, x2, . . . , xn), α = (α1, α2, . . . , αn), xα = xα1

1 , xα2
2 , . . . , xαn

n and ∂β

∂xβ f(x) =
∂β1

∂x
β1
1

· · · ∂βn

∂xβn
n

f(x1, x2, . . . , xn).
The notion C0 = C0(Rn) will denote the class of continuous functions on Rn, vanishing

at infinity.
With the aid of the formula (1.9) it is not difficult to show that the kernel ϕα has the

following properties (see [7] and [16, p.542]):
(i) If 0 < α < n, then

ϕα (x) ∼ cn (α) |x|α−n as |x| → 0,

and
ϕn (x) ∼ cn

(n − 1)!
ln 1

|x|
as |x| → 0,

where

cn (α) =
Γ
(

1
2 (α + 1)

)
Γ
(

1
2 (n − α)

)
2Γ (α) π

1
2 (n+1)

and cn =
Γ
(

1
2 (n + 1)

)
π

1
2 (n+1)

.

(ii) ϕα ∈ L1 (Rn) and ∥ϕα∥1 = 1, for all α > 0.
(iii) The Fourier transform of ϕα for α > 0 is∫

Rn
ϕα (y) e−ix·ydy = (1 + |x|)−α .

(iv)
ϕα (x) ∼ αcn |x|−n−1 as |x| → ∞.

From (1.8) and (ii) it follows that

∥Fαf∥p ≤ ∥f∥p , for all α > 0 and 1 ≤ p ≤ ∞. (2.1)

Also, using (1.9) and the definition of Poisson integral, we can write equivalently

(Fαf) (x) = 1
Γ (α)

∫ ∞

0
tα−1e−t (Ptf) (x) dt, f ∈ Lp, (1 ≤ p ≤ ∞) , (2.2)

where Ptf is defined as in (1.5).
The Poisson integral Ptf has the following properties, that will be used later.

Lemma 2.1. ( see e.g.[14, p.217])
Let f ∈ Lp (Rn) , 1 ≤ p ≤ ∞, Ptf be the Poisson integral and p (y, t) be defined as in

(1.6). Then
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(i) ∫
Rn

p (y, t) dy = 1 , (p (·, t))̂ (y) = e−t|y| , ∀t > 0 ; (2.3)

(ii)
∥Ptf∥p ≤ ∥f∥p ; (2.4)

(iii)
sup

x∈Rn
|(Ptf) (x)| ≤ ct

− n
p ∥f∥p , 1 ≤ p < ∞ , c = c(n, p) ; (2.5)

(iv)
sup
t>0

|(Ptf) (x)| ≤ (Mf) (x) , (2.6)

where, (Mf) is the Hardy-Littlewood maximal function;
(v)

Pα [Pβf (·)] (x) = (Pα+βf) (x) , α > 0, β > 0 ; (2.7)
(vi)

lim
t→0

(Ptf) (x) = f (x) , (2.8)

where the limit is understood by Lp-norm, pointwise a.e. or uniformly.

2.1. The truncated hypersingular integral operators associated to the
modified Poisson integral

The finite difference with order l ∈ N and step τ ∈ R1 of the function g (t) ,
(
t ∈ R1) is

defined by

∆l
τ [g] (t) =

l∑
k=0

(
l

k

)
(−1)k g (t + kτ) . (2.9)

In the special case, for t = 0,

∆l
τ [g] (0) =

l∑
k=0

(
l

k

)
(−1)k g (kτ) . (2.10)

Definition 2.2. Let f ∈ Lp (Rn) , 1 ≤ p ≤ ∞ and the Poisson integral Ptf be as in (1.5).
The modified Poisson integral is defined as

(Ptf) (x) = e−t (Ptf) (x) , 0 ≤ t < ∞. (2.11)

It is clear that the semigroup property

(Pα (Pβf)) (x) = (Pα+βf) (x)

holds and owing to Lemma 2.1-(vi) it is assumed that(
e−tPtf

)
(x) |t=0= f (x) ≡ P0f.

Using this modified Poisson semigroup Ptf and the finite difference with order l ∈ N,
we introduce the following truncated integral operators (cf. [14, p.261]).

Definition 2.3. Let f ∈ Lp (Rn) , 1 ≤ p < ∞, α > 0 and l > α (l ∈ N) . Then the
construction

(Dα
ε f) (x) = 1

χl (α)

∫ ∞

ε
∆l

τ [(P·f) (x)] (0) dτ

τ1+α

= 1
χl (α)

∫ ∞

ε

[
l∑

k=0

(
l

k

)
(−1)k e−kτ (Pkτ f) (x)

]
dτ

τ1+α
, ε > 0, (2.12)
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will be called a truncated hypersingular integrals or briefly, a truncated integrals with
parameters ε > 0. Here the normalized coefficient χl (α) is defined as

χl (α) =
∫ ∞

0

(
1 − e−t

)l
t−1−αdt. (2.13)

By Minkowski integral inequality, it is easy to see that Dα
ε f ∈ Lp (Rn) for all ε > 0.

The main result of the paper is as follows.

Theorem 2.4. Let φ ∈ Lp (Rn) , (1 ≤ p < ∞) and Fαφ be the Flett potentials of function
φ of order α > 0. Further, let the integral operators Dα

ε , (ε > 0) be defined as in (2.12).
Then

lim
ε→0+

(Dα
ε F

αφ) (x) = φ (x) ,

where the limit is understood in Lp-norm or pointwise a.e..

3. Proof of the main result
Now we state three lemmas, which play an important role in the proof of Theorem2.4.

Lemma 3.1. Let f ∈ Lp (Rn) , (1 ≤ p < ∞) and Ptf be the modified Poisson integral
defined as in (2.11). Suppose that the Riemann-Liouville fractional integral of a function
h (t) , (0 < t < ∞) is defined as

Iα
−h (t) = 1

Γ (α)

∫ ∞

t

h (r)
(r − t)1−α dr = 1

Γ (α)

∫ ∞

0

h (r + t)
r1−α

dr, α > 0. (3.1)

Then
Pt [Fαf ] (x) = Iα

− [(P·f) (x)] (t) , (3.2)

for all t > 0 and a.e.x ∈ Rn. Where Fαf is the Flett potential operator defined as in (1.8).

Proof. First, let us emphasize that the Fourier transforms of the right and left sides of
(3.2) are equal for all f ∈ S (Schwartz space). Indeed, if f ∈ S then

(Pt [Fαf ] (x))̂ (ξ) = e−t(1+|ξ|) (1 + |ξ|)−α f̂ (ξ) , (3.3)

and on the other hand,(
Iα

− [(P·f) (x)] (t)
)̂

(ξ) = 1
Γ (α)

[∫ ∞

0
(Pr+tf) (x) rα−1dr

]̂
(ξ)

= 1
Γ (α)

∫ ∞

0
e−(r+t)rα−1 [(Pr+tf) (x)]̂ (ξ) dr

= 1
Γ (α)

∫ ∞

0
e−(r+t)rα−1e−(r+t)|ξ|f̂(ξ)dr

= f̂(ξ)e−t(1+|ξ|) 1
Γ (α)

∫ ∞

0
e−r(1+|ξ|)rα−1dr

= e−t(1+|ξ|) (1 + |ξ|)−α f̂(ξ). (3.4)

Thus, from (3.3) and (3.4) it is easily seen that the equality in (3.2) is true for all Schwartz
functions f . On the other hand, since the operators A and B defined as

(Af) (x) = Pt [Fαf ] (x) and (Bf) (x) = Iα
− [(P·f) (x)] (t)

are strong type of (p, p) and the Schwarz space S is dense in Lp (Rn), the proof is complete.
�
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Lemma 3.2. Let φ ∈ Lp (Rn) , (1 ≤ p < ∞) , 0 < α < ∞ and the truncated integrals
operators Dα

ε be defined as in (2.12). If Fαφ are the Flett potentials of φ ∈ Lp (Rn) , and
Ptφ, (0 < t < ∞) is the Poisson integral of φ, then the equality

(Dα
ε F

αφ) (x) =
∫ ∞

0
K(l)

α (η) e−εη (Pεηφ) (x) dη (3.5)

is valid for all ε > 0 and pointwise a.e..
Here, the auxilary kernel function K

(l)
α (η) is defined as follows:

K(l)
α (η) = 1

Γ (1 + α) χl (α)
1
η

l∑
k=0

(
l

k

)
(−1)k (η − k)α

+ , l > α, (3.6)

with

(η − k)α
+ =

{
(η − k)α , if η > k

0, if η ≤ k
.

Proof. By using (3.2), we have

(Dα
ε F

αφ) (x) = 1
χl (α)

∫ ∞

ε

[
l∑

k=0

(
l

k

)
(−1)k e−kτ (PkτF

αφ) (x)
]

dτ

τ1+α

(3.2)= 1
χl (α)

∫ ∞

ε

[
l∑

k=0

(
l

k

)
(−1)k Iα

− [(P·φ) (x)] (kτ)
]

dτ

τ1+α
. (3.7)

Further,
l∑

k=0

(
l

k

)
(−1)k Iα

− [(P·φ) (x)] (kτ)

(3.1)=
l∑

k=0

(
l

k

)
(−1)k 1

Γ (α)

∫ ∞

kτ
(r − kτ)α−1 (Prφ) (x) dr

=
∫ ∞

0
hτ (r) (Prφ) (x) dr, (3.8)

where

hτ (r) = 1
Γ (α)

l∑
k=0

(
l

k

)
(−1)k (r − kτ)α−1

+ (3.9)

with

(r − kτ)α−1
+ =

{
(r − kτ)α−1 , if r > kτ

0, if r ≤ kτ
.

Now, by taking into account (3.8) in (3.7) we get

(Dα
ε F

αφ) (x) = 1
χl (α)

∫ ∞

ε

1
τ1+α

(∫ ∞

0
hτ (r) (Prφ) (x) dr

)
dτ

= 1
χl (α)

∫ ∞

0
(Prφ) (x)

(∫ ∞

ε

1
τ1+α

hτ (r) dτ

)
dr

(changing of variables r = εη, 0 < η < ∞)

= ε

χl (α)

∫ ∞

0
(Pεηφ) (x)

(∫ ∞

ε

1
τ1+α

hτ (εη) dτ

)
dη

(3.9)= ε

Γ (α) χl (α)

∫ ∞

0
(Pεηφ) (x)

(
l∑

k=0

(
l

k

)
(−1)k

∫ ∞

ε

1
τ1+α

(εη − kτ)α−1
+ dτ

)
dη. (3.10)



A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials 1411

Let’s evaluate the integrals

ik =
∫ ∞

0
τ−1−α (εη − kτ)α−1

+ dτ, k = 0, 1, ..., l

those appear in (3.10).
For k = 0 :

i0 =
∫ ∞

ε
τ−1−α (εη)α−1 dτ = 1

αε
ηα−1;

for k = 1, 2, ..., l :

ik =
{ ∫ εη

k
ε τ−1−α (εη − kτ)α−1 dτ, if η > k

0, if η ≤ k
.

By change of variables τ = εη
k

1
t+1 , 0 < t < η

k − 1, we get, for k = 0, 1, ..., l,

ik =
{

1
εηα (η − k)α , if η > k

0, if η ≤ k
= 1

εηα
(η − k)α

+ . (3.11)

By using this equality in (3.10), we obtain the desired equality

(Dα
ε F

αφ) (x) =
∫ ∞

0
K(l)

α (η) e−εη (Pεηφ) (x) dη,

where the kernel function K
(l)
α (η) is defined as in (3.6). �

Remark 3.3. The function K
(l)
α (η) has the following properties (see [16, p.125], [14,

p.158]):

(a) K(l)
α (η) ∈ L1 (0, ∞) and

∫ ∞

0
K(l)

α (η) dη = 1; (3.12)

(b) K(l)
α (η) =

{
O(ηα−1), as η → 0+

O(ηα−l−1), as η → ∞ . (3.13)

Lemma 3.4. [20, p.60] Let {Tε}ε>0 be a family of linear operators, mapping Lp (Rn) ,
1 ≤ p ≤ ∞ into the space of measurable functions on Rn. Define T ∗f by setting

(T ∗f) (x) = sup
ε>0

|(Tεf) (x)| , x ∈ Rn

and denote by meas(E) the Lebesgue measure of the set E ⊂ Rn. Suppose that there exist
a constant c > 0 and real number q ≥ 1 such that

meas {x : |(T ∗f) (x)| > t} ≤
(

c ∥f∥p

t

)q

for all t > 0 and f ∈ Lp.
If there exists a dense subset D of Lp such that lim

ε→0
(Tεg) (x) exists and is finite a.e.

whenever g ∈ D, then for each f ∈ Lp, lim
ε→0

(Tεf) (x) exists and is finite a.e..

Proof of Theorem 2.4
By taking into account (3.12), we have

|(Dα
ε F

αφ) (x) − φ (x)|
(3.5)
≤

∫ ∞

0

∣∣∣K(l)
α (η)

∣∣∣ ∣∣e−εη (Pεηφ) (x) − φ (x)
∣∣ dη

≤
∫ ∞

0

(
1 − e−εη) ∣∣∣K(l)

α (η)
∣∣∣ e−εη |(Pεηφ) (x)| dη

+
∫ ∞

0

∣∣∣K(l)
α (η)

∣∣∣ |(Pεηφ) (x) − φ (x)| dη.



1412 S. Sezer Evcan, M. Eryigit, S. Çobanoğlu

Thus,

∥Dα
ε F

αφ − φ∥p ≤
∫ ∞

0

(
1 − e−εη) ∣∣∣K(l)

α (η)
∣∣∣ ∥Pεηφ∥p dη +

+
∫ ∞

0

∣∣∣K(l)
α (η)

∣∣∣ ∥Pεηφ − φ∥p dη

= I1 (ε) + I2 (ε) . (3.14)

By making use of Lemma 2.1, Remark 3.3 and the Lebesgue dominated convergence theo-
rem we can see that

lim
ε→0

I1 (ε) = 0 and lim
ε→0

I2 (ε) = 0.

For the convenience of the reader we give here the proof of lim
ε→0

I1(ε) = 0. By Lemma
2.1-(ii), ∥ Pεηφ ∥p≤∥ φ ∥p and therefore,

(1 − e−εη) | K(ℓ)
α (η) |∥ Pεηφ ∥p≤| K(ℓ)

α (η) |∥ φ ∥p .

Since, the right hand side of the last inequality is integrable and lim
ε→0+

(1 − e−εη) = 0, the
Lebesgue dominated convergence theorem yields that

lim
ε→0+

I1(e) = lim
ε→0+

∫ ∞

0
(1 − eεη) | K(ℓ)

α (η) |∥ Pεηφ ∥p dη

=
∫ ∞

0
lim

ε→0+
(1 − e−εη) | K(ℓ)

α (η) |∥ Pεηφ ∥p dη = 0.

Similarly, since ∥ Pεηφ − φ ∥p ≤ 2 ∥ φ ∥p and lim
ε→0

∥ Pεηφ − φ ∥p= 0 by Lemma 2.1-
(vi ), we have by the Lebesgue theorem that lim

ε→0+
I2(ε) = 0. As a result, we have

lim
ε→0

∥Dα
ε F

αφ − φ∥p = 0
Also, it is not difficult to see that the convergence is uniform for φ ∈ C0 ∩ Lp if we take

p = ∞ in (3.14). Namely, let now φ ∈ C0. Denote ∥ φ ∥∞= sup
x∈Rn

| φ(x) | . Then, we have

from (3.14) that

∥ Dα
ϵ F

αφ − φ ∥∞ ≤
∫ ∞

0
(1 − e−εη) | K(ℓ)

α (η) |∥ Pεηφ ∥∞ dη

+
∫ ∞

0
| K(ℓ)

α (η) |∥ Pεηφ − φ ∥∞ dη = Ĩ1(ε) + Ĩ2(ε).

Since lim
ε→0+

∥ Pεηφ−φ ∥∞ = 0, ∥ Pεηφ ∥∞ ≤ ∥ φ ∥∞ and ∥ Pεηφ−φ ∥∞ ≤ 2 ∥ φ ∥∞, the

Lebesgue dominated convergence theorem yields that lim
ε→0+

Ĩ1(ε) = 0 and lim
ε→0+

Ĩ2(ε) = 0,
and therefore, lim

ε→0
∥Dα

ε F
αφ − φ∥∞ = 0

Finally, since we have the following inequality

sup
ε>0

|(Dα
ε F

αφ) (x)| ≤ sup
t>0

|(Ptφ) (x)|
∫ ∞

0

∣∣∣K(l)
α (η)

∣∣∣ dη

(2.6)
≤ c (Mφ) (x) ,

and since the Hardy-Littlewood maximal operator M is weak (p, p) , it follows that the
maximal operator

(D∗φ) (x) = sup
ε>0

|(Dα
ε φ) (x)|

is weak (p, p) .
Also, because of the fact that (Dα

ε φ) (x) → φ (x) pointwise (in fact uniformly) as ε → 0
for all φ ∈ C0 ∩ Lp, and the set C0 ∩ Lp is dense in Lp (Rn) , (1 ≤ p < ∞) , we get that all
the conditions of Lemma 3.4 are fulfilled and therefore the proof is complete.
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