Sevgi, S., Macun, Y. & Işık, C. (2020). Investigating middle school students' metacognition and mathematical reasoning of problem-solving skills. *Bartun University Journal of Faculty of Education*, 9(3), 545-563

Bartin University Journal of Faculty of Education, 9(3), 545-563 buefad.bartin.edu.tr

Investigating Middle School Students' Metacognition and Mathematical Reasoning of Problem-Solving Skills

Sevim Sevgi^{*a}, Yavuz Macun^b, Cemalettin Işık^c

Article Info

Abstract

DOI: 10.14686/buefad.675770 Article History: Received: 16.01.2020 Accepted: 21.09.2020 Published: 05.10.2020 Keywords: Metacognition, Problem-solving, Middle school mathematics. Article Type: Research Article

Described as being aware of and controlling one's own thinking processes and a benefit of consequences, metacognition is known to be related to both academic achievement and students' thinking. This study aimed to investigate the problemsolving and metacognition skills of middle school students with regard to gender, grade level, number of siblings, financial status of the family, and educational background of the parents. For this purpose, 280 middle school students were selected from a public middle school in Melikgazi, Kayseri by using convenience sampling method. As a result of the analysis based on the four factors of metacognition scale and problem-solving inventory, male participants were better than female not only at solving problems requiring mathematical reasoning but also at monitoring what they did, what they would do and, most importantly, their own thinking processes. Surprisingly, 5^{th} grade students had higher predictive abilities than 8^{th} graders. Although predictive skills were higher, 5^{th} and 6^{th} graders had lower level of problem-solving skills than upper-class levels. Also, students whose mothers have undergraduate and graduate degrees were better at solving problems than those whose mothers had never attended a school or who graduated from elementary school.

Ortaokul Öğrencilerinin Üstbiliş ve Problem Çözmede Kullandıkları Matematiksel Muhakeme Becerilerinin İncelenmesi

Makale Bilgisi	Úž.
DOI: 10.14686/buefad.675770	Kişinin kendi düşünme süreçlerinin farkında olması ve bu süreçleri kontrol etmesi olarak tanımlanan üstbilisin hem düşünce hem de akademik basarı ile iliskili olduğu
<i>Makale Geçmişi:</i> Geliş: 16.01.2020 Kabul: 21.09.2020 Yayın: 05.10.2020	bilinmektedir. Bu çalışmada ortaokul öğrencilerinin cinsiyet, sınıf düzeyi, kardeş sayısı, ailenin mali durumu ve ebeveynlerin eğitim durumuna göre problem çözme ve üstbiliş becerilerinin incelenmesi amaçlanmıştır. Bu amaçla, Kayseri ili Melikgazi ilçesinde bulunan bir devlet ortaokulundan kolay örnekleme yöntemi ile
Anahtar Kelimeler: Üstbiliş, Problem çözme, Ortaokul öğrencileri. Makale Türü: Araştırma Makalesi	280 ortaokul öğrencisi seçilmiştir. Problem çözme envanteri ve üstbiliş ölçeğinin dört faktörüne dayanan analizler sonucunda, erkek öğrencilerin hem muhakeme gerektiren problemleri çözmede hem de kendi düşünme süreçlerini yönlendirmede daha iyi oldukları, 5. sınıf öğrencilerinin 8. sınıf öğrencilerine göre daha yüksek tahmin yeteneğine sahip oldukları, 5. ve 6. sınıf öğrencilerinin üst sınıflara kıyasla daha düşük problem çözme becerilerine sahip oldukları ve anneleri lisans ve/ya lisansüstü derecesine sahip olan öğrencilerin problem çözmede anneleri hiçbir okula gitmemiş veya ilkokul mezunu olanlardan daha iyi oldukları sonucuna ulaşılırken, kardeş sayısının iki ölçekten elde edilen puanlar üzerinde anlamlı bir etkisi bulunmamıştır.

^{*}Corresponding Author: sevimsevgi@erciyes.edu.tr, sevimsevgi@gmail.com

^a Assistant Prof. Dr., Erciyes University, Faculty of Education, Mathematics and Science Education Department, A120 Kayseri, Turkey, http://orcid.org/0000-0002-6611-5543

^b Ph.D. Student, Erciyes University, Institute of Educational Sciences, Mathematics and Science Education, Kayseri, Turkey, http://orcid.org/0000-0003-4983-2601

^c Prof. Dr., Erciyes University, Faculty of Education, Mathematics and Science Education Department, A120 Kayseri, Turkey, https://orcid.org/0000-0001-6326-0043

Introduction

For most middle school students, mathematics is seen as difficult to understand due to the fact that it involves complex mental processes. In order to make mathematics understandable, it is necessary to use cognitive, metacognitive, and self-regulation skills to overcome these complex mental processes (Kaplan & Duran, 2016). Metacognition is a concept linked to cognition and expressed as a benefit of consciousness. For a better understanding of metacognition, it is important to first know what cognition is (Erez & Peled, 2001). According to Fidan (1996), cognition is all the mental processes that the human mind does to understand the world and the events around it. Metacognition, on the other hand, means that one is aware of and can control his or her own thinking processes (Flavell, 1976, 1979) and involves an individual's ability to predict, plan, monitor and evaluate his or her mental activities (Brown, 1980; Swanson, 1990). Although cognition and metacognition are related, they are actually different. The function of cognition is to provide cognitive interventions to solve problems while the function of metacognitive skill is a more advanced thinking ability that enables people to become successful in all areas of life and aids effective control of cognitive processes during learning. This awareness about the individuals' own thinking process has a significant relation with other mental activities and academic achievements (Deseote & Roeyers, 2002; Eggen & Kauchak, 2001; Victor, 2004).

According to Flavell (1976), individuals with metacognitive skills use metacognitive knowledge, a deeper point of view and knowledge of one's own cognitive abilities and outcomes, consisting of three components namely person variable, task variable, and strategy variable. Studies on how individuals' metacognitive skills and knowledge change in terms of these variables generally focus on four metacognitive skills which are orientation or prediction, planning, monitoring, and evaluation (Deseote, 2001; Lucangeli & Cornoldi, 1997; Schoenfeld, 1992). First of all, orientation skill requires thinking slowly and determining the appropriate learning environment, time, and characteristics. With this skill, children estimate the difficulty level of a task or mission and organize what needs to be done in their mind to accomplish (Winne, 1997). Secondly, planning skill enables children to think in advance of how, when, and why to take action to complete a particular task successfully. Thirdly, monitoring skill is connected self-regulating controls of cognitive strategies used with simultaneous verbal narratives during actual performance, to identify problems and change plans (Tobias & Everson, 1996). Lastly, evaluation skill is defined as reflective verbal statements in which children look at what strategies were used after the activity ended and whether they took it to the anticipated outcomes (Deseote, 2001).

The use of metacognition in mathematics is considered crucial by some researchers especially in problem solving (Borkowski, 1992; De Clercq, Desoete, & Roeyers, 2000; Schoenfeld, 1992). Not only in the first stage of mathematical problem-solving, students are involved in metacognition, while creating an appropriate representation of the problem, but also in the final stage of interpretation and checking the result of calculations (Verschaffel, 1999). Schoenfeld (1987) stated that the metacognition levels of the students can be improved with problem-solving in the best way. For this purpose, he organized courses that included problem-solving strategies and proposed a model for effective problem solving that emphasized the students' monitoring, organizing and evaluating their own studies. While there is such an important link between problem-solving and metacognition, it has been crucial to examine the relationships between these skills of middle school students and other factors affect middle school students' metacognition levels.

Method

This study is aimed to investigate the factors affecting middle school students' metacognitions and problemsolving skills requiring mathematical reasoning. The strategies used by middle grade students in problem solving process were also examined. For this purpose, the study aimed to answer the following research problem: "What are the factors affecting middle school students' metacognitions and problem-solving skills requiring mathematical reasoning?"

Research Design

In this study, quantitative techniques were used to realize the analyse of the research problem. Descriptive research methods were used to determine the metacognitive skill levels and the factors affecting these skills (Creswell, 2009). The descriptive method is a research approach based on collecting data over a certain period of

time, aiming to describe a situation that exists in the past or present and compare the relationships between variables (Fraenkel & Wallen, 2010).

Population and Sample

The sample of the study which was selected using the convenience sampling method consisted of 135 male and 145 female students studying in a public middle school in Melikgazi, Kayseri, Turkey in 2019-2020 academic year. Convenience sampling, which is a frequently used method in educational studies, is appropriate compared to other methods and is commonly used when the researcher is not able to use other sampling methods (Creswell & Plano Clark, 2017). In addition, studying an acquainted sample can give practicality and speed to the study.

Grade Level	f	%	Gender	f	%
5	57	20.4	Girl	29	50.9
5	57	20.4	Boy	28	49.1
C C	50	21.1 Gi Bo	Girl	38	64.4
0	39		Boy	21	35.6
7	70	25.7	Girl	32	44.4
	12		Boy	40	55.6
8	02	32.9	Girl	46	50
	92		Boy	46	50

Table 1. Sample of the Study by Grade Level and Gender

Due to the structure of the sample, the number of 8th grade students is slightly higher than the other grade levels. This would be beneficial in achieving better results for research rather than a disadvantage. The distribution percentage between grade levels are nearly close to each other. In Turkey, eighth graders are not volunteer to be participant in research projects so this could be advantage.

Data Collection Tools

In the study, to determine metacognitive skills of middle school students, a personal information form was used together with the Metacognitive Scale (MS) developed by Yildiz, Akpinar, Tatar, and Ergin (2009), which consisted of 30 items and whose reliability coefficient was calculated as 0.96 by the researchers. There were 30 positive items in the Likert type in total. The options are "None (1), Sometimes (2), Frequently (3)" and "Always (4)". There are two factors of the scale which are knowledge of cognition and knowledge of regulation according to the factor analysis. The knowledge of cognition has three components as declarative knowledge, procedural knowledge, and conditional knowledge while the knowledge of regulation has five components namely planning, self-control, cognitive strategies, self-evaluation, and self-monitoring. In parallel to the study of Yildiz et al. (2009), it was seen that the items in the metacognition scale were loaded under four factors namely prediction (3, 6, 15, 20, 21, 22, 23, 25, 28, 29, 30), planning (9, 13, 17, 19, 27), monitoring (4, 5, 11, 12, 16, 24, 26), and evaluation (1, 2, 7, 8, 10, 14, 18) as a result of the explanatory factor analysis (EFA) conducted with 50 iterations of the data collected from 280 middle school students. Costello and Osborne (2005) states that the final decision on the number of factors belongs to the researcher and the number of factors is determined not only by the data but also by the theoretical expectations. So, it was decided that the items of metacognition scale were loaded in four factors for the purpose of the research. According to the Tabachnick and Fidell (2015), there must be at least 0.10 differences between the highest values a substance is loaded in successive factors as a result of EFA. When the rotated components matrix is examined in Table 2, it is seen that this difference is greater than 0.10 in all substances. The sphericity test, which tested the general significance of all correlations within the Bartlett correlation matrix, was significant [$\chi 2(435) = 2406.38$, p = .000 < .001] and showed that it was appropriate to use the factor analysis in this group of data. The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy showed that the relationships between variables were extremely high (KMO = .914), so it was acceptable to continue the analysis (Field, 2005).

 I4	Factors						
Items	Prediction	Evaluation	Planning	Monitoring			
28	.577						
29	.619						
23	.572						
22	.550						
3	.549						
15	.485						
30	.470						
25	.461						
21	.420						
6	.338						
20	.300						
1		.681					
2		.650					
10		.563					
18		.518					
7		.472					
14		.457					
8		.448					
9			.670				
13			.561				
17			.508				
19			.435				
27			.390				
16				.587			
24				.574			
11				.492			
26				.429			
4				.427			
12				.371			
5				.359			

 Table 2. Rotated Component Matrix Results

In addition, in order to examine the strategies used by students to solve problems that require mathematical reasoning, the program inventory consisting of five items was selected by taking expert opinion from the Program for International Student Assessment (PISA) questions applied in 2012 was used in Figure 1 (OECD, 2012). The personal information form used with metacognition scale and problem-solving inventory consisted of the information about genders, grade levels, parents' educational backgrounds, number of siblings, and family financial status.

Figure 1. Items of the Problem-Solving Inventory

As shown in Figure 1, five items of the Problem-Solving Inventory were selected according to the cognitive levels and grade levels of the students since they should be at a level that can be answered by students at each grade.

Tuble of Reliability Coefficients of the	Tuble of Renability Coefficients of the Seales							
Scales	Cronbach's Alpha	Number of Items						
Metacognition	.910	30						
Prediction	.803	11						
Evaluation	.780	7						
Planning	.699	5						
Monitoring	.676	7						
Problem-Solving Inventory	.457	5						

 Table 3. Reliability Coefficients of the Scales

Table 3 shows that metacognition scale has a high reliability value whereas problem-solving inventory has a low reliability value due to the small number of questions. If both the number of questions was more than five and the sample of the study was big enough, this value of the scale would be expected to be higher. Similar to the whole Metacognition Scale, the reliability results of the four factors are in the appropriate range as shown in Table 3.

Data Collection

MS and Problem-Solving Inventory were applied at the beginning of the 2019-2020 academic year in order to examine the metacognition and problem-solving skills of a public middle school in Kayseri with 280 students at different grade levels. In addition, students were asked to fill out a personal information form to obtain their demographic information at the same time.

Data Analysis

It is important whether the data obtained in the analysis of quantitative data show normal distribution (Buyukozturk, Cakmak, Akgun, Karadeniz, & Demirel, 2013). Tabachnick and Fidell (2015) state that in multivariate analyses, it is one of the first actions to see whether continuous variables have a normal distribution. The normal distribution of variables gives better results in the analysis. Therefore, it was tested firstly whether the data obtained with the scales showed normal distribution. Kolmogorov-Smirnov test was applied as the sample size was more than 50. In the Kolmogorov-Smirnov test, it is assumed that the data is normally distributed when p > 0.05. In addition, some studies indicate that skewness and kurtosis values are considered to be excellent in the ± 1 range for most psychometric purposes, but that ± 2 are considered sufficient criteria for normality in most cases (George & Mallery, 2010; Gravetter & Wallnau, 2014).

Table 4. Normality Tests of Data by Gender

Scales	Gender	df	р	Skewness	Kurtosis
Metacognition	Both	280	.200	076	471
	Girls	145	.200	.052	900
	Boys	135	.195	212	.165
	Both	280	.000	.276	579
Problem-Solving Inventory	Girls	145	.000	.128	624
	Boys	135	.000	.260	781

As shown in Table 4, metacognition scale and the problem-solving inventory showed a normal distribution not only as a whole but also by gender.

Table 5. Normality Tests of Data by Grade Levels

Scales	Grade Levels	df	р	Skewness	Kurtosis
	5 th Grade	57	.000	059	843

	6 th Grade	59	000	- 087	- 771
Problem-Solving Inventory	7 th Grade	72	.000	.219	813
	8 th Grade	92	.000	.053	813
Metacognition	5 th Grade	57	.020	.081	594
	6 th Grade	59	.191	364	222
	7 th Grade	72	.200	215	329
	8 th Grade	92	.200	.168	506

Middle School Students' Metacognition and Problem-Solving Skills

Similar to the normality test results by gender, metacognition scale and the problem-solving inventory showed a normal distribution by grade levels as given in Table 5. In addition to looking at the normality values of both scales as a whole, it would be useful to look at the normality results of the four factors that emerged as a result of factor analysis applied to the metacognition scale by the independent variables as gender, grade level, financial status of the family, number of siblings, and educational backgrounds of the parents to apply parametric tests.

Factors	Gender	df	р	Skewness	Kurtosis
Dradiation	Female	145	.078	102	625
Prediction	Male	135	.023	170	345
Evelvetion	Female	145	.000	157	921
Evaluation	Male	135	.000	608	.220
Diamaina	Female	145	.003	.124	765
Planning	Male	135	.000	286	345
Monitoring	Female	145	.001	556	066
	Male	135	.001	643	.367

As shown in Table 6, skewness and kurtosis values of four factors according to gender are within the limits accepted for normality.

Table 7. Normality Tests of	the Factors of Metacog	nition Scale by Grade Levels
-----------------------------	------------------------	------------------------------

Metacognitive Factors	Grade Levels	df	р	Skewness	Kurtosis
	5 th Grade	57	.076	177	654
Duadiation	6 th Grade	59	.071	428	114
Prediction	7 th Grade	72	.200	006	311
	8 th Grade	92	.200	.054	569
	5 th Grade	57	.042	400	801
Englandier	6 th Grade	59	.011	255	843
Evaluation	7 th Grade	72	.020	631	.047
	8 th Grade	92	.041	257	098
	5 th Grade	57	.000	.252	-1.039
Dianning	6 th Grade	59	.200	223	482
Planning	7 th Grade	72	.200	198	525
	8 th Grade	92	.133	.017	684
	5 th Grade	57	.067	423	283
Manitarina	6 th Grade	59	.008	626	148
Monitoring	7 th Grade	72	.001	788	.144
	8 th Grade	92	.048	693	1.169

According to the normality test of the factors by grade levels, it is seen in Table 7 that all data are in the acceptable normal distribution range.

Sevgi, Macun & Işık

Metacognitive	Educational	cognition sea	e oy i uiei	ns Educa	lional Duckgrou	lius
Factors	Background	Parents	df	р	Skewness	Kurtosis
	Non or Elementary	Mother	105	.200	172	041
	School	Father	64	.200	390	347
Duadiation	Middle or High	Mother	141	.031	083	700
Prediction	School	Father	153	.063	006	645
	Undergraduate or	Mother	34	.200	293	572
	Graduate	Father	63	.200	140	341
	Non or Elementary	Mother	105	.005	443	186
	School	Father	64	.056	316	449
Evolution	Middle or High School	Mother	141	.031	315	378
Evaluation		Father	153	.000	454	295
	Undergraduate or	Mother	34	.138	369	-1.072
	Graduate	Father	63	.200	113	691
	Non or Elementary	Mother	105	.020	.050	764
	School	Father	64	.014	.077	698
Dianning	Middle on High Cohool	Mother	141	.007	148	422
Flaming	Wildule of High School	Father	153	.002	127	596
	Undergraduate or	Mother	34	.200	203	992
	Graduate	Father	63	.044	101	576
	Non or Elementary	Mother	105	.018	649	.680
	School	Father	64	.030	389	763
Monitoring	Middle or High School	Mother	141	.000	664	.081
Monitoring	Wildule of High School	Father	153	.000	875	1.033
	Undergraduate or	Mother	34	.136	657	277
	Graduate	Father	63	.038	421	538

Table 8 Normality Tests of the Eactors of Metacognition Scale by Parents' Educational Backgrounds

The normality values of the four factors of the metacognition scale according to the educational status of the mother and father are observed to be within the desired skewness and kurtosis ranges for normality in Table 8.

Table 9. Normality	Tests of the F	Factors of Proble	m-Solving I	nventory by	Parents'	Educational I	Backgrounds
2			0				0

Table 9. Normanty Test	s of the ractors of Flobleth-Solv	Self-Solving inventory by Farents Educational Backgrounds					
Scale	Educational Background	Parents	df	р	Skewness	Kurtosis	
	Non or Elementory School	Mother	105	.000	.495	076	
	Non of Elementary School	Father	64	.000	.249	579	
Problem-Solving	Middle School or High	Mother	141	.000	.180	733	
Inventory	School	Father	153	.000	.275	575	
	Undergraduate on Craduate	Mother	34	.036	058	563	
	Undergraduate of Oraduate	Father	63	.001	.163	759	

It is seen in Table 9 that the problem-solving inventory shows a normal distribution by the educational backgrounds of the parents, similar to the results obtained from the normality test of the metacognition scale considering the skewness and kurtosis values in the appropriate range.

Metacognitive Factors	Number of Siblings	df	р	Skewness	Kurtosis
	1 or 2 siblings	68	.183	.215	560
Prediction	3 siblings	120	.048	264	469
	More than 3 siblings	92	.091	201	315
	1 or 2 siblings	68	.200	058	504
Evaluation	3 siblings	120	.005	385	357
	More than 3 siblings	92	.002	529	298
	1 or 2 siblings	68	.177	114	607
Planning	3 siblings	120	.005	.029	773
	More than 3 siblings	92	.047	082	674
	1 or 2 siblings	68	.050	-1.007	1.684
Monitoring	3 siblings	120	.001	566	137
_	More than 3 siblings	92	.051	446	341

According to the number of siblings of the students, the data obtained from the metacognition scale shows normal distribution as shown in Table 10 since either the significance values are greater than .05 or the skewness and kurtosis values are between -1 and +1.

Tuble 11 I tolling i tole of the i utors of i robieni borting intentory by i tuniber of biolings

Scale	Number of Siblings	df	р	Skewness	Kurtosis
Problem Solving	1 or 2 siblings	68	.000	.664	227
Inventory	3 siblings	120	.000	.173	669
Inventory	More than 3 siblings	92	.000	.664 .173 .108	645

Similar to the results of metacognition scale, problem-solving inventory by number of siblings has a normal distribution with respect to the skewness and kurtosis values as shown in Table 11.

Tabla 1	2 Normality	Tests of the	Factors of	Metacognition	Scale by	Financial	Status of the Far	nilv
Table 1	2. Normanty	Tests of the	Factors of	Metacogintion	scale by	Fillancial	Status of the Fai	шту

Metacognitive Factors	Financial Status of the Family	df	р	Skewness	Kurtosis
	Low	12	.200	.561	-1.428
Prediction	Medium	120	.003	337	308
	High	148	.026	.015	608
	Low	12	.200	.080	-1.400
Evaluation	Medium	120	.001	601	.070
	High	148	.005	227	740
	Low	12	.200	.614	153
Planning	Medium	120	.006	044	611
	High	148	.005	111	694
	Low	12	.200	580	699
Monitoring	Medium	120	.002	828	.758
	High	148	.000	375	607

Parallel to the other variables, it is seen that the data obtained from the metacognition scale shows a normal distribution according to the financial situation of the students' families in Table 12 with respect to either the significance values or the skewness and kurtosis values.

Table	13.	Normali	y Tests	of the	Factors	of F	Problem	-Sc	lving	Inventory	v by	⁷ Financia	l Status	of	the	Fam	il
			-							-							

Scale	Financial Status of the Family	df	р	Skewness	Kurtosis
	Low	12	.000	.664	227
Problem Solving Inventory	Medium	120	.000	.173	669
	High	148	.000	.108	645

Finally, whether the problem-solving inventory is distributed normally according to the family financial situation, skewness and kurtosis values are found to be within the desired ranges in Table 13. As a result of the normality test of the metacognition scale and problem-solving inventory by all independent variables, all the data appeared to meet the normality requirements. Therefore, according to Tabachnick and Fidell (2015), parametric tests can be used. Hence, metacognition scale and problem-solving inventory were analyzed with descriptive statistics, independent samples t-test, ANOVA, and Pearson Correlation by using IBM SPSS 25.0.

Findings

In this section, the total scores of the middle school students from metacognition scale and problem-solving inventory were analyzed in terms of gender, grade level, parents' educational status, number of siblings, and family financial status. Also, the relation between the total scores of metacognition scale and problem-solving inventory were inspected.

Gender Differences at Metacognition Scale and Problem-Solving Inventory

The total scores of the middle school students from metacognition scale and problem-solving inventory were analyzed in terms of gender with independent samples t test. Descriptive statistics and t test results were given at Table 14.

Scale	Gender	n	$\overline{\mathbf{X}}$	SD	min	max	t	р
Duchlan Colsing Incontony	Male	145	1.88	1.181	0	5	2 (22	000*
Problem-Solving Inventory	Female	135	2.29	1.392	0	5	-2.622	.009*
Matagognition	Male	145	91.10	13.971	62	120	1 2 1 2	100
Metacognition	Female	135	93.26	13.474	57	120	-1.512	.190
Dradiation	Male	145	32.48	5.642	19	44	844	.399
Prediction	Female	135	33.06	5.787	18	44		
Evolution	Male	145	21.49	4.055	12	28	120	800
Evaluation	Female	135	21.56	3.903	9	28	138	.890
Discontraction	Male	145	14.12	3.142	8	20	1 (00	111
Planning	Female	135	14.72	3.066	6	20	-1.600	.111
Manifanina	Male	145	23.01	3.497	12	28	2 200	.017*
Monitoring	Female	135	23.93	2.911	14	28	-2.396	

Table 14. Mean Scores of the Middle School Students with respect to the Gender

* p < .05

As shown in the Table 14, as a result of independent samples t-test there are statistically significant mean differences between problem-solving inventory scores of female (\overline{X} =1.88) and male (\overline{X} =2.29) [$t_{(278)}$ = -2.622, p=.009<.000] and monitoring factor scores of metacognition scale between female (\overline{X} =3.497) and male (\overline{X} =2.911) [$t_{(278)}$ = -2.396, p=.017<.000]. Result shows that there are no significant mean differences between the scores of female and male of not only though the whole scale but also in the factors of the prediction, evaluation, and planning.

Grade Level Differences at Metacognition Scale and Problem-Solving Inventory

The total scores of the middle school students from metacognition scale including the factors and problemsolving inventory were analyzed in terms of grade level with ANOVA. Before applying the ANOVA test, it is necessary to show the homogeneity of the variances which is an important requirement of this test.

Table 15. Test of Homogeneity of Variances Results by Grade Levels										
Scale	Levene Statistic	df (between groups)	${f df}$ (within groups)	р						
Problem-Solving Inventory	5.003	3	276	.002						
Metacognition	.166	3	276	.919						
Prediction	.477	3	276	.698						
Evaluation	1.502	3	276	.214						
Planning	.428	3	276	.733						
Monitoring	2.014	3	276	.112						

TADIE 13. TEST OF HOMOSCHERTY OF VARIANCES RESULTS DV OFAUE LEV	Table 15.	Test of Ho	mogeneitv	of Va	ariances	Resu	lts b	v Gra	de]	Leve
--	-----------	------------	-----------	-------	----------	------	-------	-------	------	------

According to the test of homogeneity of variances, it is seen in Table 15 that metacognition scale provides homogeneity of variances both as a whole and sub-factors separately whereas problem-solving inventory does not. In cases where the assumption of homogeneity of variances is not provided in ANOVA, the Welch test, which does not require this assumption and has a high statistical power, can be performed (Field, 2005).

Table 16. Welch Test of Problem-Solving Inventory for Homogeneity of Variances

Scale	Statistic	df1	df ₂	р
Problem-Solving Inventory	12.260	3	148.892	.000

According to Welch test in Table 16, it is seen that problem-solving inventory does not provide homogeneity of variances (p=.000). This means that if there is a significant difference between the means of problem-solving inventory by grade level, then the tests to be performed in case of the lack of homogeneity of variances from post hoc tests are applied.

Scales		Sum of Squares	df	Mean Square	F	р
Problem-Solving	Between Groups	45.181	3	15.060	0 722	000*
Inventory	Within Groups	427.090	276	1.547	9.755	.000*
Matagognition	Between Groups	673.336	3	224.445	1 1 2 0	214
Metacogilition	Within Groups	52086.949	276	188.721	1.169	.514
Dradiation	Between Groups	285.509	3	95.170	2 082	022*
Prediction	Within Groups	8809.459	276	31.918	2.962	.032
Evoluction	Between Groups	32.753	3	10.918	600	560
Evaluation	Within Groups	4377.118	276	15.859	.000	.300
Dianning	Between Groups	23.002	3	7.667	790	501
Planning	Within Groups	2682.766	276	9.720	./69	.301
Manitarina	Between Groups	11.343	3	3.781	254	706
wontoring	Within Groups	2943.957	276	10.667	.554	./80
	1					

Table 17. Metacognition Scale and Problem-Solving Inventory by the Grade Levels (ANOVA)

* p < .05

In Table 17, it was given that there were significant mean differences between the scores of the middle school students by grade levels in the Problem-Solving Inventory [F (3, 276) = 9.733, p = .000 < .05] and prediction factor of the Metacognition Scale [F (3, 276) = 2.982, p = .032 < .05]. On the other hand, there was no significant mean difference between the metacognition scale and the other factors except the prediction factor and the whole metacognition scale in terms of grade levels.

To find out the source of this significant mean difference in the prediction factor of Metacognition Scale and Problem-Solving Inventory, Tukey HSD and Tamhane tests from Post Hoc tests were applied.

Scale	Grade	Levels	M.D.	S.E.	р
		6 th Grade	074	2.551	1.00
	5 th Grade	7 th Grade	1.988	2.436	.847
Matagaanitian		8 th Grade	3.557	2.316	.417
Metacognition	6th Creada	7 th Grade	2.062	2.412	.828
	o Grade	8 th Grade	3.631	2.291	.389
	7 th Grade	8 th Grade	1.569	2.162	.887
		6 th Grade	.289	1.049	.993
	5 th Grade	7 th Grade	1.577	1.002	.395
Dradiation		8 th Grade	2.459*	.952	.050
rieulcuon	6th Creada	7 th Grade	1.287	.992	.565
	o Grade	8 th Grade	2.170	.942	.100
	7 th Grade	8 th Grade	.882	.889	.754
		6 th Grade	.580	.740	.862
	5 th Grade	7 th Grade	.564	.706	.855
Evolution		8 th Grade	.964	.671	.478
Evaluation	6 th Crada	7 th Grade	016	.699	1.00
	0 Oracle	8 th Grade	.384	.664	.939
	7 th Grade	8 th Grade	.400	.627	.919
		6 th Grade	321	.579	.945
	5 th Grade	7 th Grade	.124	.553	.996
Dlanning		8 th Grade	.461	.526	.817
Planning	6 th Crada	7 th Grade	.445	.547	.849
	0 Oracle	8 th Grade	.782	.520	.436
	7 th Grade	8 th Grade	.338	.491	.902
		6 th Grade	622	.607	.734
	5 th Grade	7 th Grade	276	.579	.964
Monitoring		8 th Grade	327	.551	.934
Monitoring	6 th Grada	7 th Grade	.346	.574	.93
	0 Grade	8 th Grade	.295	.545	.949
	7 th Grade	8 th Grade	051	.514	1.00

Table 18. Tukey HSD Results of Metacognition Scale by Grade Level

*p < .05

As a result of Tukey HSD test, it was seen in the Table 18 that only the mean of prediction factor of Metacognition Scale made a significant mean difference between 5th grade middle school students (\overline{X} =34.04) and 8th grade middle school students (\overline{X} =31.58) in favor of 5th graders.

Table 19. Tamhane Results of Problem-Solvir	g Inventory l	by Grade	Levels
---	---------------	----------	--------

Scale	Grade	Levels	M.D.	S.E.	р
		6 th Grade	529	.231	.103
	5 th Grade	7 th Grade	777*	.221	.003*
Problem-Solving Inventory		8 th Grade	-1.107^{*}	.210	.000**
	oth Canada	7 th Grade	248	.218	.667
	o Grade	8 th Grade	579*	.207	.029*
	7 th Grade	8 th Grade	330	.196	.332

*p<.05; **p<.01

According to the results obtained from the Tamhane test, in Table 19, Problem-Solving Inventory by the grade levels had significant mean differences between 5th (\overline{X} =1.40) and 7th (\overline{X} =2.18) graders, between 5th (\overline{X} =1.40) and 8th (\overline{X} =2.51) graders, and between 6th (\overline{X} =1.93) and 8th (\overline{X} =2.51) graders.

Parents' Educational Backgrounds Differences at Metacognition Scale and Problem-Solving Inventory

In order to see whether the means of the scores of the two scales have significant differences with respect to parents' educational backgrounds, ANOVA is applied. For this purpose, data was recoded into three groups for each variable as "Non or Elementary School", "Middle School or High School", and "Undergraduate or Graduate". According to the ANOVA results, it is clearly seen after providing the homogeneity of variances that the educational backgrounds of the parents has a significant mean difference among the groups for both two scales.

Variable	Scale	Levene Statistic	df (between groups)	${f df}$ (within groups)	р
	Problem-Solving Inventory	.869	2	277	.421
nal	Metacognition	1.726	2	277	.180
ers tus	Prediction	.678	2	277	.508
oth uca Sta	Evaluation	3.129	2	277	.045
Edi M	Planning	1.604	2	277	.203
	Monitoring	.290	2	277	.748
	Problem-Solving Inventory	1.607	2	277	.202
nal	Metacognition	.392	2	277	.676
ers itio tus	Prediction	.152	2	277	.859
uca	Evaluation	1.161	2	277	.315
Edu	Planning	.053	2	277	.948
	Monitoring	.766	2	277	.466

Table 20. Test of Homogeneity of Variances Results by Parents' Educational Backgrounds

According to the test of homogeneity of variances by educational backgrounds of parents, it is seen in Table 20 that both problem-solving inventory and metacognition scale provides homogeneity of variances except "evaluation" factor of Metacognition Scale by mothers' educational backgrounds.

Table 21. Welch Test of the Evaluation factor of Metacognition Scale by Mothers' Educational Backgrounds for

 Homogeneity of Variances

Factor	Statistic	df1	\mathbf{df}_2	р
Evaluation	.738	2	88.338	.481

According to Welch test in Table 21, it is seen that evaluation factor of the Metacognition Scale by mothers' educational backgrounds provides homogeneity of variances (p=.481). Thus, in case of significant mean differences, Tukey HSD test can be applied for all data.

Variable	Sca	le	Sum of Squares	df	Mean Square	F	р
	Problem-Solving	Between Groups	11.040	2	5.520	2 215	020*
	Inventory	Within Groups	461.231	277	1.665	5.515	.038*
nal	Matagaanitian	Between Groups	186.293	2	93.146	401	612
	Wietacognition	Within Groups	52573.993	277	189.798	.491	.015
arca	Duadiation	Between Groups	46.429	2	23.215	711	402
Edu	Prediction	Within Groups	9048.539	277	32.666	./11	.492
ckg	Evolution	Between Groups	24.577	2	12.288	776	461
ers	Evaluation	Within Groups	4385.295	277	15.831	.//0	.401
	di Dienning	Between Groups	3.449	2	1.725	177	020
Ž Planning	Within Groups	2702.319	277	9.756	.1//	.030	
Monitoring	Between Groups	1.534	2	.767	072	021	
	wontoring	Within Groups	2953.766	277	10.663	.072	.931
	Problem-Solving	Between Groups	5.212	2	2.606	1 546	215
	Inventory	Within Groups	467.059	277	1.686	1.540	.215
lal	Matagognition	Between Groups	168.517	2	84.259	444	617
tion I	Wietacognition	Within Groups	52591.768	277	189.862	.444	.042
und	Production	Between Groups	15.860	2	7.930	242	785
Edu	ricultion	Within Groups	9079.107	277	32.777	.242	.785
ckg I	Evolution	Between Groups	44.665	2	22.333	1 417	244
Bad	Evaluation	Within Groups	4365.206	277	15.759	1.41/	.244
	Dlanning	Between Groups	16.963	2	8.481	874	410
Fa	rianning	Within Groups	2688.805	277	9.707	.0/4	.419
	Monitoring	Between Groups	.450	2	.225	021	070
	wontoring	Within Groups	2954.850	277	10.667	.021	.979

Table 22. Metacognition and Problem-Solving Inventory Scales by the Educational Backgrounds of the Parents (ANOVA)

* p < .05

According to the ANOVA results in Table 22, there were significant mean differences between the scores of the middle school students by educational backgrounds of parents in the Problem-Solving Inventory whereas there was no significant mean difference in the metacognition scale both as a whole and factor by factor.

Table 23. Tukey HSD results	of Problem-Solving	Inventory by Mothers	' Educational Status
-----------------------------	--------------------	----------------------	----------------------

Scale	Mothers' Educational Status			S.E.	р
	New on Elementers, School	Middle School or High School	187	.166	.498
Problem-Solving Inventory	Non or Elementary School	Undergraduate or Graduate	654*	.255	.029
	Middle School or High School	Undergraduate or Graduate	467	.247	.143

* p < .05

According to the results obtained from the Tukey HSD test in Table 23, Problem-Solving Inventory by the mothers' educational backgrounds had significant mean differences between "Non or Elementary School" (\overline{X} =1.90) and "Undergraduate or Graduate" (\overline{X} =2.56) in favor of "Undergraduate or Graduate".

Family Financial Status Differences at Metacognition and Problem-Solving Inventory

In order to examine whether there are significant mean differences of the scores of problem-solving inventory and metacognition scale ANOVA test was used. But first, the data of the middle school students about financial status of their families recoded into three groups as "low", "medium", and "high". Then, homogeneity of variance was tested.

Scale	Levene Statistic	df (between groups)	${f df}$ (within groups)	р
Problem-Solving Inventory	1.532	2	277	.218
Metacognition	.776	2	277	.461
Prediction	1.299	2	277	.274
Evaluation	.210	2	277	.811
Planning	.406	2	277	.667
Monitoring	3.685	2	277	.026

Table 24. Test of Homogeneity of Variances Results by Family Financial Status

In Table 24, it is seen that both problem-solving inventory and metacognition scale provides homogeneity of variances except the monitoring factor of metacognition scale. For this factor, Welch test is applied to get strong statistic power.

Table 25. Welch Test of the Monitoring factor of Metacognition Scale by Family Financial Status for

 Homogeneity of Variances

Factor	Statistic	\mathbf{df}_1	\mathbf{df}_2	р
Monitoring	.213	2	29.033	.809

As seen in the Welch test from Table 25, homogeneity of variance of monitoring factor of metacognition scale by family financial status is provided since p=.809>.000.

Fable 26. Metacognition and Problem-Solvin	g Inventory Scales by F	Family Financial Status (ANOVA)
---	-------------------------	---------------------------	--------

Scale		Sum of Squares	df	Mean Square	F	р
Duckland Calculate Instantion	Between Groups	1.908	2	.954	.562	.571
ribblem-solving inventory	Within Groups	470.363	277	1.698		
Matagaanitian	Between Groups	347.822	2	173.911	.919	.400
Metacognition	Within Groups	52412.464	277	189.215		
Prediction	Between Groups	77.993	2	38.996	1.198	.303
	Within Groups	9016.975	277	32.552		
Evaluation	Between Groups	22.557	2	11.278	.712	.492
	Within Groups	4387.315	277	15.839		
Diamaina	Between Groups	15.212	2	7.606	.783	.458
Flaining	Within Groups	2690.556	277	9.713		
	Between Groups	8.710	2	4.355	.409	.664
Monitoring	Within Groups	2946.590	277	10.638		

According to the ANOVA results of the problem-solving inventory and metacognition scale by family financial status, there are no significant mean differences of the scores of middle school students as shown in Table 26.

Correlation between Metacognition Scale and Problem-Solving Inventory

The relation between the total scores of metacognition scale and problem-solving inventory were examined with Pearson correlation coefficient. Based on the analyze results of Pearson correlation, relationship between the means of metacognition scores and problem inventory scores is not remarkable [r (280) = .064, p = .288].

Table 27. Pearson Correlation Results of Metacognition Scale and Problem-Solving Inventory					
Scales	Metacognition Scale	Prediction	Evaluation	Planning	Monitoring
Problem-Solving Inventory	.064	029	.027	.130*	.163**
Metacognition Scale		$.902^{**}$.869**	.841**	.776**
Prediction			$.680^{**}$	$.702^{**}$.557**
Evaluation				.657**	.629**
Planning					.560**

Table '	77 Pearson	Correlation	Results of	Metacognition	Scale and	Problem_9	Solving Invento	rī
гаше	27. Fearson	Contelation	Results of	vietacognition	Scale and	FIODIEIII-	SOLVING INVENTO	чν

*p<.05; **p<.01

Although there is no significant relationship between problem-solving inventory and metacognition scale as a whole, the relationships between problem-solving inventory and the two factors, monitoring [r (280) = .163, p = .006] and planning [r (280) = .130, p = .030], are significant as shown in Table 27.

Discussion and Conclusion

In this section, the findings from metacognition scale and problem-solving inventory which were analyzed with respect to gender, grade level, parents' educational backgrounds, family financial status, and number of siblings are discussed in order to investigate the factors affecting middle school students' metacognition and problemsolving skills requiring mathematical reasoning. First of all, the mean scores from the metacognition scale and problem-solving inventory of middle school students were analyzed by gender. The results show that the means of problem-solving inventory has a significant mean difference in favor of male. Also, as a result of examining the metacognition scale and its factors according to gender, it was seen that only the monitoring factor made a significant mean difference in favor of male in parallel with the result of previous studies (Lemieux Collin, & Watier, 2019; Peclak & Pecjak, 2002; Yildiz, Baltaci, &, Kuzu, 2018). At monitoring stage of metacognition, individuals follow their mental activities and processes in the learning process and think about what they should do to achieve better results (Garofalo & Lester, 1985). Secondly, problem-solving inventory and metacognition scale were analyzed according to grade levels and the results of these two scales were almost opposite. On behalf of metacognition scale, only the prediction factor of metacognition scale has a significant mean difference between 5th and 8th grade middle school students in favor of 5th graders (Sevgi & Caglikose, 2020). It means that as students' grade levels increase, there is a decrease in their predictive skills in metacognition. In other words, students who are just starting middle school level are better at metacognitive prediction than students who are about to graduate from middle school (Sevgi & Orman, 2020). In the problem-solving inventory, on the other hand, the mean of the 8^{th} grade middle school students' total scores are significantly higher than the means of 5^{th} and 6^{th} graders' scores. Also, the mean of the 7th grade middle school students' total scores are significantly higher than the mean of 5th graders. This result is similar to Lutfiyya's (1998) study about determining the effects of the grade level and student's gender on the mathematical thinking of high school students in Nebraska. He found that the mean scores of the higher-grade level students from mathematical thinking instrument developed by himself of were significantly higher than lower graders excepting the mean difference between 11th and 12th grade high school students. Thirdly, the data from metacognition scale and problem-solving inventory have been analyzed with respect to parents' educational status. Results showed that father's and mother's educational levels do not make any significant mean differences in students' metacognition scores which were obtained from whole scale also in factors of metacognition as predicting, evaluation, monitoring and planning. On the contrary, mothers' educational backgrounds had significant mean differences in favor of "Undergraduate or Graduate" compared with "Non or Elementary School" (Sevgi & Caglikose, 2020). This means that mothers' educational status has a significant effect on students' problem solving and reasoning abilities. This situation may be influenced by the fact that students' relationships with their mothers are stronger than their fathers. Next, when the effects of the financial situation of the families on the problem-solving and metacognitive abilities of middle school students were examined, no significant mean difference was found between the scores obtained from both metacognition scale and problemsolving inventory. In other words, it was seen that the economic opportunities provided to children in families or the financial situation of the family did not cause significant differences in problem-solving, reasoning and metacognitive abilities. Finally, it would be beneficial to examine the relationship between the two scales as well as the variables affecting the mean scores of middle school students obtained from the problem-solving inventory and metacognition scale. As a result of the Pearson Correlation, there are statistically significant but weak relationship between the mean scores of problem-solving inventory and both monitoring and planning factors of metacognition scale. This means that students who have good skills in planning and monitoring are also good at solving the problems requiring advanced mathematical reasoning and vice versa.

References

- Akturk, A. O. & Sahin, I. (2011). Literature review on metacognition and its measurement. Procedia-Social and Behavioral Sciences, 15, 3731-3736.
- Borkowski, J. G. (1992). Metacognitive theory: A framework for teaching literacy, writing, and math skills. *Journal of Learning Disabilities*, 25, 253-257.
- Brown, A. L. (1980). Metacognitive development and reading. In R. J. Spiro, B. Bruce, W. Brewer (Eds.), *Theoretical issues in reading comprehension*. Hillsdale, NJ: Lawrence Erbaum.
- Buyukozturk, S., Cakmak, E., Akgun, O., Karadeniz, S., & Demirel. F. (2013). *Bilimsel araştırma yöntemleri*. Ankara: Pegem Akademi Yayınları.
- Costello, A. B. & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. *Practical Assessment, Research, and Evaluation*, 10(1), 7. DOI: https://doi.org/10.7275/jyj1-4868
- Creswell, J. W. (2009). *Research design: qualitative, quantitative, and mixed methods approaches*. London: SAGE Publication.
- Creswell, J. W. & Plano Clark, V. L. (2017). *Designing and conducting mixed methods research*. Sage publications.
- De Clercq, A., Desoete, A., & Roeyers, H. (2000). EPA 2000: A multilingual, programmable computer assessment of offline metacognition in children with mathematical learning disabilities. *Behavior Research Methods, Instruments, & Computers, 32*, 304-311.
- Deseote, A. (2001). *Off-line metacognition in children with mathematics learning disabilities*. Unpublished Doctoral dissertation, Ghent University.
- Deseote, A. & Roeyers, H. (2002). Off-line metacognition a domain-specific retardation in young children with learning disabilities. *Learning Disability Quarterly*, 25, 123-139.
- Eggen, P. & Kauchak, D. (2001). Educational psychology. New Jersey, NJ: Merrill Prentice Hall.
- Erez, G., & Peled, I. (2001). Cognition and metacognition: Evidence of higher thinking in problem-solving of adolescents with mental retardation. *Education and Training in Mental Retardation and Developmental Disabilities*, 36(1), 83-93.
- Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. Resnick (Ed.). *The* Nature *of Intelligence* (pp. 231-236). Hillsdale, NJ: Lawrence Erlbaum.
- Flavell, J. H. (1979). Metacognitive and cognitive monitoring: A new area of cognitive developmental inquiry. *American Psychologist, 34*, 906-911.
- Field, A. (2005). Discovering statistics using SPSS (2nd Edition), Sage Publications.
- Fidan, N. (1996). Okulda öğrenme ve öğretme. İstanbul: Alkım Yayınları.
- Fraenkel, J., R. & Wallen, N. E. (2010). *How to design and evaluate research in education*. (7th ed.). McGraw-Hill, New York: NY.
- Garofalo, J. & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. *Journal for Research in Mathematics Education*, *16*(3), 163-176.
- George, D. & Mallery. M. (2010). SPSS for windows step by step: A simple guide and reference. 17.0 update (10 ed.) Boston: Pearson.

- Gravetter, F. & Wallnau, L. (2014). *Essentials of statistics for the behavioral sciences* (8th ed.). Belmont. CA: Wadsworth.
- Kaplan, A. & Duran, M. (2016). Ortaokul öğrencilerine yönelik matematiksel üstbiliş farkındalık ölçeği: Geçerlik ve güvenirlik çalışması. *Atatürk Üniversitesi Kazım Karabekir Eğitim Fakültesi Dergisi*, (32), 1-17.
- Lemieux, C. L., Collin, C. A., & Watier, N. N. (2019). Gender differences in metacognitive judgments and performance on a goal-directed wayfinding task. *Journal of Cognitive Psychology*, 31(4), 1-14. Doi: 10.1080/20445911.2019.1625905
- Lucangeli, D. & Cornoldi, C. (1997). Mathematics and metacognition: What is the nature of the relationship? *Mathematical Cognition*, *3*, 121-139.
- Lutfiyya, L. A. (1998). Mathematical thinking of high school students in Nebraska. International Journal of Mathematical Education in Science and Technology, 29(1), 55-64.
- Organization for Economic Cooperation and Development (OECD), Program for International Student Assessment (PISA), 2012.
- Peklaj, C. & Pecjak S. 2002. Differences in students' self-regulated learning according to their achievement and sex. *Studia Psychology*, 44, 29-43.
- Schoenfeld, A. (1987). What's all the fuss about metacognition? In: A. H. Schoenfeld (Ed.), *Cognitive Science and Mathematics Education*, 189-215. Lawrence Erlbaum.
- Schoenfeld, A.H. (1992). Learning to think mathematically: problem solving, metacognition and sense making in arithmetics. In D.A. Grouws (Ed.), *Handbook of Research on Teaching and Learning*. A Project of the National Council of Teachers of Arithmetics. (pp. 334-370).
- Sevgi, S. & Orman, F. (2020). An investigation, based on some variables, into the attitudes of middle school students towards mathematics and metacognitive skills. *Elementary Education Online*, 19(1), 183-197.
- Sevgi, S. & Çaglikose, M. (2020). Altıncı sınıf öğrencilerinin üstbiliş becerilerinin bazı değişkenler açısından incelenmesi. *Cumhuriyet International Journal of Education*, 9(1), 139-157. DOI:10.30703/cije.546885
- Swanson, H. L. (1990). Influence of metacognitive knowledge and aptitude on problem solving. Journal of Educational Psychology, 82(2), 306-667.
- Tabachnick, G. B. & Fidell, S. L. (2015). Çok değişkenli istatistiklerin kullanımı- Using multivariate statistics (6. Baskı). (Çev. Edt. Baloğlu. M.). Ankara: Nobel Akademik Yayıncılık.
- Tobias, S., & Everson, H.T. (1996). Assessing metacognitive knowledge monitoring. In K. Hagtvet (Ed.), *Advances in Test Anxiety Research.* 7, 18-31. Hillsdale, NJ: Erlbaum.
- Verschaffel, L. (1999). Realistic mathematical modelling and problem solving in the upper elementary school: Analysis and improvement. In J. H. M. Hamers, J. E. H. Van Luit, & B. Csapo (Eds.), *Teaching and learning thinking skills. Contexts of learning* (pp. 215–240). Lisse: Swets & Zeitlinger.
- Victor, A. M. (2004). The effects of metacognitive instruction on the planning and academic achievement of first and second grade children. Unpublished doctoral dissertation, II Graduate College of the Illinois Institute of Technology, Chicago.
- Winne, P.H. (1997). Experimenting to bootstrap self-regulated learning. *Journal of Educational Psychology*, 89, 397-410.
- Yildiz, E., Akpinar, E., Tatar, N., & Ergin, O. (2009). Exploratory and confirmatory factor analysis of the metacognition scale for primary school students. *Educational Sciences: Theory and Practice*. 9(3), 1591-1604.

562

Yildiz, A., Baltaci, S., & Kuzu, O. (2018). The Investigation of students' cognitive and metacognitive competencies according to different variables. *European Journal of Education Studies*. 4(10), 81-98. DOI: 10.5281/zenodo.1307430