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Abstract
By generalizing the whisker topology on the nth homotopy group of pointed space (X, x0),
denoted by πwh

n (X, x0), we show that πwh
n (X, x0) is a topological group if n ≥ 2. Also,

we present some necessary and sufficient conditions for πwh
n (X, x0) to be discrete, Haus-

dorff and indiscrete. Then we prove that Ln(X, x0) the natural epimorphic image of
the Hawaiian group Hn(X, x0) is equal to the set of all classes of convergent sequences
to the identity in πwh

n (X, x0). As a consequence, we show that Ln(X, x0) ∼= Ln(Y, y0) if
πwh

n (X, x0) ∼= πwh
n (Y, y0), but the converse does not hold in general, except for some condi-

tions. Also, we show that on some classes of spaces such as semilocally n-simply connected
spaces and n-Hawaiian like spaces, the whisker topology and the topology induced by the
compact-open topology of n-loop space coincide. Finally, we show that n-SLT paths can
transfer πwh

n and hence Ln isomorphically along its points.
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1. Introduction and motivation
E.H. Spanier introduced a topology on the fundamental group [21, Theorem 13], named

whisker topology by N. Brodskiy et al. [6]. It is originally defined on a quotient of the path
space introduced in [6, Definition 4.2] including the fundamental group as a fibre. It was
shown that for a pointed space (X, x0) the restriction of the whisker topology on π1(X, x0)
is generated by the basis

⋃
[α]∈π1(X,x0) {[α]π1(i)π1(U, x0) | U is an open neighbourhood of

x0 and i : U → X is the inclusion map}.
Another topology on the fundamental group was defined in [5], called lasso topology.

In general, the lasso topology makes the fundamental group a topological group, but not
the whisker topology. As an example, if HE1 denotes the 1-dimensional Hawaiian earring,
the inverse operation of πwh

1 (HE1, θ) is not continuous [5]. Also, if πqtop
1 denotes the
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fundamental group equipped with the topology induced by compact-open topology of 1-
loop space, then the multiplication of πqtop

1 (HE1) is not continuous [10]. This topology was
generalized to higher dimension by F.H. Ghane et al. [14] induced by the compact-open
topology of n-loop space.

In Section 2, we generalize the whisker topology to the nth homotopy group, n ∈ N,
denoted by πwh

n (X, x0), using subgroup topology which makes πn(X, x0) a left topological
group for any pointed space (X, x0). We show that for n ≥ 2, the whisker topology makes
πn(X, x0) a topological group.

In Section 3, we establish some necessary and sufficient conditions for πwh
n (X, x0) to be

discrete, Hausdorff, and indiscrete. For instance, an equivalent condition for πwh
n (X, x0) to

be discrete, is semi-locally n-simply connectedness at x0. Also, we show that any subgroup
H 6 πwh

n (X, x0) is closed if and only if X is n-homotopically Hausdorff relative to H at
x0.

It is well-known that a path induces an isomorphism on homotopy groups at its begin-
ning and end points. But this isomorphism is not necessarily continuous. Brodskiy et al.
[6, Proposition 4.10] showed that the 1–dimensional Hawaiian earring is a path connected
space with non-homeomorphic fundamental groups equipped with the whisker topology at
some different points. Moreover, they defined a kind of path, called an SLT-path, which
makes the induced isomorphism on fundamental groups continuous. We generalize SLT-
paths to n-SLT paths in order to induce continuous isomorphism on the nth homotopy
groups.

Section 4 discusses the relation between topological homotopy groups and Hawaiian
groups. For n ≥ 1, the nth Hawaiian group was defined as a functor from hTop∗, the
pointed homotopy category, to Groups, the category of groups (see [17]). Assume that
HEn =

⋃
k∈N Sn

k denotes the n-dimensional Hawaiian earring introduced in [9], where Sn
k is

the n-sphere with radius 1/k centered at (1/k, 0, . . . , 0) in Rn+1, and θ denotes the origin.
Definition 1.1 ([17]). Let (X, x0) be a pointed space, and let [·] denote the class of
pointed homotopy. The nth Hawaiian group of (X, x0), is defined by Hn(X, x0) = {[f ] :
f : (HEn, θ) → (X, x0)}. For any [f ], [g] ∈ Hn(X, x0), multiplication is induced by
(f ∗ g)|Sn

k
= f |Sn

k
∗ g|Sn

k
(k ∈ N).

The operation of the nth Hawaiian group implies that for all n ∈ N, the following map

ϕ : Hn(X, x0) →
∏
ℵ0

πn(X, x0), (I)

defined by ϕ([f ]) = ([f |Sn
1
], [f |Sn

2
], ...) is a homomorphism. For every pointed space (X, x0),

homomorphic image im(ϕ) denoted by Ln(X, x0) which is equal to a special subset of∏
ℵ0 πn(X, x0) [3, Definition 2.6] as follows.

Definition 1.2 ([3]). Let (X, x0) be a pointed space and n ≥ 1. Then Ln(X, x0) is the
subset of

∏
ℵ0πn(X, x0) consisting of all sequences of homotopy classes {[fk]}, whenever

im(fk) ⊆ U for all k ∈ N except a finite number, if U is an open set containing x0.
For instance, if X is a metric space, then Ln(X, x0) is the subset of

∏
ℵ0 πn(X, x0)

consisting of all classes of uniform convergent sequences to the constant map at x0.
It was proved that Ln(X, x0) = ϕ(Hn(X, x0)), and hence it is a subgroup of

∏
ℵ0πn(X, x0)

(see [3, Theorem 2.7]). Therefore, one can consider the homomorphism ϕ as an epimor-
phism from Hn(X, x0) onto Ln(X, x0).

In Section 4, we attend the relation of Ln(X, x0) and πwh
n (X, x0), for any pointed space

(X, x0), and we see that they are closely dependent on each other. In fact, it is shown that
Ln(X, x0) is equal to the set of all convergent sequences to the identity in πwh

n (X, x0). As
a consequence, we see that on n-Hawaiian like spaces, the two topologies of πwh

n and πqtop
n

coincide. Then, we prove that Ln(X, x0) ∼= Ln(Y, y0), whenever πwh
n (X, x0) ∼= πwh

n (Y, y0)
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as left topological groups, for any pointed spaces (X, x0) and (Y, y0). It implies a sufficient
condition to fix the structure of Ln at different points which is the existence of some two
sided small n-loop transfer (n-SLT) path. Finally, we study two groups L1(HA, a) and
L1(HA, θ), where HA is the harmonic archipelago, θ is the origin, and a is another point.
We prove that L1(HA, a) ̸∼= L1(HA, θ) to see that the existence of n-SLT paths is necessary
to induce isomorphism on Ln and topological homotopy groups at different points.

Throughout this article all homotopies are relative to the base point.

2. Whisker topology on homotopy groups
In this section, we intend to introduce the whisker topology on the nth homotopy groups.

The whisker topology on the fundamental group has been introduced and discussed by
Brodskiy et al. in [6].

Let (X, x0) be a pointed space, and let n ≥ 1. For each open neighbourhood U of x0 in
X, the inclusion map i : U → X induces the natural homomorphism πn(i) : πn(U, x0) →
πn(X, x0). Hence, πn(i)

(
πn(U, x0)

)
is a subgroup of πn(X, x0). Also, for any open neigh-

bourhoods U and V containing x0, we have
πn(i1)

(
πn(U ∩ V, x0)

)
≤ πn(i2)

(
πn(U, x0)

)
∩ πn(i3)

(
πn(V, x0)

)
, (2.1)

where i1, i2, and i3 are corresponding inclusion maps. Therefore, the collection of all such
subgroups forms a neighbourhood family on πn(X, x0) which is defined as follows.

Definition 2.1 ([4]). Let G be a group with the identity element e. A nonempty family Σ
of subgroups of G is called a neighbourhood family whenever for any S, S′ ∈ Σ, there exists
S′′ ∈ Σ, such that S′′ ⊆ S ∩ S′. Let g ∈ G and Σ be a neighbourhood family, then the set
of all cosets {gS : S ∈ Σ} forms a local basis at g. Thus, the set {gS : g ∈ G, S ∈ Σ}
is a basis for a topology on G which is called a subgroup topology. The intersection
SΣ =

⋂
S∈Σ S is called the infinitesimal subgroup for the neighbourhood family Σ.

Using the above definition, we are going to endow the nth homotopy group with a
topology called whisker topology. The whisker topology on the fundamental group has
been defined as a subspace of a path space introduced in [6]. Note that one can consider
the fundamental group as the 1st homotopy group.

Definition 2.2. Let (X, x0) be a pointed space, and n ≥ 1. By Inequality (2.1),
Σ = {πn(i)πn(U, x0) | U is an open subset of X containing x0},

is a neighbourhood family on πn(X, x0). The whisker topology on the nth homotopy group,
πn(X, x0), of a pointed topological space (X, x0) is the subgroup topology determined by
the neighbourhood family Σ which is denoted by πwh

n (X, x0).

Note that for any n-loop α the collection Σ[α] = {[α]πn(i)πn(U, x0)| U is an open subset
of X containing x0} is a local basis at [α] ∈ πwh

n (X, x0). Then we have the following result.

Lemma 2.3. Let (X, x0) be a pointed space, and let n ≥ 1. If X has a countable local
basis at x0, then πwh

n (X, x0) is first countable.

Let n ≥ 1. Recall that an n-loop α : (Sn, 1) → (X, x0) is said to be small if it has
a homotopic equivalent in every open neighbourhood of x0 [20], and πs

n(X, x0) denotes
the collection of all classes of small n-loops at x0. Let [α] ∈

⋂
{πn(i)πn(U, x0) | U is an

open neighbourhood of x0}, then α has a homotopic representative in any open neigh-
bourhood of x0, that is, α is a small n-loop at x0. Thus, the infinitesimal subgroup of
πwh

n (X, x0) is equal to πs
n(X, x0). It is easy to see that πwh

n (X, x0) is indiscrete if and only
if πs

n(X, x0) = πn(X, x0). As an example, if HA denotes the harmonic archipelago space,
and θ denotes the origin, then πwh

1 (HA, θ) is indiscrete. Moreover, if πwh
n (X, x0) is dis-

crete, then πs
n(X, x0) is the trivial subgroup. The converse does not hold, in general. As a
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counterexample, for the n-dimensional Hawaiian earring, HEn at the origin θ, πs
n(HEn, θ)

is trivial, but πwh
n (HEn, θ) is not discrete (see Example 4.6).

Remark 2.4 ([4]). With the previous assumption and notation, for g ∈ G and S ∈ Σ, a
basic set gS is both open and closed in the subgroup topology, since the cosets of a given
subgroup form a partition of G. The subgroup topology is a homogeneous space, since left
translations by elements of G determine self-homeomorphisms on G. However, the group
G is not necessarily a topological group, since the right translation by a fixed element of
G is not continuous, in general. The infinitesimal subgroup is a closed subgroup in the
subgroup topology on G induced by Σ. Indeed, SΣ is the closure of the identity e ∈ G,
and its coset gSΣ is the closure of the element g ∈ G.

Note that πs
n(X, x0) is a closed subgroup of πwh

n (X, x0), but it may not be open, in
general. However, some nice properties occur if it is open. The following proposition
generalizes Proposition 2.4 in [1], by a similar argument, for the whisker topology on the
nth homotopy group (n ≥ 1).

Proposition 2.5. Let (X, x0) be a pointed topological space, then the following statements
are equivalent.

(1) πs
n(X, x0) is an open subgroup of πwh

n (X, x0).
(2) Every closed subgroup of πwh

n (X, x0) is an open subgroup.
(3) A subgroup H of πwh

n (X, x0) is open if and only if it is closed.
(4) A subgroup H of πwh

n (X, x0) is open if and only if πs
n(X, x0) ≤ H.

By Remark 2.4, every subgroup topology on a given group makes it a homogeneous
space, and hence, it is a left topological group. It was shown in [1, Proposition 2.1]
that if a subgroup topology on a group makes it a right topological group, then it is
a topological group. Since πn(X, x0) is abelian, for n ≥ 2, the right translation map
rα : πn(X, x0) → πn(X, x0) by the rule rα([β]) = [α∗β] is equal to the left translation map
lα : πn(X, x0) → πn(X, x0) by the rule lα([β]) = [β ∗α], for any [α] ∈ πn(X, x0). Hence, rα

is continuous for all [α] ∈ πn(X, x0). Therefore, πwh
n (X, x0) is a right topological group,

too, for n ≥ 2. As a consequence we have the following result.

Proposition 2.6. Let (X, x0) be a pointed space. If n ≥ 2, then πwh
n (X, x0) is a topological

group.

Since π1(X, x0) is not necessarily an abelian group, Proposition 2.6 does not hold in the
case of n = 1. As an example πwh

1 (HE1, θ) is not a topological group [5]. For n = 1, there
exists a necessary and sufficient condition called SLTL, established in [16, Proposition 2]
for πwh

1 (X, x0) to be a topological group.
Fisher et al. [11, Theorem 4.10 (d)] proved that if X is metric, then so is the path space

X̃, whenever X is shape injective. Also, by Lemma 2.3, if X has a countable local basis
at x0, then πwh

n (X, x0) is first countable. In the following, we see that for n ≥ 2, there is
sufficient conditions for πwh

n (X, x0) to be metric.
G.R. Conner et al. [7] defined the homotopically Hausdorff property. This property

has been extended to n-homotopically Hausdorff property by H. Passandideh et al. [20,
Definition 3.3] for n ≥ 1. A space X is called n-homotopically Hausdorff at x0 whenever for
each essential n-loop α in X at x0, there exists an open neighbourhood U of x0, containing
no n-loop at x0 homotopic to α, that is πs

n(X, x0) = ⟨e⟩.

Corollary 2.7. Let X be a space having a countable local basis at x0, and let n ≥ 2. If
X is n-homotopically Hausdorff at x0, then πwh

n (X, x0) is a metric topological group.

Proof. By Proposition 2.6, πwh
n (X, x0) is a topological group. If X is n-homotopically

Hausdorff at x0, then by [4, Theorem 2.9 (c)], πwh
n (X, x0) is Hausdorff and thus, satisfies

T1-separation axiom. Hence, by [2, Theorem 3.3.12, p. 155], πwh
n (X, x0) is metric if and
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only if it is first countable. Since X has a countable local basis at x0, by Lemma 2.3,
πwh

n (X, x0) is first countable. Therefore, πwh
n (X, x0) is a metric topological group. �

Note that Ghane et al. in [14, Page 264] by a filter base which forms a fundamental
system of neighborhoods of the identity element gave a topology to the homotopy group
πn(X, x∗) denoted by πlim

n (X, x∗). It should be mentioned that one can prove the topology
of πlim

n (X, x∗) coincides with the whisker topology πwh
n (X, x∗).

3. Whisker topology and local properties
In this section, we are going to find some relationships between topological properties of

πwh
n (X, x0) and local properties of the space X at the base point x0. Moreover, we discuss

conditions for πwh
n (X, x0) to be invariant with respect to the base point x0.

The following proposition states the equivalence condition for πwh
n (X, x0) to be discrete.

Recall from [14, Definition 3.1] that a pointed topological space (X, x0) is called semilocally
n-simply connected at x0 if there exists an open neighbourhood U at x0 for which any
n-loop in U based at x0 is nulhomotopic in X.

Proposition 3.1. Let (X, x0) be a pointed space, and let n ≥ 1. Then πwh
n (X, x0) is

discrete if and only if X is semilocally n-simply connected at x0.

Proof. If X is semilocally n-simply connected at x0, then there is an open neighbourhood
U of x0 such that πn(i)πn(U, x0) is trivial. Since πn(i)πn(U, x0) ∈ Σ, then πwh

n (X, x0)
is discrete. Conversely, if πwh

n (X, x0) is discrete, then the trivial subgroup is open in
πwh

n (X, x0). Since Σ is a local basis, there is an open neighbourhood U of x0, such that
πn(i)πn(U, x0) ⊆ {e}, that is πn(i)πn(U, x0) = {e}. Hence X is semi-locally n-simply
connected at x0. �

H. Fischer et al. [11, ] defined homotopically Hausdorff property relative to H, where
H is a subgroup of π1(X, x0). Brodskiy et al. [5, Definition 4.11] generalized this concept
to (G, H)-homotopically Hausdorff property, where H 6 G 6 π1(X, x0). A space X is
called (G, H)-homotopically Hausdorff, if for any g ∈ G − H and any path α originating
at x0, there is an open neighbourhood U of α(1) in X such that none of the elements of
Hg can be expressed as [α ∗ γ ∗ α−1] for any loop γ in (U, α(1)). In the following, we
define n-homotopically Hausdorff property relative to a pair of subgroups (G, H) at the
base point x0, where H 6 G 6 πn(X, x0) (n ≥ 1).

Definition 3.2. Let H 6 G 6 πn(X, x0), and let n ≥ 1. We say that X is n-homotopically
Hausdorff relative to (G, H) at x0, if for each g ∈ G − H, there exists an open neighbour-
hood U of x0, such that no element of Hg can be expressed as [γ], for any n-loop γ in
(U, x0).

Note that X is n-homotopically Hausdorff relative to G, if X is n-homotopically Haus-
dorff relative to (G, {e}) at x0. Although, n-homotopically Hausdorff property relative to
(G, H) at x0 is defined closely to (G, H)- homotopically Hausdorff property [5, Definition
4.11], if X is 1-homotopically Hausdorff relative to (G, H), H 6 G 6 π1(X, x0) at any
point in the sense of Definition 3.2, it does not need to be (G, H)-homotopically Hausdorff
in the sense of [5].

It is proved that X is homotopically Hausdorff relative to (G, H), if H is closed in G
endowed with a new topology [5, Lemma 4.14] called lasso topology in [6]. Also, Fisher et
al. [11, ] proved that homotopically Hausdorff relative to a subgroup H is equivalent to
Hausdorffness of a path space equipped with a suitable topology. The following theorem
presents a similar explanation of [5, Proposition 4.12 and Lemma 4.16], [11, Lemma 2.10
and Proposition 6.3].
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Theorem 3.3. Let (X, x0) be a pointed space, H 6 G 6 πwh
n (X, x0), and n ≥ 1. Then

the following statements are equivalent.
(i) (i) X is n-homotopically Hausdorff relative to (G, H) at x0.
(ii) H is a closed subgroup of G.
(iii) The coset space G

H , with the quotient topology, is a homogenous Hausdorff space.

Proof. (1) ((i) ⇒ (ii)) Let X be n-homotopically Hausdorff relative to (G, H) at x0.
Then, for every g ∈ G−H, there exists an open neighbourhood Ug of x0, such that
πn(i)πn(Ug, x0) ∩ Hg = ∅, where i : U ↪→ X is the inclusion map. Assume that
g ∈ G−H and g ∈ H. Thus, for each open neighbourhood V of g in G, V ∩H ̸= ∅.
Put V = gπn(i)πn(Ug, x0)∩G. Then (gπn(i)πn(Ug, x0)∩G)∩H ̸= ∅. Since H 6 G,
gπn(i)πn(Ug, x0) ∩ G ∩ H = gπn(i)πn(Ug, x0) ∩ H. Let h ∈ gπn(i)πn(Ug, x0) ∩ H.
Then g−1h ∈ πn(i)πn(Ug, x0). Since πn(i)πn(Ug, x0) is a subgroup of πn(X, x0),
h−1g ∈ πn(i)πn(Ug, x0). Since H is a subgroup of πn(X, x0), h−1 ∈ H, and so
h−1g ∈ Hg. But we showed that h−1g is an element of πn(i)πn(Ug, x0) ∩ Hg
which is a contradiction to πn(i)πn(Ug, x0) ∩ Hg = ∅. Therefore, if g ∈ H, then
g ̸∈ G − H, that is H is closed in G.

(2) ((ii) ⇒ (iii)) Let H be closed in G. Since πwh
n (X, x0) is a left topological group,

its subgroup G is also a left topological group. Thus, by [2, Theorem 1.5.1, p. 37],
the coset space G

H endowed with the quotient topology is a homogeneous T1-space.
Since each T1-space is a T0-space, the coset space G

H is a T0-space. By [4, Theorem
3.4, p. 19], part ((iii) ⇒ (i)), the coset space G

H is Hausdorff.
(3) (iii) ⇒ (i)) Let the coset space G

H be Hausdorff. Then, for each g ∈ G − H, there
exist open neighbourhoods V and W of H and Hg, respectively, in G

H , such that
H ∈ V and Hg ∈ W , and V ∩ W = ∅. Thus, Hg ̸∈ V , or equivalently, there is no
h ∈ H such that hg ∈ q−1(V ), that is Hg ∩ q−1(V ) = ∅, where q : G → G

H is the
quotient map. Since V is an open neighbourhood of H in G

H , and q is continuous,
q−1(V ) is an open neighbourhood of the identity in G. Hence, there exists an open
neighbourhood U of x0 such that πn(i)πn(U, x0) ⊆ q−1(V ), where i : U → X is
the inclusion map. Since Hg ∩ q−1(V ) = ∅, and πn(i)πn(U, x0) ⊆ q−1(V ), we can
conclude that Hg ∩ πn(i)πn(U, x0) = ∅. Accordingly, for each g ∈ G − H, we can
find an open neighbourhood U of x0 such that πn(i)πn(U, x0)∩Hg = ∅. Therefore,
X is n-homotopically Hausdorff relative to (G, H) at x0.

�
Fisher et al. [11, Lemma 2.10] proved that X is homotopically Hausdorff at any point

if and only if path space X̃, containing πwh
1 (X, x0) as a subspace, is Hausdorff. Therefore,

if X is homotopically Hausdorff at any point, then πwh
1 (X, x0) is Hausdorff. The following

corollary shows that the necessary and sufficient condition for πwh
n (X, x0) to be Hausdorff

is n-homotopically Hausdorffness of X at x0 for n ≥ 1. Here, we give a special consequnce
of Theorem 3.3, when G = πn(X, x0) and H = {e}.

Corollary 3.4. Let (X, x0) be a pointed space, and n be a natural number. Then X is
n-homotopically Hausdorff at x0 if and only if πwh

n (X, x0) is Hausdorff.

The whisker topology on homotopy groups depends on the choice of the base point,
and the structure of πwh

n (X, x0) may differ even in a path component. Brodskiy et al.
[6, Corollary 4.9] introduced some spaces, called small loop transfer spaces, on which
the topological structure of πwh

1 (X, x0) homeomorphically transfers by all paths. Pashaei
et al. [19] generalized small loop transfer path (SLT path for abbreviation), which was
introduced in [6, Definition 4.7]. In the following, we intend to extend this notion to
higher dimensions. For this purpose, we need to recall the isomorphism Γγ : πn(X, x0) →
πn(X, x1) induced by a path γ from x0 to x1. See [21, Page 381].
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Definition 3.5. Let γ be a path from x0 to x1 in X. Then for any n-loop α at x0, γ#(α) is
defined to be an n-loop at x1, where β : (In, İn) → (X, x1) has the rule β = β′ ◦r, in which
β′ : (In × {0}) ∪ (İn × I) → X is defined by β′(u, 0) = α(u) if u ∈ In, and β′(u, t) = γ(t) if
u ∈ İn and t ∈ I, and r : In × I → (In × {0}) ∪ (İn × I) is the stereographic retraction.

Theorem 3.6 ([21]). Let X be a space, and let x0, x1 ∈ X. For any path γ from x0 to x1,
there exists an isomorphism of groups Γγ : πn(X, x0) → πn(X, x1) defined by Γγ([α]) =
[γ#(α)].

The isomorphism Γγ : πwh
n (X, x0) → πwh

n (X, x1) is not necessarily continuous, but for
some paths called SLT paths, Γγ is continuous (see [6, Lemma 4.6]). Now, we generalize
SLT path to n-SLT path for n ≥ 1, in order to make Γγ continuous.

Definition 3.7. Let X be a space, x0, x1 ∈ X, and n ≥ 1. A path γ from x0 to x1 is
called small n-loop transfer (abbreviated to n-SLT), if for every open neighbourhood U of
x0, there exists an open neighbourhood V of x1 such that for every n-loop β : (In, İn) →
(V, x1), there is an n-loop α : (In, İn) → (U, x0) which is homotopic to γ−1

# (β).

Brodskiy et al. [6, Lemma 4.6] proved that γ# : πwh
1 (X, x0) → πwh

1 (X, x1) is continuous
if and only if γ−1 is a 1-SLT path from x0 to x1 . The analogous assertion holds for n ≥ 2
as follows.

Proposition 3.8. Let γ be a path in X from x0 to x1. Then Γγ : πwh
n (X, x0) → πwh

n (X, x1)
is continuous if and only if γ−1 is an n-SLT path.

Proof. By Theorem 3.6 Γγ : πwh
n (X, x0) → πwh

n (X, x1) is an isomorphism of groups.
Since the whisker topology on the nth homotopy group makes it a left topological group,
continuity of homomorphisms is equivalent to continuity at the identity [2, Proposition
1.3.4, Page 19]. Thus Γγ is continuous if and only if it is continuous at the identity.
By definition of the whisker topology, the set {πn(i2)πn(V, x1)| V is an open neighbour-
hood of x1} is a local basis at the identity of πwh

n (X, x1). Thus, Γ is continuous at the
identity if and only if for any open neighbourhood V of x1, Γ−1

γ

(
πn(i2)πn(V, x0)

)
is open

in πwh
n (X, x0). Again, since {πn(i1)πn(U, x0)| U is an open neighbourhood of x0} is a

local basis at the identity of πwh
n (X, x0), Γγ is continuous at the identity if and only if

for any open neighbourhood V of x1, there is an open neighbourhood U of x0 such that
Γγ
(
πn(i1)πn(U, x0)

)
⊆
(
πn(i2)πn(V, x0)

)
. That is for any n-loop α in U at x0, there is an

n-loop β in V at x1, such that Γγ([α]) = [β]. Since Γγ([α]) = [γ#(α)], β is homotopic to
γ#(α). Equivalently, since γ#(α) ≃ γ−1−1

# (α), β is homotopic to γ−1−1
# (α). Therefore,

Γγ is continuous if and only if for any open neighbourhood V of x1, there is an open
neighbourhood U of x0, such that for every n-loop α in U at x0, there is an n-loop β in
V at x1 homotopic to γ−1−1

# (α), or equivalently, γ−1 is an n-SLT path from x1 to x0. �
Proposition 3.8 implies the following corollary.

Corollary 3.9. Let X be a space, x0, x1 ∈ X, and n ≥ 2. If there is a path γ from x0 to
x1 such that γ and γ−1 are n-SLT paths, then πwh

n (X, x0) and πwh
n (X, x1) are isomorphic

as topological groups.

4. Relationship between Ln(X, x0) and πwh
n (X, x0)

Let ϕ : Hn(X, x0) →
∏

ℵ0 πn(X, x0) be the homomorphism (I). In this section, we study
the homomorphic image of the Hawaiian group, by the homomorphism ϕ, and its relation
to the whisker topology on homotopy groups.

It is shown that Ln(X, x0), introduced in [3, Definition 2.6], is equal to Im(ϕ) and
hence it is a subgroup of

∏
ℵ0 πn(X, x0), for each pointed space (X, x0). Note that the

structure of Ln(X, x0) does not depend only on πn(X, x0). In the following example, for



1444 A. Babaee, B. Mashayekhy, H. Mirebrahimi, H. Torabi, M. Abdullahi Rashid, S.Z. Pashaei

every n ≥ 1 we present two pointed spaces (X, x0) and (Y, y0) with πn(X, x0) ∼= πn(Y, y0),
but Ln(X, x0) ̸∼= Ln(Y, y0).

Example 4.1. Let n ≥ 1. Put Y the Eilenberg-MacLane space with πn(Y, y0) ∼=
∏

ℵ0 Z
and X =

∏
ℵ0 S

n. If x0 ∈ X, then

πn(X, x0) ∼=
∏
ℵ0

πn(Sn, 1) ∼=
∏
ℵ0

Z ∼= πn(Y, y0).

Since Y is locally n-simply connected at y0, Hn(Y, y0) ∼= Ln(Y, y0) ∼=
∏W

ℵ0 πn(Y, y0) (see
[17, Theorem 1]), and therefore, Ln(Y, y0) ∼=

∏W
ℵ0

∏
ℵ0 Z.

By a straightforward argument, one can prove that Ln preserves the products, for all
n ≥ 1. Thus, Ln(X, x0) ∼=

∏
ℵ0 Ln(Sn, 1). Since Sn is locally n-simply connected at 1,

Hn(Sn, 1) ∼= Ln(Sn, 1) ∼=
∏W

ℵ0 πn(Sn, 1) (see [17, Theorem 1]). Therefore, Ln(X, x0) ∼=∏
ℵ0

∏W
ℵ0 Z.

Note that
∏

ℵ0

∏W
ℵ0 Z ̸∼=

∏W
ℵ0

∏
ℵ0 Z (see [22]), and hence, Ln(X, x0) ̸∼= Ln(Y, y0).

Example 4.1 shows that the algebraic structure of πn(X, x0) does not determine the
structure of Ln(X, x0). But in Theorem 4.7, we will see that the whisker topology on
πn(X, x0) can exactly characterize Ln(X, x0). The following theorem manifests the relation
between Ln(X, x0) and πwh

n (X, x0).

Theorem 4.2. Let (X, x0) be a pointed space and n ≥ 1. Then Ln(X, x0) is equal to the
set of all sequences converging to the identity in πwh

n (X, x0).

Proof. A sequence {[αk]}ℵ0 belongs to Ln(X, x0) if and only if there exists null-convergent
sequence {βk}ℵ0 with αk ≃ βk for every k ∈ N. A sequence {βk}ℵ0 is null-convergent if
and only if for each open set U of x0 there exists K ∈ N such that if k ≥ K, then
im(βk) ⊆ U . Recall that im(βk) ⊆ U if and only if there exists γ : (Sn, 1) → (U, x0) such
that βk ≃ i ◦ γ, where i : U → X is the inclusion map. Hence, {βk}ℵ0 is null-convergent if
and only if there exists K ∈ N such that if k ≥ K, then [βk] ∈ {[i ◦ γ]|γ is an n-loop at x0
in U} = πn(i)πn(U, x0), or equivalently [αk] ∈ πn(i)πn(U, x0).

Therefore, {[αk]}ℵ0 ∈ Ln(X, x0) if and only if for each open set U of x0, there exists
K ∈ N such that if k ≥ K, then [αk] ∈ πn(i)πn(U, x0). Since the set {πn(i)πn(U, x0)| U
is an open subset of x0} forms a local basis for the whisker topology on πn(X, x0) at
the identity, {[αk]}ℵ0 ∈ Ln(X, x0) if and only if {[αk]}ℵ0 converges to the identity in
πwh

n (X, x0). �

Recall that by the definition of whisker topology on the nth homotopy group of pointed
space (X, x0), πwh

n (X, x0) is indiscrete if and only if all n-loops in X at x0 are small.
Also by Proposition 3.1 πwh

n (X, x0) is discrete if and only if X is semi-locally n-simply
connected at x0.

Corollary 4.3. Let X be a space having a countable local basis at x0.
(1) X is semi-locally n-simply connected at x0 if and only if Ln(X, x0) =

∏W
ℵ0 πn(X, x0).

(2) All n-loops at x0 are small if and only if Ln(X, x0) =
∏

ℵ0 πn(X, x0).

Proof. Since X has a countable local basis at x0, πwh
n (X, x0) is first countable, by Lemma

2.3.
(1) πwh

n (X, x0) is discrete if and only if every convergent sequence is eventually con-
stant. Since πwh

n (X, x0) is a left topological group, every convergent sequence is
obtained by some left translation from a sequence converging to the identity. Hence
by Theorem 4.2 the result holds.

(2) If πwh
n (X, x0) is indiscrete, then all sequences are convergent. Hence, all sequences

in πwh
n (X, x0) converge to the identity. By Theorem 4.2, Ln(X, x0) equals the
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set of convergent sequences to the identity of πwh
n (X, x0), and then Ln(X, x0) =∏

ℵ0 πn(X, x0).
Conversely, if Ln(X, x0) =

∏
ℵ0 πn(X, x0), then all sequences converge to the

identity in πwh
n (X, x0). It is equivalent to πwh

n (X, x0) be indiscrete at the identity.
Since πwh

n (X, x0) is a left topological group, it is indiscrete at every point.
�

Note that the n-Hawaiian earring space, HEn, does not belong to the two classes of
Corollary 4.3, and hence πwh

n (HEn, θ0) is not discrete nor indiscrete. The n-Hawaiian
earring space was generalized to n-Hawaiian like spaces by Ghane et al. [14] as a specified
topology on disjoint union of CW spaces with a common point as follows.

Definition 4.4 ([14]). Let {Xi}i∈N be a family of topological spaces. Suppose that the
underlying set of

∨̃
i∈NXi is the disjoint union of Xi’s with exactly one point x∗ in common,

equipped with a topology generated by the neighbourhood bases as follows.
(1) If x ∈ Xi \ {x∗}, then the neighbourhood basis of

∨̃
i∈NXi at x is the one of Xi,

i ∈ N.
(2) At point x∗, the neighbourhood basis consists of sets of the form

⋃
i∈N\F Xi ∪⋃

i∈F Ui, where F is a finite set of natural numbers and Ui is an open neighbourhood
of x∗ in Xi.

The space
∨̃

i∈NXi is called an n-Hawaiian like space, when Xi’s are all (n − 1)-connected
compact CW spaces.

Let πqtop
n (X, x∗) denote the quasi-topological nth homotopy group induced by the compact-

open topology on the n-loop space Ωn(X, x∗) (see [13]). If X =
∨̃

i∈NXi is an n-Hawaiian
like space, then for n ≥ 2, it was shown in [14, Theorem 1.1] that πn(X, x∗) ∼=

∏
i∈N πn(Xi, x∗)

and that πqtop
n (X, x∗) is isomorphic to the prodiscrete topological group

∏
i∈N πn(Xi, x∗).

In [14, Theorem 3.3], Ghane et al. proved that the topologies of πlim
n (X, x∗) and πqtop

n (X, x∗)
coincide if X is an n-Hawaiian like space.

Let {Xi}i∈N be a family of spaces each of which is Tychonoff, (n − 1)-connected, locally
strongly contractible and first countable at xi. We call X =

∨̃
i∈NXi, the compact union

of the above family, the generalized n-Hawaiian like space. In [9, Theorem 1.1], it was
proved that for n ≥ 2, πn(X, x∗) ∼=

∏
N πn(Xi, x∗). In the following proposition, we show

that for generalized n-Hawaiian like spaces, the topology of πwh
n (X, x∗) is prodiscrete.

Proposition 4.5. If X =
∨

i∈N Xi is a generalized n-Hawaiian like space and x∗ is the
common point, n ≥ 2, then πwh

n (X, x∗) is isomorphic to the prodiscrete topological group∏
i∈N πn(Xi, x∗).

Proof. Using the isomorphism πn(X, x∗) ∼=
∏

N πn(Xi, x∗), we can consider elements of
πn(X, x∗) by the corresponding ones of

∏
i∈N πn(Xi, x∗). That is [f ] ∈ πn(X, x∗) can be

considered as ([f1], [f2], . . .) ∈
∏

i∈N πn(Xi, x∗), where f i = ri ◦ f and ri : X → Xi is
the natural retraction. Since X is first countable and n-homotopically Hausdorff at x∗,
then πwh

n (X, x∗) is a metric topological group by Corollary 2.7. Thus, the topology of
πwh

n (X, x∗) is identified by convergent sequences. By Theorem 4.2, the set of convergent
sequences to the identity of πwh

n (X, x∗) is equal to Ln(X, x∗). It suffices to verify that
{([f1

k ], [f2
k ], . . .)}k∈N ∈ Ln(X, x∗) if and only if it converges to the identity in prodiscrete

topological group
∏

i∈N πn(Xi, x∗). Let {([f1
k ], [f2

k ], . . .)}N ∈ Ln(X, x∗). We must show
that for any open set U of the identity in

∏
i∈N πn(Xi, x∗), ([f1

k ], [f2
k ], . . .) ∈ U for all k ∈ N

except a finite number. The elements of the local basis at the identity of
∏

i∈N πn(Xi, x∗)
are of the form Ui = {e1} × {e2} × · · · × {ei−1} × πn(Xi, x∗) × πn(Xi+1, x∗) × · · · , for some
i ∈ N, where e1, e2, . . . are the identity elements of πn(X1, x∗), πn(X2, x∗), . . ., respectively.
By [3, Proof of Theorem 2.10], {([f1

k ], [f2
k ], . . .)}k∈N ∈ Ln(X, x∗) if and only if [f j

k ] is the
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identity element for all j ∈ N except a finite number. Thus, for every j ∈ N, there
exists Kj ∈ N such that if k ≥ Kj , then [f j

k ] = ej . Put K = max{K1, K2, . . . , Ki−1}.
If k ≥ K, then [f j

k ] = ej , for j < i. Therefore, ([f1
k ], [f2

k ], . . .) ∈ Ui if k ≥ K. That is
{([f1

k ], [f2
k ], . . .)}k∈N converges to the identity in

∏
i∈N πn(Xi, x∗).

Conversely, let {([f1
k ], [f2

k ], . . .)}k∈N converges to the identity in
∏

i∈N πn(Xi, x∗). By the
form of the local basis at the identity in

∏
i∈N πn(Xi, x∗), Ui’s, there exists Ki+1 ∈ N such

that if k ≥ Ki+1, then [f j
k ] = ej for j ≤ i. Equivalently, [f i

k]’s are identity element except
possibly finite numbers k < Ki+1. Again, by [3, Proof of Theorem 2.10], the sequence
{([f1

k ], [f2
k ], . . .)}k∈N belongs to Ln(X, x∗). �

Example 4.6. For the n-dimensional Hawaiian earring, HEn, it is proved that πn(HEn) ∼=∏
N Z [9, Corollary 1.2]. Then πwh

n (HEn, θ) is isomorphic to the prodiscrete topological
group of

∏
N Z.

Theorem 4.2 shows that there exists a close relation between Ln(X, x0) and πwh
n (X, x0).

In the following theorem, we prove that the structure of πwh
n (X, x0) fixes the structure

of Ln(X, x0). Note that an isomorphism of left topological groups is an isomorphism of
groups which is also a homeomorphism on the underlying topological space.

Theorem 4.7. Let (X, x0) and (Y, y0) be two pointed spaces and let n ≥ 1. If πwh
n (X, x0) ∼=

πwh
n (Y, y0) as left topological groups, then Ln(X, x0) ∼= Ln(Y, y0). Moreover, if X and Y

have countable local bases at x0 and y0, respectively, and if the isomorphism Ln(X, x0) ∼=
Ln(Y, y0) is induced by some isomorphism g : πn(X, x0) → πn(Y, y0), then g is a homeo-
morphism.

Proof. Let g : πwh
n (X, x0) → πwh

n (Y, y0) be an isomorphism of left topological groups.
Since g is an isomorphism from πn(X, x0) onto πn(Y, y0), it induces monomorphisms g̃ :
Ln(X, x0) →

∏
ℵ0 πn(Y, y0) and g̃−1 : Ln(Y, y0) →

∏
ℵ0 πn(X, x0) by the rule g̃({[αk]}ℵ0) =

{g([αk])}ℵ0 and g̃−1({[βk]}ℵ0) = {g−1([βk])}ℵ0 , respectively. We show that g̃(Ln(X, x0)) ⊆
Ln(Y, y0) and g̃−1(Ln(Y, y0)) ⊆ Ln(X, x0). Let {[αk]}ℵ0 ∈ Ln(X, x0), then by The-
orem 4.2, {[αk]}ℵ0 converges to the identity in πwh

n (X, x0). Since g is a continuous
homomorphism, {g([αk])}ℵ0 converges to the identity in πwh

n (Y, y0). By Theorem 4.2,
g̃({[αk]}ℵ0) = {g([αk])}ℵ0 ∈ Ln(Y, y0). Since {[αk]}ℵ0 is an arbitrary element of Ln(X, x0),
it implies that g̃(Ln(X, x0)) ⊆ Ln(Y, y0). A similar argument can be applied to show that
g̃−1(Ln(Y, y0)) ⊆ Ln(X, x0). Moreover,

g̃ ◦ g̃−1({[βk]}ℵ0

)
= g̃

(
{g−1[βk]}ℵ0

)
= {g ◦ g−1[βk]}ℵ0 = {[βk]}ℵ0 .

Hence g̃ ◦ g̃−1 = idLn(Y,y0). Similarly g̃−1 ◦ g̃ = idLn(X,x0). Therefore g̃ : Ln(X, x0) ∼=
Ln(Y, y0).

Conversely, let g : πn(X, x0) → πn(Y, y0) be the isomorphism inducing h : Ln(X, x0) ∼=
Ln(Y, y0) by the rule h({[αk]}ℵ0) = {g([αk])}ℵ0 . We must show that g and g−1 are con-
tinuous. Since g and g−1 are homomorphisms and also πwh

n (X, x0) and πwh
n (Y, y0) are

left topological groups, g and g−1 are continuous if they are continuous at the iden-
tities by [2, Proposition 1.3.4]. Moreover, since X and Y are first countable at x0
and y0, respectively, πwh

n (X, x0) and πwh
n (Y, y0) are first countable spaces. Thus, to

prove continuity of g and g−1, it suffices to check sequential continuity at the identi-
ties. Let {[αk]}ℵ0 be a sequence converges to the identity in πwh

n (X, x0). By Theorem 4.2,
{[αk]}ℵ0 ∈ Ln(X, x0). Since h(Ln(X, x0)) ⊆ Ln(Y, y0), h maps {[αk]}ℵ0 into Ln(Y, y0).
Again by Theorem 4.2, h({[αk]}ℵ0) converges to the identity in πwh

n (Y, y0). Moreover,
h({[αk]}ℵ0) = {g([αk])}ℵ0 . Therefore, {g([αk])}ℵ0 converges to the identity. Since g is a
homomorphism, g maps the identity of πwh

n (X, x0) to the identity element of πwh
n (Y, y0).

Thus, g is sequentially continuous at the identity as required. Similarly, by using the
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inclusion h−1(Ln(Y, y0)
)

⊆ Ln(X, x0), one can show that g−1 is continuous. Thus, g and
g−1 are continuous maps, and hence g is a homeomorphism. �

Let x0, x1 ∈ X. If there exists a path γ from x0 to x1, then γ# in Definition 3.5
induces an isomorphism from πn(X, x0) onto πn(X, x1). But there exist path connected
spaces, namely HEn, n ≥ 2, such that Ln(HEn, θ) ̸∼= Ln(HEn, a), where a ̸= θ (see
[3, Corollary 2.11]). By Theorem 4.7 and Corollary 3.9, γ# can analogously transfer
Ln(X, x0) isomorphically onto Ln(X, x1), if γ and γ−1 are n-SLT paths.
Corollary 4.8. Let X have countable local bases at two points x0 and x1, and n ≥ 1. If
there exists a path γ from x0 to x1, such that γ and γ−1 are n-SLT paths, then {Γγ}ℵ0 :
Ln(X, x0) → Ln(X, x1) is an isomorphism.

By Corollary 4.8, if ϕ : Hn(X, x0) → Ln(X, x0) is injective, and γ and γ−1 are n-SLT
paths, then {Γγ}ℵ0 induces an isomorphism from Hn(X, x0) onto Hn(X, x1). For instance,
on semilocally n-simply connected spaces, we have such an isomorphism.

The harmonic archipelago, HA, is a non-simply connected space with small loops. The
fundamental group and homology groups of the harmonic archipelago were studied in [8]
and [18], respectively. Here, we recall some of their results to use in Example 4.10.

Theorem 4.9 ([8, 18]). Let ×σ denote the free σ-product of a family of groups, and H
N

denote the normal closure of the subgroup H in a given group. Then
(i) [8, Theorem 5]

π1(HA) ∼=
×σ

ℵ0
Z

∗ℵ0Z
N

.

(ii) [18, Theorem 1.2 and Proposition 2.4]. Let P be the set of all prime numbers. Then

H1(HA) ∼=
∏

ℵ0 Z∑
ℵ0 Z

∼=

∏
p∈P

Ap

⊕
(∑

c

Q
)

,

where Ap is the p-adic completion of the direct sum of p-adic integers
∑

c Jp, and c denotes
the continuum cardinal.

Example 4.10 illustrates that Corollary 4.8 does not hold if there is no such path between
the points.
Example 4.10. Let HA be the harmonic archipelago space, and θ be the origin.

Let a ∈ HA and a ̸= θ. Then by Corollary 4.3, L1(HA, a) =
∏W

ℵ0 π1(HA, a) and
L1(HA, θ) =

∏
ℵ0 π1(HA, θ). By Theorem 4.9 (i) since π1(HA) ∼=

×σ
ℵ0

Z

∗ℵ0Z
N , we have

L1(HA, a) ∼=
∏
ℵ0

W ×σ
ℵ0
Z

∗ℵ0Z
N

, L1(HA, θ) ∼=
∏
ℵ0

×σ
ℵ0
Z

∗ℵ0Z
N

.

We prove that L1(HA, a) ̸∼= L1(HA, θ). By contrary, assume that L1(HA, a) ∼= L1(HA, θ).
Thus, their abelianizations must be isomorphic. That is Ab(

∏W
ℵ0

×σ
ℵ0

Z

∗ℵ0Z
N ) ∼=

∑
ℵ0 Ab(

×σ
ℵ0

Z

∗ℵ0Z
N ) ∼=
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Ab(
∏

ℵ0

×σ
ℵ0

Z

∗ℵ0Z
N ). Let G =

∏
ℵ0

×σ
ℵ0

Z

∗ℵ0Z
N . Then G is the fundamental group of the countably

infinite product of copies of the harmonic archipelago. Thus G is the fundamental group
of a space X in which each based loop has arbitrarily small representatives. Then by
[15, Theorem 4], we know G satisfies the property of being Higman-complete. Moreover,
the first singular homology H1(X) is isomorphic to the abelianization of G. Since we are
assuming that G is isomorphic to the weak direct product

∏W
ℵ0

×σ
ℵ0

Z

∗ℵ0Z
N and the abelianization

of a weak direct product can be computed coordinatewise, we get that the abelianization

of G is isomorphic to
∑

ℵ0

((∏
p∈P Ap

)
⊕
(∑

c Q
))

. In particular, the abelianization of G

is torsion-free. Then by [15, Corollary 5], since Ab(G) ∼= H1(X) is torsion-free it must be
algebraically compact. Now

∑
ℵ0

(∏
p∈P Ap

)
is algebraically compact as a direct summand

of the algebraically compact abelian group Ab(G). Moreover, the group Ap is the p-adic
completion of

∑
c Jp, and thus it is complete in p-adic topology. By [12, p. 163, Remark],

since p-adic topology is coarser than Z-adic topology, Ap is reduced algebraically compact.
By [12, p. 101, Exercise 5], a direct sum or a direct product of groups is reduced if and only
if every component is reduced. Therefore,

∑
N
∏

p∈P Ap is reduced algebraically compact.
By [12, p. 163, Theorem 19.1], a group is complete in the Z-adic topology if and only if it
is reduced algebraically compact. Thus,

∑
N
∏

p∈P Ap is complete in Z-adic topology. Also,
by [12, p. 166, Corollary 39.10] if A =

∑
i∈I Ci is a direct decomposition of a complete

group A, then all the Ci are complete groups, and there is an integer n > 0 such that
nCi = 0 for almost all i ∈ I. Hence, there is an integer n > 0 such that n

∏
p∈P Ap = 0. It

is equivalent to
∏

p∈P Ap being torsion group, which is a contradiction. Therefore, there
is no isomorphism from L1(HA, a) onto L1(HA, θ).

Note that πwh
1 (HA, a) is isomorphic to the discrete topological group

×σ
ℵ0

Z

∗ℵ0Z
N , and πwh

1 (HA, θ)

is isomorphic to indiscrete one. Hence, there is no isomorphism of left topological groups
from πwh

1 (HA, a) onto πwh
1 (HA, θ), but one can not deduce that L1(HA, a) ̸∼= L1(HA, θ).
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