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A GENERALIZED NONLINEAR ITERATIVE ALGORITHM FOR
THE EXPLICIT MIDPOINT RULE OF NONEXPANSIVE

SEMIGROUP

M. CHERAGHI, M. AZHINI, AND H.R. SAHEBI

Abstract. In this paper, we introduce a new iterative midpoint rule for find-
ing a solution of fixed point problem for a nonexpansive semigroup in real
Hilbert spaces. We establish a strong convergence theorem for the sequences
generated by our proposed iterative scheme. Furthermore, we provide appli-
cation to Fredholm integral equations. A numerical example is presented to
illustrate the convergence result. Our results improve and extend the corre-
sponding results in the literature.

1. Introduction

Let R denote the set of all real numbers, H be a real Hilbert space with inner
product 〈., .〉 and norm ‖.‖ and C be a nonempty closed convex subset of H. A
mapping T : C → C is said to be contraction if there exists a constant α ∈ (0, 1)
such that ‖T (x) − T (y)‖ ≤ α‖x − y‖, for all x, y ∈ C. If α = 1, T is called
nonexpansive on C.
The fixed point problem (FPP ) for a nonexpansive mapping T is: To find x ∈ C

such that x ∈ Fix(T ), where Fix(T ) is the fixed point set of the nonexpansive
mapping T .
The explicit midpoint rule is one of the powerful numerical methods for solving

ordinary differential equations and differential algebraic equations. For related
works, we refer to [2, 3, 4, 5, 9, 10, 11, 16, 19, 20, 21, 22, 23, 25, 27, 28] and the
references cited therein. For instance, consider the initial value problem for the
differential equation y

′
(t) = f(y(t)) with the initial condition y(0) = y0, where f

is a continuous function from Rd to Rd. The explicit midpoint rule in which a
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sequence {yn} is generated by the following the recurrence relation
1

h
(yn+1 − yn) = f(

yn+1 − yn
2

).

In 2015, Xu et al. [30] extended and generalized the results of Alghamdi et al. [1]
and applied the viscosity method on the midpoint rule for nonexpansive mappings
and they gave the generalized viscosity explicit method:

xn+1 = αnf(xn) + βnxn + (1− αn)T (
xn + xn+1

2
).

In 2016, Rizvi [24] introduced the following iterative method for the explicit mid-
point rule of nonexpansive mappings:

xn+1 = αnγf(xn) + (1− αnB)T (
xn + xn+1

2
).

A family S := {T (s) : 0 ≤ s < ∞} of mappings from C into itself is called a
nonexpansive semigroup on C if it satisfies the following conditions:

(1) T (0)x = x for all x ∈ C
(2) T (s+ t) = T (s)T (t) for all s, t ≥ 0
(3) ‖T (s)x− T (s)y‖ ≤ ‖x− y‖ for all x, y ∈ C and s ≥ 0
(4) For all x ∈ C, s→ T (s)x is continuous.

Plubtieng and Punpaeng [18] introduced and studied the following iterative
method to prove a strong convergence theorem for FPP in a real Hilbert space:

xn+1 = αnf(xn) + βnxn + (1− αn − βn) 1
sn

∫ sn
0
T (s)xnds, ∀n ∈ N.

where f is a contraction mapping and {αn} and {βn} are the sequences in (0, 1)
and {sn} is a positive real divergent sequence.
Kang et al. [12] considerd an iterative algorithm in a Hilbert space as follows:

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)
1

sn

∫ sn

0

T (s)xnds.

Under the certain conditions, the sequence {xn} strongly converges to a unique
solution of the variational inequality 〈(γf −A)x∗, x− x∗〉 ≤ 0, ∀x ∈ Fix(T ).
Motivated and inspired by the results mentioned and related literature in [1, 12,
24, 30], we propose an iterative midpoint algorithm based on the viscosity method
for finding a common element of the set of solutions of nonexpansive semigroup
in Hilbert spaces. Then we prove strong convergence theorems that extend and
improve the corresponding results of Rizvi [24], Xu [30], and others. Finally, we
give an example and numerical result to illustrate our main result.
The rest of paper is organized as follows. The next section presents some pre-

liminary results. Section 3 is devoted to introduce midpoint algorithm for solving
it. The last section presents a numerical example to demonstrate the proposed
algorithms.
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2. Preliminaries

For each point x ∈ H, there exists a unique nearest point of C, denote by PCx,
such that ‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C. PC is called the metric projection of
H onto C. It is well known that PC is nonexpansive mapping and is characterized
by the following property:

〈x− PCx, y − PCy〉 ≤ 0 (1)

Further, it is well known that every nonexpansive operator T : H → H satisfies,
for all (x, y) ∈ H ×H, inequality

〈(x− T (x))− (y − T (y)), T (y)− T (x)〉 ≤ (
1

2
)‖(T (x)− x)− (T (y)− y)‖2, (2)

and therefore, we get, for all (x, y) ∈ H × Fix(T ),

〈(x− T (x)), (y − T (y))〉 ≤ (
1

2
)‖(T (x)− x)‖2, (3)

see, e.g. [8].
It is also known that H satisfies Opial’s condition [17], i.e., for any sequence

{xn} with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ (4)

holds for every y ∈ H with y 6= x.

Lemma 1. [6] The following inequality holds in real space H:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.
Definition 2. A mapping M : C → H is said to be monotone, if

〈Mx−My, x− y〉 ≥ 0, ∀x, y ∈ C.
M is called α-inverse-strongly-monotone if there exist a positive real number α such
that

〈Mx−My, x− y〉 ≥ α‖Mx−My‖2, ∀x, y ∈ C.
Definition 3. A mapping B : H → H is said to be strongly positive linear bounded
operator, if there exists a constant γ̄ > 0 such that 〈Bx, x〉 ≥ γ̄‖x‖2, ∀x ∈ H.
Lemma 4. [15] Assume that B is a strong positive linear bounded self adjoint
operator on a Hilbert space H with coeffi cient γ̄ > 0 and 0 < ρ ≤ ‖B‖−1. Then
‖I − ρB‖ ≤ 1− ργ̄.
Lemma 5. [26] Let C be a nonempty bounded closed convex subset of a Hilbert
space H and let S = {T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C. For
each x ∈ C and t > 0. Then, for any 0 ≤ h <∞,

lim
t→∞

sup
x∈C
‖1

t

∫ t

0

T (s)xds− T (h)(
1

t

∫ t

0

T (s)xds)‖ = 0.
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Lemma 6. [29] Let {an} be a sequence of nonnegative real numbers such that
an+1 ≤ (1 − αn)an + δn, n ≥ 0 where αn is a sequence in (0, 1) and δn is a
sequence in R such that
(i) Σ∞n=1αn =∞; (ii) lim supn→∞

δn
αn
≤ 0 or Σ∞n=1δn <∞.

Then limn→∞ an = 0.

3. Nonlinear midpoint algorithm

In this section, we prove a strong convergence theorem based on the explicit it-
erative for fixed point of nonexpansive semigroup. We firstly present the following
unified algorithm.
Let S = {T (s) : s ∈ [0,+∞)} be a nonexpansive semigroup on C such that
Fix(S) 6= ∅. Also f : C → H be a α-contraction mapping and B,D be strongly
positive bounded linear self adjoint operators on H with coeffi cients γ̄1, γ̄2 > 0 such
that 0 < γ < γ̄1

α < γ + 1
α , γ̄1 ≤ ‖B‖ ≤ 1 and ‖D‖ = γ̄2 ≤ 1.

Algorithm 7. For given x0 ∈ C arbitrary, let the sequence {xn} be generated by:

xn+1 = αnγf(xn) +βnDxn+ ((1− εn)I−βnD−αnB)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds.

(5)
where {αn}, {βn}, {εn} are the sequence in (0, 1) such that εn ≤ αn and {sn} ⊂
[s,∞) with s > 0 satisfying conditions:
(C1)

lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

εn = 0, Σ∞n=1αn = Σ∞n=1βn =∞;

(C2)
∞∑
n=1

|αn − αn−1| <∞ or lim
n→∞

αn+1

αn
= 1;

∞∑
n=1

|βn − βn−1| <∞ or lim
n→∞

βn+1

βn
= 1;

∞∑
n=1

|εn − εn−1| <∞ or lim
n→∞

εn+1

εn
= 1;

(C3)
lim
n→∞

sn =∞, sup
n∈N
|sn+1 − sn| is bounded.

Lemma 8. For any 0 < γ < γ̄1
α < γ + 1

α , there exists a unique fixed point for
sequence {xn}.
Proof. As a matter of fact, for fixed x ∈ C, we can define the sequence {Pn : H →
H} as follows:

Pn(x) := αnγf(x) + βnDx+ ((1− εn)I − βnD − αnB)
1

sn

∫ sn

0

T (s)x ds, ∀x ∈ H.
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We may assume without loss of generality that αn ≤ (1−εn−βn‖D‖)‖B‖−1. Since
B and D are linear bounded self adjoint operators, we have
‖B‖ = sup{|〈Bx, x〉| : x ∈ H, ‖x‖ = 1},
‖D‖ = sup{|〈Dx, x〉| : x ∈ H, ‖x‖ = 1}

and observe that

〈((1− εn)I − βnD − αnB)x, x〉 = (1− εn)〈x, x〉 − βn〈Dx, x〉 − αn〈Bx, x〉
≥ 1− εn − βn‖D‖ − αn‖B‖ ≥ 0.

Therefore, (1− εn)I − βnD−αnB is positive. Then, by strong positivity of B and
D, we get

‖(1− εn)I − βnD − αnB‖ = sup{〈((1− εn)I − βnD − αnB)x, x〉 : x ∈ H, ‖x‖ = 1}
= sup{(1− εn)〈x, x〉 − βn〈Dx, x〉
−αn〈Bx, x〉 : x ∈ H, ‖x‖ = 1}
≤ 1− εn − βnγ̄2 − αnγ̄1

≤ 1− βnγ̄2 − αnγ̄1.
(6)

For any x, y ∈ C
‖Pnx− Pny‖ ≤ αnγ‖f(x)− f(y)‖+ βn‖D‖‖x− y‖

+‖(1− εn)I − βnD − αnB‖
1

sn

∫ sn

0

‖T (s)x− T (s)y‖ds

≤ αnγα‖x− y‖+ βnγ̄2‖x− y‖+ (1− βnγ̄2 − αnγ1)‖x− y‖
= (1− (γ1 − γα)αn)‖x− y‖.

Therefore, Banach contraction principle guarantees that Pn has a unique fixed point
in H, and so the iteration (5) is well defined. �
Lemma 9. Let p ∈ Fix(S). Then the sequence {xn} generated by Algorithm 7 is
bounded.

Proof. Let p ∈ Fix(S), we obtain

‖xn+1 − p‖ = ‖αnγf(xn) + βnDxn

+((1− εn)I − βnD − αnB)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− p‖

≤ αn‖γf(xn)−Bp‖+ βn‖Dxn −Dp‖+ εn‖p‖

+‖((1− εn)I − βnD − αnB)‖‖ 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)− T (s)p‖ds

≤ αn(‖γf(xn)− γf(p)‖+ ‖γf(p)−Bp‖) + βn‖Dxn −Dp‖+ εn‖p‖

+(1− βnγ̄2 − αnγ̄1)‖xn + xn+1

2
− p‖

≤ αnγα‖xn − p‖+ αn‖γf(p)−Bp‖+ βnγ̄2‖xn − p‖+ αn‖p‖

+
(1− βnγ̄2 − αnγ̄1)

2
(‖xn − p‖+ ‖xn+1 − p‖).
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which implies that

1 + βnγ̄2 + αnγ̄1

2
‖xn+1 − p‖ ≤ (αnγα+

1 + βnγ̄2 − αnγ̄1

2
)‖xn − p‖

+αn(‖γf(p)−Bp‖+ ‖p‖).

Then

‖xn+1 − p‖ ≤ (1− 2(γ̄1 − γα)αn
1 + βnγ̄2 + αnγ̄1

)‖xn − p‖+
2αn(γ̄1 − γα)

1 + βnγ̄2 + αnγ̄1

‖γf(p)−Bp‖+ ‖p‖
γ̄1 − γα

≤ max{‖xn − p‖,
‖γf(p)−Bp‖+ ‖p‖

γ̄1 − γα
} (7)

...

≤ max{‖x0 − p‖,
‖γf(p)−Bp‖+ ‖p‖

γ̄1 − γα
}.

Hence {xn} is bounded. �

Now, set tn := 1
sn

∫ sn
0
T (s)(xn+xn+1

2 )ds. Then {tn} and {f(xn)} are bounded.

Lemma 10. The following properties are satisfying for the Algorithm 7
P1. limn→∞ ‖xn+1 − xn‖ = 0.
P2. limn→∞ ‖xn − tn‖ = 0.
P3. limn→∞ ‖T (s)tn − tn‖ = 0.

Lemma 11. In order to prove P1, one can write

‖tn+1 − tn‖ = ‖ 1

sn+1

∫ sn+1

0

T (s)(
xn+1 + xn+2

2
)ds− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

= ‖ 1

sn+1

∫ sn+1

0

(T (s)(
xn+1 + xn+2

2
)− T (s)(

xn + xn+1

2
))ds

+(
1

sn+1
− 1

sn
)

∫ sn

0

T (s)(
xn + xn+1

2
)ds

+
1

sn+1

∫ sn+1

sn

T (s)(
xn + xn+1

2
)ds‖

= ‖ 1

sn+1

∫ sn+1

0

(T (s)(
xn+1 + xn+2

2
)− T (s)(

xn + xn+1

2
))ds

+(
1

sn+1
− 1

sn
)

∫ sn

0

(T (s)(
xn + xn+1

2
)− T (s)p)ds

+
1

sn+1

∫ sn+1

sn

(T (s)(
xn + xn+1

2
)− T (s)p)ds‖

≤ ‖xn+1 + xn+2

2
− xn + xn+1

2
‖+
|sn+1 − sn|sn

sn+1sn
‖xn + xn+1

2
− p‖
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+
|sn+1 − sn|

sn+1
‖xn + xn+1

2
− p‖1

2
(‖xn+1 − xn‖+ ‖xn+2 − xn+1‖)

≤ +
|sn+1 − sn|

sn+1
(‖xn − p‖+ ‖xn+1 − p‖). (8)

Next, we show that the sequence {xn} is asymptotically regular, i.e., limn→∞ ‖xn+2−
xn+1‖ = 0. By (8) we estimate that

‖xn+2 − xn+1‖ = ‖(αn+1γf(xn+1) + βn+1Dxn+1

+((1− εn+1)I − βn+1D − αn+1B)
1

sn+1

∫ sn+1

0

T (s)(
xn+1 + xn+2

2
)ds)

−(αnγf(xn) + βnDxn + ((1− εn)I − βnD − αnB)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds)‖

= ‖((1− εn+1)I − βn+1D − αn+1B)(
1

sn+1

∫ sn+1

0

T (s)(
xn+1 + xn+2

2
)ds

− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds) + ((εn + βnD + αnB)

−(εn+1 + βn+1D + αn+1B))
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds+ (αn+1 − αn)γf(xn)

+αn+1(γf(xn+1)− γf(xn)) + (βn+1 − βn)Dxn + βn+1(Dxn+1 −Dxn)‖

≤ (1− βn+1γ̄2 − αn+1γ̄1)‖tn+1 − tn‖+ |εn+1 − εn|‖
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

+M |αn − αn+1|+N |βn − βn+1|+ αn+1γ‖f(xn+1)− f(xn)‖

≤ (1− βn+1γ̄2 − αn+1γ̄1)‖tn+1 − tn‖+ |εn+1 − εn|‖
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

+M |αn − αn+1|+N |βn − βn+1|+ αn+1γα‖xn+1 − xn‖

≤
1− βn+1γ̄2 − αn+1γ̄1

2
(‖xn+1 − xn‖+ ‖xn+2 − xn+1‖)

+(1− βn+1γ̄2 − αn+1γ̄1)
|sn+1 − sn|

sn+1
(‖xn − p‖+ ‖xn+1 − p‖) + |εn+1 − εn|‖tn‖

+M |αn − αn+1|+N |βn − βn+1|+ αn+1γα‖xn+1 − xn‖,

where M := sup{‖ 1
sn

∫ sn
0
T (s)(xn+xn+1

2 )ds‖+ ‖f(xn)‖} and
N := sup{‖ 1

sn

∫ sn
0
T (s)(xn+xn+1

2 )ds‖+ ‖xn‖}. Then

(1 + αn+1γ̄1 + βn+1γ̄2)‖xn+2 − xn+1‖ ≤ (1− βn+1γ̄2 + (2αγ − γ̄1)αn+1)‖xn+1 − xn‖

+(1− βn+1γ̄2 − αn+1γ̄1)
2|sn+1 − sn|

sn+1
(‖xn − p‖

+‖xn+1 − p‖) + 2|εn+1 − εn|‖tn‖
+2M |αn − αn+1|+ 2N |βn − βn+1|.
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Therefore

‖xn+2 − xn+1‖ ≤ (1−
2(βn+1γ̄2 + (γ̄1 − αγ)αn+1)

1 + αn+1γ̄1 + βn+1γ̄2

)‖xn+1 − xn‖

+(
1− βn+1γ̄2 − αn+1γ̄1

1 + αn+1γ̄1 + βn+1γ̄2

)(
2|sn+1 − sn|

sn+1
)(‖xn − p‖+ ‖xn+1 − p‖)

+
2

1 + αn+1γ̄1 + βn+1γ̄2

|εn+1 − εn|‖tn‖+
2M

1 + αn+1γ̄1 + βn+1γ̄2

|αn − αn+1|

+
2N

1 + αn+1γ̄1 + βn+1γ̄2

|βn − βn+1|.

Lemma 6 and (C1)-(C2) implies

lim
n→∞

‖xn+1 − xn‖ = 0. (9)

And similarly, we have
lim
n→∞

‖xn+2 − xn+1‖ = 0. (10)

Also by (8), (9),(10) and (C3) we have limn→∞ ‖tn+1 − tn‖ = 0.
In order to prove P2, one can write

‖xn − tn‖ ≤ ‖xn+1 − xn‖
+‖αnγf(xn) + βnDxn + ((1− εn)I − βnD − αnB)tn − tn‖

≤ ‖xn − xn+1‖+ αn‖γf(xn)−Btn‖+ βnγ̄2‖xn − tn‖+ εn‖tn‖.
Then

(1− βnγ̄2)‖xn − tn‖ ≤ ‖xn − xn+1‖+ αn‖γf(xn)−Btn‖+ εn‖tn‖.
By (C1) and (9), we obtain

lim
n→∞

‖xn − tn‖ = 0. (11)

In order to prove P3, set K := {w ∈ C : ‖w−p‖ ≤ ‖x0−p‖+ 1
γ̄1−γα

(‖γf(p)−Bp‖+
‖p‖)}. Then K is a nonempty bounded closed convex subset of C which is T (s)-
invariant for each s ∈ [0,+∞) and contains {xn}. So, without loss of generality,
we may assume that S := {T (s) : s ∈ [0,+∞)} is a nonexpansive semigroup on K.

‖T (s)xn − xn‖ = ‖T (s)xn − T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds

+T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds

− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds+

1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− xn‖

≤ ‖T (s)xn − T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖
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+‖T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

+‖ 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− xn‖

≤ ‖xn −
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

+‖T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

+‖ 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− xn‖

= 2‖ 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− xn‖

+‖T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

Since xn+xn+1
2 ∈ C, from (11) and Lemma 5, we obtain limn→∞ ‖T (s)xn−xn‖ = 0.

Therefore

‖T (s)tn − tn‖ ≤ ‖T (s)tn − T (s)xn‖+ ‖T (s)xn − xn‖+ ‖xn − tn‖
≤ ‖tn − xn‖+ ‖T (s)xn − xn‖+ ‖xn − tn‖.

Then we have limn→∞ ‖T (s)tn − tn‖ = 0.

4. Convergence algorithm

Theorem 12. The Algorithm (5) converges strongly z ∈ Fix(S), which is a unique
solution of the variational inequality 〈(γf −B)z, y − z〉 ≤ 0, for all y ∈ Fix(S).

Proof. Let q = PFix(S). We get

‖q(I −B + γf)(x)− q(I −B + γf)(y)‖ ≤ ‖(I −B + γf)(x)− (I −B + γf)(y)‖
≤ ‖I −B‖‖x− y‖+ γ‖f(x)− f(y)‖
≤ (1− γ̄1)‖x− y‖+ γα‖x− y‖
= (1− (γ̄1 − γα))‖x− y‖.

Then q(I − B + γf) is a contraction mapping from H into itself. Therefore by
Banach contraction principle, there exists z ∈ H such that z = q(I − B + γf)z =
PFix(S)(I −B + γf)z.
We show that 〈(γf − B)z, xn − z〉 ≤ 0. To show this inequality, we choose a
subsequence {tni} of {tn} such that

lim sup
n→∞

〈(γf −B)z, tn − z〉 = lim
i→∞
〈(γf −B)z, tni − z〉. (12)

Since {tni} is bounded, there exists a subsequence {tnij } of {tni} ⊆ K which
converges weakly to some w ∈ C. Without loss of generality, we can assume that
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tni ⇀ w. Now, we prove that w ∈ Fix(S). Assume that w /∈ Fix(S). Since
tni ⇀ w and T (s)w 6= w, from Opial’s conditions (4) and Lemma 10 (P3), we have

lim inf
i→∞

‖tni − w‖ < lim inf
i→∞

‖tni − T (s)w‖

≤ lim inf
i→∞

(‖tni − T (s)tni‖+ ‖T (s)tni − T (s)w‖)

≤ lim inf
i→∞

‖tni − w‖,

which is a contradiction. Thus, we obtain w ∈ Fix(S). Now from (1), we have

lim sup
n→∞

〈(γf −B)z, xn − z〉 = lim sup
n→∞

〈(γf −B)z, tn − z〉

≤ lim sup
i→∞

〈(γf −B)z, tni − z〉 (13)

= 〈(γf −B)z, w − z〉 ≤ 0.

Now we prove that xn is strongly convergence to z.

‖xn+1 − z‖2 = αn〈γf(xn)−Bz, xn+1 − z〉+ βn〈Dxn −Dz, xn+1 − z〉
−εn〈z, xn+1 − z〉+ 〈((1− εn)I − βnD − αnB)(tn − z), xn+1 − z〉

≤ αn(γ〈f(xn)− f(z), xn+1 − z〉+ 〈γf(z)−Bz, xn+1 − z〉)
+βn‖D‖‖xn − z‖‖xn+1 − z‖ − εn‖z‖‖xn+1 − z‖
+‖(1− εn)I − βnD − αnB‖‖tn − z‖‖xn+1 − z‖

≤ αnαγ‖xn − z‖‖xn+1 − z‖+ αn〈γf(z)−Bz, xn+1 − z〉
+βnγ̄2‖xn − z‖‖xn+1 − z‖ − εn‖z‖‖xn+1 − z‖

+(1− βnγ̄2 − αnγ̄1)‖xn + xn+1

2
− z‖‖xn+1 − z‖

≤ αnαγ‖xn − z‖‖xn+1 − z‖+ αn〈γf(z)−Bz, xn+1 − z〉
+βnγ̄2‖xn − z‖‖xn+1 − z‖ − εn‖z‖‖xn+1 − z‖

+
1− βnγ̄2 − αnγ̄1

2
(‖xn − z‖+ ‖xn+1 − z‖)‖xn+1 − z‖

=
1 + βnγ̄2 − αn(γ̄1 − 2αγ)

2
‖xn − z‖‖xn+1 − z‖+ αn〈γf(z)−Bz, xn+1 − z〉

−εn‖z‖‖xn+1 − z‖+
1− βnγ̄2 − αnγ̄1

2
‖xn+1 − z‖2

≤ 1 + βnγ̄2 − αn(γ̄1 − 2αγ)

4
(‖xn − z‖2 + ‖xn+1 − z‖2)

+αn〈γf(z)−Bz, xn+1 − z〉 − εn‖z‖‖xn+1 − z‖

+
1− βnγ̄2 − αnγ̄1

2
‖xn+1 − z‖2

≤ 1 + βnγ̄2 − αn(γ̄1 − 2αγ)

4
‖xn − z‖2
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+
3− βnγ̄2 − αn(3γ̄1 − 2αγ)

4
‖xn+1 − z‖2

+αn〈γf(z)−Bz, xn+1 − z〉 − εn‖z‖‖xn+1 − z‖

≤ 1 + βnγ̄2 − αn(γ̄1 − 2αγ)

4
‖xn − z‖2 +

3

4
‖xn+1 − z‖2

+αn〈γf(z)−Bz, xn+1 − z〉 − εn‖z‖‖xn+1 − z‖.
This implies that

4‖xn+1 − z‖2 ≤ (1 + βnγ̄2 − αn(γ̄1 − 2αγ))‖xn − z‖2 + 3‖xn+1 − z‖2

+4αn〈γf(z)−Bz, xn+1 − z〉+ 4εn‖z‖‖xn+1 − z‖.
Then

‖xn+1 − z‖2 ≤ (1− (αn(γ̄1 − 2αγ)− βnγ̄2))‖xn − z‖2

+4αn〈γf(z)−Bz, xn+1 − z〉+ 4εn‖z‖‖xn+1 − z‖
= (1− kn)‖xn − z‖2 + 4αnln, (14)

where kn = αn(γ̄1−2αγ) +βnγ̄2 and ln = 〈γf(z)−Bz, xn+1− z〉−‖z‖‖xn+1− z‖.
Since limn→∞ αn = limn→∞ βn = 0 and Σ∞n=0αn = Σ∞n=0βn = ∞, it is easy to see
that limn→∞ kn = 0, Σ∞n=0kn = ∞ and lim supn→∞ ln ≤ 0. Hence, from (13) and
(14) and Lemma 6, we deduce that xn → z, where z = PFix(S)(I −B + γf)z. �

5. Numerical examples

In this section, we give some examples and numerical results for supporting our
main theorem. All the numerical results have been produced in Matlab 2017 on a
Linux workstation with a 3.8 GHZ Intel annex processor and 8 Gb of memory

Example 13. Consider a Fredholm integral equation of the following form

x(t) = g(t) +

∫ t

0

F (t, k, x(k)) dk, t ∈ [0, 1], (15)

where g is a continuous function on [0, 1] and F : [0, 1]×[0, 1]×R→ R is continuous.
Note that if F satisfies the Lipschitz continuity condition, i.e.,

|F (t, k, x)− F (t, k, y)| ≤ |x− y|, ∀t, k ∈ [0, 1], x, y ∈ R,
then equation (15) has at least one solution in L2[0, 1] (see [13]).
Define a mapping T (s) : L2[0, 1]→ L2[0, 1] by

(T (s)x)(t) = e−3s(g(t) +

∫ t

0

F (t, k, x(k)) dk), t ∈ [0, 1].

It is easy to observe that S = {T (s) : s ∈ [0,+∞)} is a nonexpansive semigroup.
In fact, we have, for x, y ∈ L2[0, 1],

‖T (s)x− T (s)y‖2 =

∫ 1

0

|(T (s)x)(t)− (T (s)y)(t)|2 dt
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=

∫ 1

0

|e−3s

∫ 1

0

(F (t, k, x(k))− F (t, k, y(k))) dk|2 dt

≤
∫ 1

0

(

∫ 1

0

|x(k)− y(k)|2 dk) dt

=

∫ 1

0

|x(k)− y(k)|2 dk

= ‖x− y‖2.

This means that to find the solution of integral equation (15) is reduced to find a
fixed point of the nonexpansive semigroup S in L2[0, 1]. For any given function
x0 ∈ L2[0, 1], define a sequence of functions xn in L2[0, 1] by

xn+1 = αnγf(xn) + βnDxn + ((1− εn)I − βnD−αnB)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds

satisfying the conditions of Algorithm 7. Then the sequence {xn} converges strongly
in L2[0, 1] to the solution of integral equation (15) which is also a solution of the
following variational inequality

〈(γf −B)z, y − z〉 ≤ 0, ∀y ∈ Fix(S).

Example 14. Let H = R, the set of all real numbers, with the inner product
defined by 〈x, y〉 = xy, ∀x, y ∈ R, and induced usual norm | . |. Let C = [−1, 3];
Let f(x) = 1

9x, B(x) = 1
4x, D(x) = x and let, for each x ∈ C, T (s)x = 1

1+2sx.
Then there exists a unique sequence {xn} ⊂ R generated by the iterative scheme

xn+1 = (
1

9
√
n

+
1

2n
)xn (16)

+((1− 1

(n+ 1)2
)I − 1

2n
D − 1√

n
B)

1

sn

∫ sn

0

1

1 + 2s
(
xn + xn+1

2
)ds

where αn = 1√
n
, βn = 1

2n , εn = 1
(n+1)2 and sn = n. Then {xn} converges to

{0} ∈ Fix(S). f is contraction mapping with constant α = 1
6 and B,D are strongly

positive bounded linear operators with constant γ̄1 = 1
5 on C. Therefore, we can

choose γ = 1 which satisfies 0 < γ < γ̄
α < γ+ 1

α . Furthermore, it is easy to observe
that Fix(S) = {0} 6= ∅. After simplification, scheme (16) reduce to

xn+1 =

1
9
√
n

+ 1
2n + 1

4n (1− 1
(n+1)2 −

1
2n −

1
4
√
n

) ln(1 + 2n)

1− 1
4n (1− 1

(n+1)2 −
1

2n −
1

4
√
n

) ln(1 + 2n)
xn.

Following the proof of Theorem 12, we obtain that {xn} converges strongly to w =
{0} ∈ Fix(S).
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Let H = R, the set of all real numbers, with the inner product defined by 〈x, y〉 =
xy, ∀x, y ∈ R, and induced usual norm | . |. Let C = [0, 4]; Let f(x) = 1

10 (x −
3), B(x) = 1

3x, D(x) = 1
2x and let, for each x ∈ C, T (s)x = e−2sx. Then there

exists a unique sequence {xn} ⊂ R generated by the iterative scheme

xn+1 =
3

20n+ 5
(xn − 3) +

1

2
√
n+ 2

xn (17)

+((1− 1

n2
)I − 1√

n+ 2
D − 3

4n+ 1
B)

1

sn

∫ sn

0

e−2s(
xn + xn+1

2
)ds

where αn = 3
4n+1 , βn = 1√

n+2
, εn = 1

n2 and sn = 2n. Then {xn} converges to
{0} ∈ Fix(S). f is contraction mapping with constant α = 1

9 and B,D are strongly
positive bounded linear operators with constant γ̄1 = 1

4 on C. Therefore, we can
choose γ = 2 which satisfies 0 < γ < γ̄

α < γ+ 1
α . Furthermore, it is easy to observe

that Fix(S) = {0} 6= ∅. After simplification, scheme (17) reduce to

xn+1 =
( 3

20n+5 + 1
2
√
n+2
− 1

8n (e−4n − 1)(1− 1
n2 −

1
2
√
n+2
− 1

4n+1 ))xn − 9
20n+5

1 + 1
8n (e−4n − 1)(1− 1

n2 −
1

2
√
n+2
− 1

4n+1 )
.

Following the proof of Theorem 12, we obtain that {xn} converges strongly to w =
{0} ∈ Fix(S).
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6. Conculsion

In this paper, we present a viscosity nonlinear midpoint algorithm for solving
equilibrium problems in real Hilbert spaces. The methods propose a theoretical
generalization of some existing results in the literature and primary numerical ex-
periments also demonstrate the potential applicability of these methods. We es-
tablish the algorithm’s strong convergence under mild and standard assumptions.
This work open the doors for many promising research directions such as obtaining
error bound and convergence rate of our algorithms as well as extensions to Banach
spaces.
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