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Abstract 

 

In this paper, identity graphs of finite cyclic groups are considered.  The identity graphs 

of finite cyclic groups are examined regarding to the subset of self-inverse elements and 

the subset of mutual inverse elements in a group.  By using the features of these subsets 

the number of triangles and the number of edges in the identity graphs of finite cyclic 

groups are determined.  Furthermore, Schultz, Gutman, first Zagreb, second Zagreb 

and Wiener indices are computed for identity graphs. 
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Sonlu devirli grupların birim grafları 
 

 

Öz 

 

Bu çalışmada sonlu devirli grupların birim grafları göz önüne alınmıştır.  Sonlu devirli 

grupların birim grafları grupta tersi kendisi olan elemanların alt kümesi ve tersi 

kendisinden farklı elemanların alt kümesi ile ilişkili olarak incelenmiştir.  Bu alt 

kümelerin özellikleri kullanılarak sonlu devirli grupların birim graflarındaki üçgen 

sayısı ve kenar sayısı belirlenmiştir.  Ayrıca birim grafların Schultz, Gutman, birinci 

Zagreb, ikinci Zagreb ve Wiener indeksleri hesaplanmıştır. 

 

Anahtar kelimeler: Graf, birim graf, devirli grup, topolojik indeks. 
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1. Introduction 

 

In recent years, graph theory and its applications associated to algebraic structures are 

studied extensively (see [1,2-7]).  In [7], Kandasamy and Smarandache defined identity 

graphs of groups and semigroups and examined some special subgraphs.  Let 𝐺 be a 

group and 𝑥, 𝑦 ∈ 𝐺, 𝑥 is adjacent to 𝑦 if and only if 𝑥𝑦 = 𝑒, where 𝑒 is the identity 

element of 𝐺.  Further, it is assumed that every element of 𝐺 is adjacent to 𝑒.  If 𝑥 is 

adjacent to 𝑦, it is denoted by 𝑥~𝑦 or 𝑥 − 𝑦.  By this adjacency, all elements of the 

group take place in the forming graph is called the identity graph of the group 𝐺 and 

denoted by 𝐺𝐼(𝐺).  Thus all the elements of a group can be represented by a graph.  

From the adjacency definition, all of self-inverse and mutual inverse elements of a 

group can be seen directly from the identity graph of a group. 

 

Let 𝐺 = (𝑉(𝐺),𝐸(𝐺)) be a simple graph, where 𝑉(𝐺) is the set of all vertices called 

vertex set and 𝐸(𝐺) is the set of all edges which join the vertices called edge set.  In a 

graph degree of a vertex 𝑢 is the number of edges incident to 𝑢 and denoted by 𝑑𝑒𝑔 𝑢. 

If there is a path between any two distinct vertices of a graph, then the graph is called 

connected.  The shortest path connecting the vertices 𝑢 and 𝑣 is called distance between 

𝑢 and 𝑣, denoted by 𝑑(𝑢, 𝑣).  The diameter of a graph 𝐺 is the greatest distance between 

any pair of vertices, i.e. 𝑑𝑖𝑎𝑚(𝐺) = 𝑚𝑎𝑥 {𝑑(𝑢, 𝑣):  𝑢, 𝑣 ∈ 𝑉(𝐺)}.  The girth of a 

simple graph 𝐺 is the length of a smallest cycle and denoted by 𝑔𝑖𝑟(𝐺).  
 

Topological indices are graph invariants that are mostly based on the distances between 

the vertices of a graph and independent from labeling and visual representation of 

graphs.  Let 𝐺 = (𝑉(𝐺),𝐸(𝐺)) be a simple connected finite graph.  In [4], degree 

distance of a graph 𝐺 is defined as 

𝐷′(𝐺) = ∑ 𝑑𝑒𝑔𝑣.𝑣∈𝑉(𝐺) 𝐷𝐺(𝑣), 

 

where 𝐷𝐺(𝑣) = ∑ 𝑑(𝑢, 𝑣)𝑢∈𝑉(𝐺)  is called distance of a vertex 𝑣 in 𝐺.  Degree distance 

of a graph renamed as "Schultz index" which is proposed by Gutman in [6].  Schultz 

index can be also expressed as 

 

𝐷′(𝐺) = ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔𝑣]𝑑(𝑢, 𝑣).{𝑢,𝑣}⊆𝑉(𝐺)   

 

Schultz index of the second kind is introduced in [6] and called as Gutman index.  It is 

defined as 

 

𝐺𝑢𝑡(𝐺) = ∑ [𝑑𝑒𝑔𝑢. 𝑑𝑒𝑔𝑣]𝑑(𝑢, 𝑣).{𝑢,𝑣}⊆𝑉(𝐺)   

 

First Zagreb and second Zagreb indices of a graph 𝐺 are introduced by Gutman and 

Trinajstic in [5] and defined respectively as 

 

𝑀1(𝐺) = ∑ (𝑑𝑒𝑔𝑢)2𝑢∈𝑉(𝐺) , 

𝑀2(𝐺) = ∑ 𝑑𝑒𝑔𝑢. 𝑑𝑒𝑔𝑣𝑢𝑣∈𝐸(𝐺) . 

 
One of the oldest distance-based topological index is Wiener index which is equal to the 

sum of distances between all unordered pairs of vertices of a graph 𝐺 and and defined in 

[8] as 
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𝑊(𝐺)  = ∑ 𝑑(𝑢, 𝑣)
{𝑢,𝑣}⊆𝑉(𝐺)

 

 
Schultz index also can be considered as degree-weighted version of the Wiener index. 

 

 

2. Preliminaries 

 

In this section some required definitions and theorems are presented.  Moreover some 

explicit results are given for the identity graphs of finite cyclic groups. 

 

2.1.  Definition  

Let (𝐺,∗) be a finite group with the identity element 𝑒 and 𝑎 ∈ 𝐺.  If 𝑎 =  𝑎−1, then 𝑎 ∈
𝐺 is called self-inverse element of 𝐺.  All of the self-inverse elements of 𝐺 is denoted by 

𝑆(𝐺). 
 

2.2.  Definition ([3])  

Let (𝐺,∗) be a finite group with the identity element 𝑒 and 𝑎 ∈ 𝐺.  If there exists 𝑏 ∈ 𝐺 

such that 𝑎 ∗ 𝑏 =  𝑏 ∗ 𝑎 = 𝑒, then 𝑎 ∈ 𝐺 is called mutual inverse element of 𝐺.  All of 

these elements of 𝐺 is denoted by 𝑀(𝐺). 
 

According to the above definitions, 𝑆(𝐺) and 𝑀(𝐺) can be expressed as follows. 

 

𝑆(𝐺) = {𝑎 ∈ 𝐺:  𝑎 =  𝑎−1}, 
𝑀(𝐺) = {𝑎 ∈ 𝐺:  𝑎 ≠ 𝑎−1}. 
 

For a finite group 𝐺, obviously we have 𝐺 = 𝑆(𝐺) ∪ 𝑀(𝐺) and 𝑆(𝐺) ∩ 𝑀(𝐺) = ∅.  

 

2.1.  Theorem ([3])  

If 𝐺 be a finite cyclic group, then 

 

|𝑆(𝐺)| = {
1,      𝑖𝑓 |𝐺| 𝑖𝑠 𝑜𝑑𝑑

2,     𝑖𝑓 |𝐺| 𝑖𝑠 𝑒𝑣𝑒𝑛
, 

 

where |    | denotes the cardinality of 𝑆(𝐺). 
 

2.1.  Corollary ([3])  

If 𝐺 be a finite group of even order, then |𝑆(𝐺)| and |𝑀(𝐺)| are both even order. 

 

2.1.  Remark ([3])  

If 𝐺 is not a cyclic group, then |𝑆(𝐺)| ≥ 2 (p.129, Ex.1-2). 

 

2.2.  Corollary ([3])  

If 𝐺 be a finite group of odd order, then |𝑆(𝐺)| = 1 and |𝑀(𝐺)| = |𝐺| − 1. 
 

2.2.  Remark  

Let 𝐺 =< 𝑎 > be a cyclic group of order 𝑛 and 𝑘 ∈ 𝑍.  If 𝑎𝑘 ∈ 𝑀(𝐺), then obviously 

we have 𝑛 ∤ 2𝑘 and if 𝑎𝑘 ∈ 𝑆(𝐺), then 𝑛|2𝑘. 
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Kandasamy and Smarandache in [7], determine the number of triangles in identity 

graphs of finite cyclic groups in the following theorems. 

 

2.2.  Theorem ([7]) 

If 𝐺 =< 𝑎 > be a cyclic group of order 𝑝, where 𝑝 is a prime, then 𝐺𝐼(𝐺). is formed by 

only 
𝑝−1

2
 triangles. 

 

2.3.  Corollary  

Let 𝑛 is an odd number.  If 𝐺 =< 𝑎 > be a cyclic group of order 𝑛, then 𝐺𝐼(𝐺) is 

formed by only 
𝑛−1

2
 triangles. 

 

According to the Corollary 2.3, since degree of an any vertex is even in the identity 

graph of finite group of odd order, we can give the following result. 

 

2.4.  Corollary  

If 𝐺 is a cyclic group of odd order, then 𝐺𝐼(𝐺) is Eulerian. 

 

2.3.  Theorem ([7])  

Let 𝑛 is an even number. If 𝐺 =< 𝑎 > be a cyclic group of order 𝑛, then 𝐺𝐼(𝐺) is 

formed by 
𝑛−1

2
 triangles and a line. 

 

2.5.  Corollary 

If 𝐺 is a cyclic group of even order, then 𝐺𝐼(𝐺) is not Eulerian. 

 

2.6.  Corollary  

If 𝐺 be a finite cyclic group, then 𝑔𝑖𝑟(𝐺𝐼(𝐺)) = 3. 
 

Proof.   

The girth of a simple graph is the length of a smallest cycle.  Since 𝐺𝐼(𝐺) has always 

formed by triangles (3-cycle), we have 𝑔𝑖𝑟(𝐺𝐼(𝐺)) = 3. 
 

The main purpose of this paper is to examine some properties and computing some 

topological indices of the identity graphs of finite cyclic groups by using the features of 

𝑆(𝐺), the subset of self-inverse elements and 𝑀(𝐺), the subset of mutual inverse 

elements. 

 

 

3. Main results 

 

In this section, initially we express some fundamental properties of the identity graphs 

of finite cyclic groups by using the cardinality of the disjoint sets 𝑆(𝐺) and 𝑀(𝐺).  
Moreover, we compute Schultz, Gutman, first Zagreb, second Zagreb and Wiener index 

of the identity graphs of a finite cyclic groups. 

 

Let 𝐺 be a cyclic group of order 𝑛 with identity 𝑒 and consider 𝐺𝐼(𝐺), the identity graph 

of 𝐺.  Obviously we have 𝑉(𝐺𝐼(𝐺)) = 𝐺 and from the adjacency of the identity graph, 

we have 𝑑𝑒𝑔(𝑒) = 𝑛 −  1. 
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3.1.  Theorem  

Let 𝐺 be a finite group.  Then 𝐺𝐼(𝐺) is a connected graph. 

 

Proof.  

The proof is obvious from the adjacency of the identity graph 𝐺𝐼(𝐺). 
 

3.2.  Theorem  

Let 𝐺 =< 𝑎 > be a cyclic group of even order.  If 𝑢 ∈ 𝑆(𝐺)\{𝑒}, then we have 𝑑𝑒𝑔𝑢 =
1. 
 

Proof.  

If |𝐺| is even, then from Theorem 2.1, |𝑆(𝐺)| = 2 and we have 𝑆(𝐺) = {𝑒, 𝑎:  𝑎2 = 𝑒}.  
So, if 𝑢 ∈ 𝑆(𝐺)\{𝑒}, then 𝑢 is only adjacent to 𝑒 and 𝑢 is a pendant vertex.  Thus proof 

is completed. 

 

Recall that the number of triangles are given in [7].  Now we give a brief proof by using 

the cardinality of 𝑀(𝐺). 
 

3.3.  Theorem 

Let 𝐺 be a finite cyclic group.  If 𝑢 ∈ 𝑀(𝐺), then 𝑑𝑒𝑔(𝑢) = 2 and 𝑡 =
|𝑀(𝐺)|

2
, where t is 

the number of triangles in the identity graph 𝐺𝐼(𝐺). 
 

Proof.  

If 𝑢 ∈ 𝑀(𝐺), then 𝑢 ≠ 𝑢−1 and from the adjacency, we have 𝑢~𝑢−1, 𝑢~𝑒 and 𝑢−1~𝑒. 

Thus, 𝑑𝑒𝑔 (𝑢) = 2.  For any 𝑢 ∈ 𝑀(𝐺), each {𝑢, 𝑢−1} pair of vertices forms a triangle 

in 𝐺𝐼(𝐺).  So, there are 𝑡 =
|𝑀(𝐺)|

2
 triangles in 𝐺𝐼(𝐺) and proof is completed. 

 

3.1.  Corollary 

Let 𝐺 be a cyclic group of order 𝑛 and 𝑡 be the number of triangles in the identity graph 

𝐺𝐼(𝐺).  Then we have 

𝑡 = {

𝑛−1

2
,     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛−2

2
,     𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

. 

 

Proof.  

The proof can be seen directly by Theorem 3.3, Corollary 2.1 and Corollary 2.2. 

 

3.1.  Example 

Let 𝐺 =< 𝑎 > be a cyclic group of order 7 and 𝐻 =< 𝑏 > be a cyclic group of order 8. 

Then 𝑀(𝐺) = {𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6}, 𝑆(𝐺) = {𝑒} and 𝑀(𝐻) = {𝑏, 𝑏2, 𝑏3, 𝑏5, 𝑏6, 𝑏7}, 
𝑆(𝐻) = {𝑒, 𝑏4}.  The identity graphs of the groups 𝐺 and 𝐻 are given respectively in 

Fig. 1. From Fig. 1, each  {𝑢, 𝑢−1} pair of vertices of mutual inverse elements of the 

group forms a triangle and if the order of the group is an even integer, then self-inverse 

elements of the group form a line in the identity graph. 
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Figure 1. 𝐺𝐼(𝐺) and 𝐺𝐼(𝐻)  identity graphs of the cyclic groups 𝐺 and H. 

 

3.4. Theorem  

If 𝐺 be a cyclic group of order 𝑛, then we have 

|𝐸(𝐺𝐼(𝐺))| = {

3(𝑛−1)

2
,     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

3(𝑛−2)

2
+ 1,     𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

. 

 

Proof.  

Let |𝐺| = 𝑛 is even, then from Theorem 2.1, we have |𝑆(𝐺)| = 2, so |𝑀(𝐺)| = 𝑛 − 2.  

For 𝑒 ∈ 𝑆 (𝐺) and 𝑢 ∈ 𝑆 (𝐺)\{𝑒}, obviously we get 𝑑𝑒𝑔(𝑒) = 𝑛 − 1 and 𝑑𝑒𝑔(𝑢) = 1.  

Thus we have 𝑑𝑒𝑔(𝑒) + 𝑑𝑒𝑔 (𝑢) = 𝑛.  Since the other 𝑛 − 2 vertices different from 𝑒 

and 𝑢 in the identity graph 𝐺𝐼(𝐺) belong to 𝑀(𝐺) and for any 𝑣 ∈ 𝑀 (𝐺), 𝑑𝑒𝑔(𝑣) = 2, 

we have 
 

∑ 𝑑𝑒𝑔𝑎𝑎∈𝐺 = 𝑛 + 2(𝑛 − 2) = 3𝑛 − 4 = 2|𝐸(𝐺𝐼(𝐺))|.  
 

Thus, proof is complete.  If we consider that |𝑀 (𝐺)| = 𝑛 − 2, we can also write 

|𝐸(𝐺𝐼(𝐺))| = 3𝑡 + 1.  For 𝑛 is an odd integer, the proof can be seen similarly. 

 

3.5. Theorem  

If 𝐺 =<  𝑎 > be a cyclic group of order 𝑛, then 𝑑𝑖𝑎𝑚 (𝐺𝐼(𝐺)) < 3. 
 

Proof. 

If 𝑛 =  2, then we have 𝑆(𝐺) = {𝑒, 𝑎:  𝑎2 = 𝑒} and 𝑀(𝐺) = ∅.  From adjacency of the 

identity graph,  𝐺𝐼(𝐺) is exactly formed by a line 𝑒 − 𝑎.  So, 𝑑𝑖𝑎𝑚(𝐺𝐼(𝐺)) = 1.  If 𝑛 =
 3, then from Theorem 2.2 𝐺𝐼(𝐺) is exactly a triangle.  Thus 𝑑𝑖𝑎𝑚(𝐺𝐼(𝐺)) = 1.  Let 

𝑛 > 3.  If 𝑛 is even, then we have 𝑆(𝐺) = {𝑒, 𝑎:  𝑎2 = 𝑒}, |𝑀(𝐺)| = 𝑛 − 2 and from 

Theorem 2.3, 𝐺𝐼(𝐺) is formed by 
𝑛−1

2
  triangles and a line 𝑎 − 𝑒.  If 𝑏 ∈ 𝑀(𝐺), since 

𝑎 ∈ 𝑆(𝐺)\{𝑒}, there is always a shortest 𝑎 − 𝑒 − 𝑏 path of length 2, we have 

𝑑𝑖𝑎𝑚(𝐺𝐼(𝐺)) = 2.  If 𝑏, 𝑐 ∈ 𝑀 (𝐺) and 𝑏~𝑐, then 𝑑(𝑏, 𝑐) = 1.  If 𝑏 ≁ 𝑐, namely 𝑏 is 

not adjacent to 𝑐, then there is always a shortest 𝑏 − 𝑒 − 𝑐 path of length 2.  Thus 

𝑑𝑖𝑎𝑚(𝐺𝐼(𝐺) = 2.  If 𝑛 is odd, we have 𝑆(𝐺) = {𝑒} and |𝑀(𝐺)| = 𝑛 − 1 by Corollary 

2.2.  From Corollary 2.3, 𝐺𝐼(𝐺) is formed by only triangles.  Let 𝑏, 𝑐 ∈ 𝑀(𝐺) are in 

different triangles, then there is always a shortest 𝑏 − 𝑒 − 𝑐 path of length 2.  So, we 

have 𝑑𝑖𝑎𝑚(𝐺𝐼(𝐺)) = 2 and proof is completed. 

 

3.6. Theorem  

Let 𝐺 be a cyclic group of order 𝑛.  Schultz index of 𝐺𝐼(𝐺)is 
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𝐷′(𝐺𝐼(𝐺))= {
5𝑛2 − 14𝑛 + 9,     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

5𝑛2 − 16𝑛 + 14, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
. 

 

Proof.   

We consider two cases for proof as follows. 

 

Case 1.  Let 𝑛 is odd.  Then from Corollary 2.2, we have 𝑆(𝐺) = {𝑒} and |𝑀(𝐺)| =
𝑛 − 1.  Thus Schultz index of 𝐺𝐼(𝐺) is 

 

𝐷′(𝐺𝐼(𝐺)) = ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔𝑣]𝑑(𝑢, 𝑣){𝑢,𝑣}⊆𝑉(𝐺)  

= ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔𝑒]. 1

𝑢~𝑒;𝑢∈𝑀(𝐺)

+ ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔(𝑢−1)]. 1

𝑢~𝑢−1;  𝑢∈𝑀(𝐺)

 

+ ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔𝑣]. 2.

𝑢≁𝑣; 𝑢,𝑣∈𝑀(𝐺)

                                                                                            (1) 

 

Since |𝑀(𝐺)| = 𝑛 − 1 and any vertex in 𝑀(𝐺) is adjacent to 𝑒, contribution of the first 

sum is (𝑛 − 1) (2 + (𝑛 − 1)).  Consider the second sum.  If 𝑢, 𝑢−1 ∈ 𝑀(𝐺), then we 

get 𝑑𝑒𝑔𝑢 = 𝑑𝑒𝑔(𝑢−1) = 2 and  𝑢~𝑢−1, 𝑢~𝑒 and 𝑢−1~𝑒.  Therefore contribution of 

the second sum is 4𝑡, where 𝑡 is the number of triangles, that is 2(𝑛 − 1) from 

Corollary 3.1.  In the last sum, we require the number of paths of length 2.  Obviously, 

the number of paths of length 1 is the number of edges, that is 
3(𝑛−1)

2
.  If we consider the 

distance matrix of a graph with 𝑛 vertices, the number of entries above the main 

diagonal is 
𝑛2−𝑛

2
.  Therefore the number of paths of length 2 is 

 

𝑛2 − 𝑛

2
− |𝐸(𝐺𝐼(𝐺))| =

𝑛2 − 𝑛

2
−
3(𝑛 − 1)

2
 

=
(𝑛 − 1)(𝑛 − 3)

2
. 

 

If we write these contributions in (1), we have 

𝐷′(𝐺𝐼(𝐺)) = (𝑛 − 1)(𝑛 + 1) + 2(𝑛 − 1) + 8.
(𝑛−1)(𝑛−3)

2
 

=(𝑛 − 1)(5𝑛 − 9) 
=5𝑛2 − 14𝑛 + 9. 
 

Case 2.  Let 𝑛 is even. Then by Theorem 2.1, we have |𝑆(𝐺)| = 2 and |𝑀(𝐺)| = 𝑛 − 2.  
So, we get 

 

𝐷′(𝐺𝐼(𝐺)) = ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔𝑣]𝑑(𝑢, 𝑣)

{𝑢,𝑣}⊆𝑉(𝐺)

 

= ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔𝑒]. 1

𝑢~𝑒;𝑢∈𝑀(𝐺)

+ ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔𝑒]. 1

𝑢~𝑒; 𝑢∈𝑆(𝐺)\{𝑒}

 

+ ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔(𝑢−1)]. 1

𝑢~𝑢−1;  𝑢∈𝑀(𝐺)

 

+ ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔𝑣]. 2

𝑢∈𝑀(𝐺); 𝑣∈𝑆(𝐺)\{𝑒}

+ ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔𝑣]. 2

𝑢≁𝑣; 𝑢,𝑣∈𝑀(𝐺)

.                       (2) 
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Similar to the Case 1, contribution of the first three sum is 

 

(𝑛 − 2)(𝑛 +  1) +  𝑛 +  4 (
𝑛 − 2

2
).                                                                                       (3) 

 
Consider the sum ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔𝑣]. 2𝑢∈𝑀(𝐺); 𝑣∈𝑆(𝐺)\{𝑒} .  Obviously we have 𝑑𝑒𝑔𝑢 = 2 

and 𝑑𝑒𝑔𝑣 = 1.  Since 𝑣 ∈ 𝑆(𝐺)\{𝑒} is only adjacent to 𝑒, 𝑣 is not adjacent to any 

vertex of 𝑀(𝐺).  Thus the distance from the vertex 𝑣 to 𝑛 − 2 vertices of 𝑀(𝐺) is 2 and 

so, the number of paths of length 2 is 𝑛 − 2.  Similar to the Case 1, the total number of 

paths of length 2 is 

 

𝑛2 − 𝑛

2
− |𝐸(𝐺𝐼(𝐺))| =

𝑛2 − 𝑛

2
− [
3(𝑛 − 2)

2
+ 1] 

=
(𝑛 − 2)2

2
. 

 

Now, consider the sum  ∑ [𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔𝑣]. 2𝑢≁𝑣;𝑢,𝑣∈𝑀(𝐺) .  For 𝑢, 𝑣 ∈ 𝑀(𝐺), the number 

of paths of length 2 is  

 
(𝑛 − 2)2

2
− (𝑛 − 2) =

(𝑛 − 2)(𝑛 − 4)

2
. 

 

If we substitute the values in (2) and by (3), we have 

 

𝐷′(𝐺𝐼(𝐺)) =  (𝑛 − 2)(𝑛 + 1) + 𝑛 + 4
(𝑛 − 2)

2
+ 6(𝑛 − 2) + 8

(𝑛 − 2)(𝑛 − 4)

2
 

= (𝑛 − 2)(5𝑛 − 7) + 𝑛 

=5𝑛2 − 16𝑛 + 14. 
 

So, proof is complete. 

 

3.7. Theorem  

If 𝐺 be a cyclic group of order 𝑛, then the first Zagreb index of 𝐺𝐼(𝐺) is 

𝑀1(𝐺𝐼(𝐺))= {
𝑛2 + 2𝑛 − 3,   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛2 + 2𝑛 − 6,    𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
. 

 

Proof.  

Let 𝑛 is even.  Then |𝑆(𝐺)| = 2 and |𝑀(𝐺)| = 𝑛 − 2.  The first Zagreb index of 𝐺𝐼(𝐺) 
is 

 

𝑀1(𝐺𝐼(𝐺)) = ∑(𝑑𝑒𝑔𝑢)2

𝑢∈𝐺

 

= ∑ (𝑑𝑒𝑔𝑢)2 + ∑ (𝑑𝑒𝑔𝑢)2

𝑢∈𝑀(𝐺)𝑢∈𝑆(𝐺)

 

= 1 + (𝑑𝑒𝑔𝑒)2 + 4|𝑀(𝐺)| 
= 1 + (𝑛 − 1)2 + 4(𝑛 − 2) 
= 𝑛2 + 2𝑛 − 6, 
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which completes proof. Proof can be seen similarly when 𝑛 is an odd integer. 

 

3.8. Theorem  

If 𝐺 be a cyclic group of order 𝑛, then the second Zagreb index of 𝐺𝐼(𝐺) is 

 

𝑀2(𝐺𝐼(𝐺))= {
2𝑛2 − 2𝑛,           𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

2𝑛2 − 3𝑛 − 1,    𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
. 

 

Proof. 

If 𝑛 is an even integer, then the second Zagreb index of 𝐺𝐼(𝐺) is 

 

𝑀2(𝐺𝐼(𝐺)) = ∑ 𝑑𝑒𝑔𝑢. 𝑑𝑒𝑔𝑣

𝑢𝑣∈𝐸(𝐺)

 

= ∑ 𝑑𝑒𝑔𝑢. 𝑑𝑒𝑔𝑒

𝑢~𝑒;𝑢∈𝑀(𝐺)

+ ∑ 𝑑𝑒𝑔𝑢. 𝑑𝑒𝑔𝑒

𝑢~𝑒; 𝑢∈𝑆(𝐺)\{𝑒}

 

+ ∑ [𝑑𝑒𝑔𝑢. 𝑑𝑒𝑔(𝑢−1)]. 1

𝑢~𝑢−1;𝑢∈𝑀(𝐺)

 

= 2(𝑛 − 2)(𝑛 − 1) + (𝑛 − 1) + 4𝑡 
= 2(𝑛 − 2)(𝑛 − 1) + (𝑛 − 1) + 2(𝑛 − 2) 
= 2𝑛2 − 3𝑛 − 1. 
 

Thus proof is completed. 

 

3.9. Theorem  

 

If 𝐺 be a cyclic group of order 𝑛, then we have 

𝑊(𝐺𝐼(𝐺)) =  

{
 

 
2𝑛2 − 5𝑛 + 3

2
,          𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

2𝑛2 − 5𝑛 + 4

2
,         𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

. 

 

Proof.  

Let 𝑛 is odd.  If we use the number of paths in the proof of Theorem 3.6, then we have 

 

𝑊(𝐺𝐼(𝐺)) =  ∑ 𝑑(𝑢, 𝑣)
{𝑢,𝑣}⊆𝐺

 

= ∑ 𝑑(𝑢, 𝑒)

𝑢~𝑒;𝑢∈𝑀(𝐺)

+ ∑ 𝑑(𝑢, 𝑢−1)

𝑢~𝑢−1;  𝑢∈𝑀(𝐺)

+ ∑ 𝑑(𝑢, 𝑣)

𝑢≁𝑣; 𝑢,𝑣∈𝑀(𝐺)

 

= (𝑛 − 1). 1 + 𝑡. 1 +
(𝑛 − 1)(𝑛 − 3)

2
. 2 

=
3(𝑛 − 1)

2
+ (𝑛 − 1)(𝑛 − 3) 

=
2𝑛2 − 5𝑛 + 3

2
. 

 

Now let 𝑛 is even.  Then we also get 
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𝑊(𝐺𝐼(𝐺)) =  ∑ 𝑑(𝑢, 𝑒)

𝑢~𝑒;𝑢∈𝑀(𝐺)

+ ∑ 𝑑(𝑢, 𝑒)

𝑢~𝑒; 𝑢∈𝑆(𝐺)\{𝑒}

 

+ ∑ 𝑑(𝑢, 𝑢−1)

𝑢~𝑢−1;  𝑢∈𝑀(𝐺)

+ ∑ 𝑑(𝑢, 𝑣)

𝑢∈𝑀(𝐺); 𝑣∈𝑆(𝐺)\{𝑒}

+ ∑ 𝑑(𝑢, 𝑣)

𝑢≁𝑣; 𝑢,𝑣∈𝑀(𝐺)

 

= (𝑛 − 2). 1 + 1 + 𝑡. 1 + |𝑀(𝐺)|. 2 +
(𝑛 − 2)(𝑛 − 4)

2
. 2 

= 𝑛 − 1 +
𝑛 − 2

2
+ 2(𝑛 − 2) + (𝑛 − 2)(𝑛 − 4) 

=
2𝑛2 − 5𝑛 + 4

2
, 

 

and proof is complete. 
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