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A STUDY ON COMPARISONS OF BAYESIAN AND CLASSICAL
PARAMETER ESTIMATION METHODS FOR THE
TWO-PARAMETER WEIBULL DISTRIBUTION

ASUMAN YILMAZ, MAHMUT KARA, AND HALIL AYDOGDU

Abstract. The main objective of this paper is to determine the best esti-
mators of the shape and scale parameters of the two parameter Weibull dis-
tribution. Therefore, both classical and Bayesian approximation methods are
considered. For parameter estimation of classical approximation methods max-
imum likelihood estimators (MLEs), modified maximum likelihood estimators-
I (MMLEs-I), modified maximum likelihood estimators -II (MMLEs-II), least
square estimators (LSEs), weighted least square estimators (WLSEs), per-
centile estimators (PEs), moment estimators (MEs), L-moment estimators
(LMEs) and TL- moment estimators (TLMEs) are used. Since the Bayesian
estimators don’t have the explicit form. There are Bayes estimators are ob-
tained by using Lindley’s and Tierney Kadane’s approximation methods in
this study. In Bayesian approximation, the choice of loss function and prior
distribution is very important. Hence, Bayes estimators are given based on
both the non- informative and informative prior distribution. Moreover, these
estimators have been calculated under different symmetric and asymmetric loss
functions. The performance of classical and Bayesian estimators are compared
with respect to their biases and MSEs through a simulation study. Finally, a
real data set taken from Turkish State Meteorological Service is analysed for
better understanding of methods presented in this paper.

1. Introduction

Weibull distribution is one of the most popular among life-time distributions.
The Weibull distribution was first proposed by W. Weibull who used it to model
the distribution of the breaking strength of materials. The distribution has played
major role in the reliability theory, see for example, [1] and [2]. Also, the distribution
has found wide applications in many areas of environmental sciences, and renewable
energy [3],[4],[5]and [6] . In addition to these application areas, Weibull distribution
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is now being used in a wide range of fields in medical, biological, and earth sciences.
For details, see [7],[8] and [9] .
It is crucial to determine the best parameter estimation method for any prob-

ability function. There are various different estimation methods in the literature
for estimating the parameters of the Weibull distribution. Notable among them
are given as follows: In terms of classical parameter estimation methods, Trustrum
and Jayatilaka [10] investigated the moment estimator, maximum likelihood estima-
tor and least squares method based on the Monte Carlo simulation.Hung [11] and
Lu et al.[12] discussed the properties of the weighted least square estimators and
showed that weighted least squares estimators performed better than least squares
estimators. Pobocikova and Sedliackova [13] compared the maximum likelihood
estimators, moment estimators, least squares estimators and weighted least square
estimators. Teimouri et al. [14] presented the maximum likelihood estimators,
method of logarithm moment, percentile estimator, L- moment estimator, method
of moment. Alizadeh et al. [15] considered estimation of the probability density
function and cumulative density function.
In terms of Bayesian parameter estimation methods, Al Omari and Ibrahim [16]

conducted a study on Bayesian survival estimator for Weibull distribution with
censored data. Also, Guure et al. [17] provided the Bayesian estimation of two
parameter Weibull distribution under three loss functions using extension of Jeffey’s
prior information. Pandey et. al [18] compared Bayesion estimator and maximum
likelihood estimation of the scale parameter of the Weilbull distribution under linex
loss function, with the assumption that the shape parameter is kwown. Similar work
can be seen in [19],[20] .
The maximum likelihood estimators (MLEs) and the moment estimators (MEs)

are the most well-known among parameter estimation methods. In this article,
the least square error estimators (LSEs) and the weighted square error estimators
(WLSEs), the percentile estimators (PEs),the L-moment estimators (LMEs),the
TL-moment estimators (TLMEs), modified maximum likelihood estimators (MMLE-
I) are considered besides these methods. Moreover, we propose the modified max-
imum likelihood estimators-II (MMLE-II). Further, we compute Bayes estimators
of the unknown parameters with informative prior and non-informative prior under
squared error loss function (SELF), general entropy loss function (GELF), weighted
square loss function (WSELF) and precautionary loss function (PLF). It is clear
that Bayesian estimators cannot be found in explicit form. Therefore, in this paper,
we consider the Lindley’s and Tierney Kadane’s procedures.
There are numerous studies for Weibull distribution in literature. But, as far

as we know this, this is the first study which compares all these aforementioned
estimation methods for choosing the best estimation method for the two- parame-
ter Weibull distribution. The objective of this study is to estimate the parameters
of the model from both classical and Bayesian viewpoint. Finally, a better esti-
mation method is given for the distribution parameters. In the recent past, many
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researchers have compared various parameter estimation methods for estimating
the parameters of the different distribution. See, for example, [21] for the general-
ized Rayleigh distribution, [22] for the Fréchet distribution, [23] for two parameter
Maxwell distribution,[24] for generalized logistic distribution.
The rest of the paper is organized as follows: Weibull distribution is described in

section 2. In section 3, some classical estimation methods are given to estimate the
unknown parameters. In section 4, Bayes estimators of the unknown parameters are
obtained by using Lindley’s and Tierney Kadane’s approximations. In Section 5, a
simulation study is presented to evaluate the performances of the estimators with
respect to their biases and mean square errors (MSE). Finally, a real life example
taken from Turkish State Meteorological Service is given.

2. Weibull Distribution

The popularity of the Weibull distribution is attributable to the fact that it
is commonly used to model different data types, such as wind speed, geothermal
energy and finance.
The probability density function (PDF) and the cumulative density function

(CDF) of the two-parameter Weibull distribution with the shape parameter α and
the scale parameter β are given by:

F (x;α, β) = 1− exp
{
−
(
x

β

)α}
0 < x <∞; α > 0, β > 0 (1)

and

f(x;α, β) =
α

βα
xα−1exp

{
−
(
x

β

)α}
, 0 < x <∞. (2)

The mean and variance of the Weibull distribution are defined as follows:

E(x) = βΓ

(
1 +

1

α

)
and V (x) = β2

[
Γ

(
1 +

2

α

)
− Γ2

(
1 +

1

α

)]
respectively. Here, Γ is the gamma function.

3. The Methods for Parameter Estimation

In this section, we presented the methods of classical estimation for the Weibull
distribution used in this study.
3.1 Moment Estimators. The MEs are found by equating theoretical moments
to corresponding sample moments as shown below:

βΓ

(
1 +

1

α

)
= X̄ and β2Γ

(
1 +

2

α

)
=

∑n
i=1X

2
i

n
. (3)
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Then, by solving equation 3 the MEs of α and β are found as

β̂ =
X̄

Γ

(
1 + 1

α

) and

Γ

(
1 + 2

α̂

)
Γ2
(

1 + 2
α̂

) =

∑n
i=1X

2
i

nX̄2
(4)

respectively.
3.2 Maximum Likelihood Estimators. Let X1, X2, ..., Xn be a random sample
from Weibull distribution. The log-likelihood function is given by:

lnL = nlnα− nαlnβ + (α− 1)

n∑
i=1

lnxi −
n∑
i=1

(
xi
β

)α
. (5)

By taking the partial derivative of 5 with respect to α and β, and equating them
to zero, we obtain the following log-likelihood equations:

∂lnL

α
=
n

α
− nlnβ +

n∑
i=1

lnxi −
n∑
i=1

(
xi
β

)a
ln
xi
β

= 0 (6)

and
∂lnL

∂β
=
nα

β
+
α
∑n
i=1 x

α
i

βα+1
= 0. (7)

Solutions of these likelihood equations are called as the MLEs of shape parameter α
and scale parameter β , see for example [25] , [26] . However, they do not give closed
form expressions since they include nonlinear terms g1(x) = lnx and g2(x) = xαi in
6 and 7. Therefore, numerical methods are applied to solve the required equations.
In this study, we apply the well-known Newton Rapson method to solve these
equations.
3.3 Least Squares and Weighted Least Squares Estimators. The LSEs and
WLSEs were originally suggested by Swain et al.[27] to estimate the parameters of
beta distributions. See, for example, Kundu and Ragab [21] and Alkasabeh and
Ragab [24] .
Let X1, ..., Xn is a random sample of size n from a distribution function G(.) and

Xi:n; i = 1, 2, ..., n denotes the ordered sample. The expected value and variance
of G(Xi:n) are easily obtained from the relation between the Beta and uniform
distribution as

E(G(Xi:n)) =
i

n+ 1
and V ar(G(Xi:n)) =

i(n− i+ 1)

(n+ 1)2(n+ 2)
.

Since E(G(Xi:n)) = i
n+1 , i = 1, 2, ..., n, a regression model can be written as follows:

G(Xi:n) =
i

n+ 1
+ εi, i = 1, 2, ..., n.
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Then the LSEs of the unknown parameters can be obtained by minimizing the sum
of squares of errors

n∑
i=1

(G(Xi:n)− i

n+ 1
)2 (8)

with respect to unknown parameters. Therefore, the LSEs of the unknown para-
meters of Weibull distribution are found by minimizing

n∑
i=1

(1− exp(−(xi:n/β)α))2 (9)

with respect to α and β . Since the variances of errors depend on i, the het-
eroscedasticity problem arises. This problem adversely affects the performance of
the estimators. To overcome this problem, we use the method of weighted least
squares. The weighted least squares estimators of the unknown parameters can be
obtained by minimizing

n∑
i=1

Wi(G(Xi:n)− i

n+ 1
)2 (10)

with respect to the unknown parameters. Therefore, the WLSEs of the unknown
parameters of the two-parameter Weibull distribution are obtained by minimizing

n∑
i=1

wi(1− exp{−(xi:n/β)α})2 (11)

with respect to α and β. Where Wi = (n+1)2(n+2)
i(n−i+1) .

3.4 The Percentile Estimators. The Percentile estimators (PEs) of α and β are
obtained by minimizing the function given below:

n∑
i=1

{
Xi:n − F−1(

i

n+ 1
)

}2
(12)

with respect to unknown parameters [28], [29] . Here, F−1 is the inverse distribution
function and Xi:n is ordered observations i.e. X1:n < X2:n < ... < Xn:n.
Then the PEs of the shape and scale parameters of the Weibull distribution are

obtained by minimizing function
n∑
i=1

(
Xi:n − βln(

n+ 1

n+ 1− i )
1
α

)2
(13)

with respect to α and β.
3.5 L- Moment Estimators. The L- moment estimators (LMEs) was introduced
by Hosking [30]. These estimators have an estimation method based on linear
combination of order statistics. The LMEs have lower sample variances and they
are more robust outliers in data. In recently, a few authors have studied the L-
moment estimator for the Weibull distribution [14]-[31] .
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Let X1, X2, ..., Xn be a random sample of size n and X1:n ≤ X2:n ≤ ... ≤ Xn:n

be the order random variables. Then the population L-moments and sample L-
moments are given as follows:

Lk = k−1
k−1∑
j=0

(−1)j
(
k − 1

j

)
E(Xk−j:k), k = 1, 2, 3, ..., (14)

lk =
1

k
(
n
k

) n∑
i=1

k−1∑
j=0

(−1)j
(
k − 1

j

)(
i− 1

k − j − 1

)(
n− i
j

)
Xi:n, k = 1, 2, 3, ... (15)

respectively. Here, k is the number of the unknown parameters, E(Xi:n) are the
expected values of the order statistics and n is sample size.
By using equations 14, the population L-moments of two-parameter Weibull distri-
bution derived as

L1 = βΓ(1 +
1

α
) and L2 = βΓ(1 +

1

α
)−

βΓ(1 + 1
α )

2
1
α

. (16)

The idea lying under L moment estimators are the same as in the moment estima-
tors. In other words, on equating the first two population moments to corresponding
sample moments, the estimating equations are

βΓ(1 +
1

α
) = l1 and βΓ(1 +

1

α
)−

βΓ(1 + 1
α )

2
1
α

= l2. (17)

Then the LMEs of the parameters follow from 17 as

α̂ =
ln2

ln( l1
l1−l2 )

and β̂ =
l1

Γ(1 + 1
α̂ )
, (18)

respectively, where, l1 = x̄ and l2 = 1
n(n−1)

∑
(2j − n− 1)Xj:n.

3.6 Trimmed L-Moments Estimators. Elamir and Seheult [32] proposed TL-
moments as a robust generalization of L-moments. The TL-moments always exist
even if the mean of the distribution does not exist, for example, the TL-moments
exist for Cauchy distribution.
Let X1, X2, ..., Xn be a random sample of size n and X1:n ≤ X2:n ≤ ... ≤ Xn:n

denote the corresponding order statistics. Elamir and Seheult [32] defined the kth
the population and sample TL-moments

λ
(s,t)
k = k−1

k−1∑
j=0

(−1)j
(
k − 1

j

)
E(Xk+s−j:k+s+t), k = 1, 2, 3, ..., s, t = 0, 1, 2, ... (19)

and

l
(s,t)
k =

1

k
(

n
k+s+t

) n−t∑
j=s

k−1∑
i=0

(−1)i
(
k − 1

i

)(
j − 1

k + s− i− 1

)(
n− j
t+ i

)
Xj:n k = 1, 2, 3...

(20)
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respectively. It should be noted that TL-moments reduce to the L-moments when
s = t = 0 . In this study, we focus on asymmetric cases where s = 0, t = 1. By
putting s = 0 and t = 1 in equations 19 and 20 , we have

λ
(0,1)
k = k−1

k−1∑
j=0

(−1)j
(
k − 1

j

)
E(Xk−j:k+1) (21)

and

l
(0,1)
k =

1

k
(
n
k+t

) n−1∑
j=0

k−1∑
i=0

(−1)i
(
k − 1

i

)(
j − 1

k − i− 1

)(
n− j
i+ 1

)
Xj:n. (22)

The population TL-moments of the two-parameter Weibull distribution can be
obtained from 21 as

λ
(0,1)
1 =

βΓ(1 + 1
α )

2
1
α

and λ
(0,1)
2 =

3βΓ(1 + 1
α )

2
1
α

−
2βΓ(1 + 1

α )

3
1
α

(23)

The TLMEs are obtained by equating the first two sample TL-moments to the
corresponding population TL-moments. Hence, the estimating equations are

βΓ(1 + 1
α )

2
1
α

= l
(0,1)
1 and

3βΓ(1 + 1
α )

2
1
α

−
2βΓ(1 + 1

α )

3
1
α

= l
(0,1)
2 . (24)

The solutions of these equations are the following TLMEs:

α̂ =
log( 23 )

log(
3l
(0,1)
1 −2l(0,1)2

3l
(0,1)
1

)
and β̂ =

21/αl
(0,1)
1

Γ(1 + 1
α̂ )

where

l
(0,1)
1 =

2

n(n− 1)

n−1∑
i=1

(n−j)Xj:n and l
(0,1)
2 =

3

2n(n− 1)(n− 2)

n∑
j=1

(n−j)(3j−n−1))Xj:n.

3.7 Modified Maximum Likelihood Estimators-I. Cohen and Whitten [33]
recommend modifications of the MLEs for estimating the shape and scale parame-
ters of the Weibull distribution. The MMLE-I of the shape parameter α and scale
parameter β , say α̂MMLE−I and β̂MMLE−I respectively, of the Weibull distribu-
tion is obtained by solving the following equations:

−nXα
1:n

ln( n
n+1 )

=

n∑
i=1

Xα
i:n and β̂MMLE−I =

1

n
(

n∑
i=1

X α̂MMLE
i )

1
α̂MMLE−I . (25)

3.8 Modified Maximum Likelihood Estimators-II. We proposed modifica-
tions of the MLEs for estimating the unknown parameters of the Weibull distrib-
ution. Then, MMLE of the shape parameter α, say α̂MMLE−II , is estimated by
solving the following equation:

γ +
ln
∑n
i=1 x

α
i

n

α
=

∑n
i=1 lnxi
n

, (26)
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where γ ∼= 0.57722 is Euler constant.
Here, by inserting α̂MMLE−II instead of α̂ into equation 7 , MMLE of the scale
parameter β , say β̂MMLE−II is obtained as

β̂MMLE−II = (
1

n

n∑
i=1

x
α̂MMLE−II
i )

1
α̂MMLE−II . (27)

4. Bayesian Analysis

In this section, we consider the Bayesian estimation by using Lindley’s and
Tierney-Kadane’s approximations under different loss function for estimating the
unknown parameters of Weibull distribution. Bayesian analysis has many appli-
cations in statistical theory and analysis[34]. In Bayesian analysis the role of two
factors are crucial. These are (i) the choice of the loss function (LF) and (ii) the
choice of the prior distribution. For more details about the priors and loss func-
tions, see [35],[36].
In this study, GELF, PLF,WSELF and SELF are considered and described as fol-
lows:
The SELF was proposed by Legendre [37] and Gauss [38] to developed least square
theory. This loss function is commonly used and defined as

LSELF = (θ̂ − θ)2, (28)

where θ is the parameter to be estimated by an estimator θ̂ . The Bayes estimator
under equation 28 is the posterior mean given by

θ̂SELF = E(θ|x). (29)

This loss function is symmetrical in nature. It gives equal weight to both under-
estimation and over estimation. However, from a practical point of view, this is
not always appropriate and realistic, see for example [39]. Hence, asymmetric loss
functions would be more useful to develop Bayesian procedures.
Calabria and Pulcini [40] proposed general entropy loss function. It is one of the
most popular asymmetrical loss functions.
The GELF is given by

LGELF = (
θ̂

θ
)k − klog(

θ̂

θ
)− 1, k 6= 0, (30)

where θ̂ is the estimator of θ. k reflects the magnitude and degree of symmetry.
The Bayes estimator under equation 30 is given by

θ̂GELF = [E(θ−k|x)]−
1
k , (31)

provided Eθ(θ
−k|x).

The PLF, which is proposed by Norstrom [41] , is one of the asymmetric loss
functions. This loss function approach is useful to derive conservative estimators
since it approaches infinity near the origin and prevents underestimation. It is
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very useful when underestimation may lead to significant results [42]. The PLF is
defined as

LPLF =
(θ − θ̂)2

θ̂
, (32)

where θ̂ is the estimator of θ. The Bayes estimator of under equation 32 is given
by

θ̂PLF =

√
E(θ2|x), (33)

provided
√
E(θ2|x) exists and is finite.

WSELF is another useful asymmetric loss function. This function is a weighted
version of SELF. More detail about this loss function can be found in [35]and [43].
The WSELF is defined as:

LWSELF (θ̂, θ) =
(θ − θ̂)2

θ̂
. (34)

The Bayes estimator under WSELF is given by

θ̂WSELF = [E(θ−1|x)]−1. (35)

provided E(θ−1|x)−1 exists and is finite.
The prior distribution summarizes the information about unknown parameter be-
fore the data is available. The prior distribution is then synthesized with the
information in the data procedure the posterior distribution. In other words, an-
alytically, combining the prior distribution and likelihood function results in the
posterior distribution. The posterior distribution expresses what is known after
seeing data. In the Bayesian analysis, all inferences are made from the posterior
distribution [44].
The prior distribution has two forms: these are (i) "non-informative prior" and (ii)
"informative prior" [45].
Here we assume that α and β have two independent gamma prior distributions
i.e. α ∼ gamma(a, b) and β ∼ gamma(c, d) respectively. The gamma prior is
very flexible and suitable. Thus, this paper considers two special cases of the
gamma prior corresponding to a = b = c = d = 0 and a, b, c, d ≥ 0 (a, b, c, d are
the hyper-parameters of the prior distribution). It should be mentioned that for
a = b = c = d = 0 the prior distribution is non-informative prior (NP) distribution.
For a, b, c, d ≥ 0 , the prior distribution is referred to as the gamma prior (GP)
distribution. Thus, the proposed prior for α and β may be considered as

v1(α) ∝ αa−1e−bα, α > 0 and v2(β) ∝ βc−1e−dβ , β > 0. (36)

The joint prior distribution α and β is given as

v(α, β) ∝ αa−1βc−1e−dβ−bα, α, β, a, b, c, d ≥ 0. (37)
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Based on the observations, the likelihood function becomes

L(α, β) = αnβ−nα
n∏
i=1

X
(α−1)
i e−

∑
(
Xi
β )

α

. (38)

Combining 37 with 38 and using Bayes theorem, the joint posterior density of α
and β is

p(α, β|x) = K−1αn+a−1β−nα+c−1exp(−dβ − bα)

n∏
i=1

xα−1i e
∑n
i=1(

xi
β )

α

. (39)

Here K =
∫∞
0

∫∞
0
αn+a−1β−nα+c−1exp(−dβ − bα)

∏n
i=1 x

α−1
i e

∑n
i=1(

xi
β )

α

dαdβ.
It can be seen that the analytical solution of the Bayes estimators are not obtained.
Hence, we use the Lindley’s and Tierney-Kadane’s approximation. These methods
are described below.
4.1 Lindley’s procedure. Lindley’s [46] introduced an approximation method
for the evaluation of the ratio of the two integrals. This procedure can be applied
to compute the posterior expectation of the arbitrary function u(θ) as given by

E(u(θ)|x) =

∫
u(θ)eL(θ)+G(θ)dθ∫
eL(θ)+G(θ)dθ

,

where
u(θ) = a function of θ only,
L(θ) = Log-likelihood function,
G(θ) = Log of joint prior density function.
According to Lindley’s approximation, the ratio of integral E{u(θ)|x} can be ap-
proximated asymptotically given below:

E(u(θ)|x) ≈ [u+
1

2

∑
i

∑
j

(uij+2uiρi)σij+
1

2

∑
i

∑
j

∑
k

∑
l

Lijkσijσklul]+O(1/n2).

(40)
Here, i; j; k; l = 1, 2, ..., n; θ = (θ1, θ2, ..., θm), ui = ∂u(θ)

∂θi
, uij = ∂u(θ)

∂θi∂θj
, Lijk =

∂L(θ)
∂θi∂θj∂θk

, ρj = ∂G(θ)
∂θj

and σij are elements of the covariance matrix.
For the two-parameter Weibull distribution, equation 40 reduces to

E(u(α, β)|x) = u+
1

2
(u11σ11 + u22σ22) + u12σ12 + u1(σ11ρ1 + σ21ρ2) + u2(σ12ρ1 + σ22ρ2)

+ 0.5[L111(u1σ
2
11 + u2σ11σ12) + L112(3u1σ11σ12 + u2(σ11σ22 + 2σ212))

+ L122(u1(σ11σ22 + 2σ212) + 3u2σ12σ22) + L222(u1σ12σ22 + u2σ
2
22)]α̂,β̂,.

(41)

Here, the α̂ and β̂ are the MLEs of α and β, respectively.
All other quantities appearing in the above expression of E(u(α, β)|x) for Weibull
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distribution is given by

ρ̂α =
a− 1

α̂
− b, ρ̂β =

c− 1

β̂
− d,

L̂111 =
2n

α̂3
−

n∑
i=1

((ln(
xi

β̂
))3(

xi

β̂
)α̂),

L̂112 =

n∑
i=1

log(
xi

β̂
)(
xi

β̂
)α̂[

1

β̂
(2 + α̂.log(

xi

β̂
))],

L̂122 =

n∑
i=1

((
xi

β̂
)α̂(

1

β̂
2 (α̂+ 1)(α̂+ ln(

xi

β̂
) + 1) + α̂)) +

n

β̂

2

L̂222 =
−2nα̂

β̂
3 +

α̂(α̂+ 1)(α̂+ 2)

β̂
3

n∑
i=1

(
xi

β̂
)α̂,

and

σij =

[
V ar{α̂} Cov{α̂, β̂}
Cov{α̂, β̂} V ar{β̂}

]
=

1

n

[
0.6080α2 0.2570β

0.2570β 1.1087β
2

α2

]
.

All constant are evaluated at (α̂, β̂).
Then, by using Lindley’s method the Bayesion estimators of the parameter α under
SELF is obtained as
If u(α, β) = α, u1 = 1, u2 = u22 = u12 = u21 = u11 = 0, then

α̂SELF =α̂+ (σ̂11ρ̂1 + σ̂21ρ̂2)

+ 0.5[L̂111σ
2
11 + 3L̂112σ̂11σ̂12 + L̂122(σ̂11σ̂22 + 2σ̂212) + L̂222σ̂12σ̂22].

So, the Bayes estimator of β under SELF is obtained as,
If u(α, β) = β, u2 = 1, u22 = u12 = u21 = u11 = 0, then

β̂SELF =β̂ + (σ̂12ρ̂1 + σ̂22ρ̂2)

+ 0.5[L̂111σ11σ12 + L̂112(σ̂11σ̂22 + 2σ̂212) + 3L̂122σ̂12σ̂22 + L̂222σ̂
2
22].

Bayes estimator of α under the GELF is defined as
If u(α, β) = α−k, u1 = −kα−(k+1), u11 = k(k + 1)α−(k+2), u2 = u22 = u12 = u21 =
0, then

E(α−k|x) = α̂−k + 0.5(û11σ̂11) + û1(σ̂11ρ̂1 + σ̂21ρ̂2)+

0.5[L̂111û1σ̂
2
11 + 3L̂112û1σ̂11σ̂12 + L̂122û1(σ̂11σ̂22 + 2σ̂212) + L̂222û1σ̂12σ̂22].

Therefore, α̂GELF = E[α−k|x]−1/k.
Bayes estimator of β under the general entropy loss function is given by
If u(α, β) = β−k, u2 = −kβ−(k+1), u22 = k(k + 1)β−(k+2), u1 = u11 =
u12 = u21 = 0, then

E(β−k|x) = β̂
−k

+ 0.5(û22σ̂22) + û2(σ̂12ρ̂1 + σ̂22ρ̂2)+
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0.5[L̂111û2σ̂11σ̂12 + L̂112û2(σ̂11σ̂22 + 2σ212) + 3L̂122σ̂12σ̂22 + L̂222û2σ̂
2
22].

Hence, β̂GELF = E[β−k|x]−1/k.
Bayes estimator of α under the WSELF is as follows
If u(α, β) = α−1, u1 = −α−2, u11 = 2α−3, u2 = u22 = u12 = 0, then

E(α−1|x) = α̂−1 + 0.5(û11σ̂11) + û1(σ̂11ρ̂1 + σ̂21ρ̂2)+

0.5[L̂111û1σ̂
2
11 + 3L̂112û1(σ̂11σ̂12 + L̂122û1(σ̂11σ̂22 + 2σ̂212) + L̂222û1σ̂12σ̂22].

So, α̂WSELF = [E(α−1|x)]−1.
The Bayes estimator of β under the WSELF is given in following form
If u(α, β) = β−1, u2 = −β−2, u22 = 2β−3, u1 = u11 = u12 = 0, then

E(β−1|x) = β̂
−1

+ 0.5(û22σ̂22) + û2(σ̂12ρ̂1 + σ̂22ρ̂2)+

0.5[L̂111û2σ̂11σ̂12 + L̂112û2(σ̂11σ̂22 + 2σ̂212) + 3L̂122σ̂12σ̂22 + L̂222û2σ̂
2
22].

So, the Bayes estimator of β is β̂WSELF = [E(β−1|x)]−1.
Finally, the Bayes estimator of α under PLF is
If u(α, β) = α2, u1 = 2α, u11 = 2, u2 = u22 = u12 = 0, then

E(α2|x) = α̂2 + 0.5(û11σ̂11) + û1(σ̂11ρ̂1 + σ̂21ρ̂2)+

0.5[L̂111û1σ̂
2
11 + 3L̂112û1σ̂11σ̂12 + L̂122û1(σ̂11σ̂22 + 2σ̂212) + L̂222û1σ̂12σ̂22].

Hence,the Bayes estimator of α is as follows
α̂PLF =

√
E(α2|x).

Bayes estimator of β under PLF is given by
If u(α, β) = β2, u2 = 2β, u22 = 2, u1 = u11 = u12 = 0, then

E(β|x) = β̂ + 0.5(û22σ̂22) + û2(σ̂12ρ̂1 + σ̂22ρ̂2)+

0.5[L̂111û2σ̂11σ̂12 + L̂112û2(σ̂11σ̂22 + 2σ̂212) + 3L̂122σ̂12σ̂22 + L̂222û2σ̂
2
22].

So, β̂PLF =
√
E(β2|x).

4.2 Tierney Kadane’s Procedure. Lindley’s procedure seems to be become
more and more complex in p- parameter case (p > 2). Therefore, in multi-parameter
case, Tierney Kadane’s (T-K) procedure is used as an alternative to Lindley’s pro-
cedure [47],[48].
According to this procedure, posterior expectation for multi-parameter case can be
approximated by:

E(u(θ)|x) =

√
|Σ∗|
|Σ| exp[n(L∗1(θ̂

∗
)− L1(θ̂))]. (42)
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Here, θ̂
∗
and θ̂ maximize L∗1 and L1,respectively,

L1 =
[L(θ) + log(v(θ))]

n
,L∗1 = L1 +

[log(u(θ))]

n
,

where
v(θ) = joint prior distribution of θ,
L(θ) = Log-likelihood function of θ,
u(θ) = loss function of θ.
In equation 42,

∑∗ and∑ are elements of the negative of the inverse of the matrices
of the second derivatives of L∗1 and L1 at the point θ̂

∗
and θ, respectively.

For the two parameter case, θ = (α, β) , equation 42 becomes:

E(u(α, β)|x) =

√
|
∑∗ |
|
∑
| exp[n(L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]. (43)

Here, (β̂, α̂) and (β̂
∗
, α̂∗) maximize L1(α, β) and L∗1(α, β), respectively.

∑
and

∑∗
are given below:

∗∑
=

[
−∂

2L∗1
∂α2 − ∂2L∗1

∂α∂β

− ∂2L∗1
∂α∂β −∂

2L∗1
∂β

]−1
(α̂∗,β̂

∗
)

and
∑

=

[
−∂

2L1
∂α2 − ∂2L1

∂α∂β

− ∂2L1
∂α∂α −∂

2L1
∂β2

]−1
(α̂,β̂)

. (44)

All other quantities appearing in the above expression of E(u(α, β|x)) for Weibull
distribution can be obtained as

L1(α, β) =
1

n
[nlnα−nαlnβ+(α−1)

n∑
i=1

xi−
n∑
i=1

(
xi
β

)α+(α−1)lnα+(c−1)lnβ−(bα+dβ)].

(45)
Thus the Bayes estimator of α under SELF is given in the following form:
If u(α, β) = α and L∗1 = 1

n logα+ L1(α, β), then

α̂SELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
logα̂+ L1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]].

Also, the Bayes estimator of β under SELF using this procedure is defined as:
If u(α, β) = β and L∗1 = 1

n logβ + L1(α, β), then

β̂SELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
logβ̂ + L1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]].

Bayes estimator of α under GELF is given by:
If u(α, β) = α−k and L∗1 = 1

n log(α−k) + L1(α, β), then

α̂GELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
log(α̂−k) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]]−1/k.
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Bayes estimator of β under GELF is given by:
If u(α, β) = β−k and L∗1 = 1

n log(β−k) + L1(α, β), then

β̂GELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
log(β̂

−k
) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]]−1/k.

Bayes estimator of α under WSELF is as follows:
If u(α, β) = α−1 and L∗1 = 1

n log(α−1) + L1(α, β), then

α̂WSELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
log( ˆα−1) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]]−1.

Bayes estimator of β under WSELF is as follows:
If u(α, β) = β−1 and L∗1 = 1

n log(β)−1 + L1(α, β), then

β̂WSELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
log(̂β−1) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]]−1.

Bayes estimator of α under PLF is
If u(α, β) = α2 and L∗1 = 1

n log(α)2 + L1(α, β), then

α̂PLF =

√√√√√ |∑∗ |
|
∑
| exp[n(

1

n
log(α̂2) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))].

Bayes estimator of β under PLF is
If u(α, β) = β2 and L∗1 = 1

n log(β)2 + L1(α, β), then

β̂PLF =

√√√√√ |∑∗ |
|
∑
| exp[n(

1

n
log(β̂

2
) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))].

5. Simulation study

In this section, an extensive Monte Carlo simulation study was carried out to
compare the performances of the Bayesian and classical estimators with respect to
the biases and mean squared errors (MSEs) for different sample sizes and parameter
values. All The computations were performed in Matlab R. 2013. over 10.000
replications for different cases. We consider the sample sizes n = 10(10)100, the
shape parameter values α = 0.5, 1.5 and the scale parameter β was taken to be
1 throughout the study. The bias and MSE values of the classical estimators are
given in Table 1.
For Bayesian estimators, we know that the Gamma prior provides flexible ap-

proach in both informative and non-informative cases [48]. In case of the non-
informative prior (NP), we chose hyper-parameter values as a = b = c = d = 0.
In case of the GP, we chose hyper-parameter values as a = 0.4, 1, 1.5, 3, b = 0.2, 1,
c = 0.4, 1, 1.5, 3 and d = 0.2, 1. In both cases i.e. informative and non-informative,
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we considered as k = ±1.5 for GELF. Because of the large number of tables and
results, only results for a = c = 0.4, b = d = 0.2 and k = 1.5 were reported. More-
over, Lindley’s and T-K methods were used to obtain the Bayes estimator of the
unknown parameters. The results of simulation for these approximation methods
were summarized in Table 2-3.

Table 1. The simulated, means and MSEs values for the classical
different parameter estimators of α and β

α̂ β̂
n α Estimator Mean MSE Mean MSE

20 0.5

MLE 0.5382 0.0121 1.0704 0.2607
LME 0.5290 0.0152 0.9837 0.2598
TLME 0.5079 0.0138 0.9579 0.2395
MMLE-II 0.5330 0.0123 1.0687 0.2610
MMLE-I 0.4739 0.0220 0.9874 0.2616
ME 0.6511 0.0403 1.3510 0.5322
LSE 0.5008 0.0147 1.1271 0.3244
WLSE 0.5052 0.0131 1.1114 0.2973
PE 0.4887 0.0336 1.1229 0.2395

30 0.5

MLE 0.5243 0.0068 1.0544 0.1694
LME 0.5210 0.0101 0.9960 0.1752
TLME 0.5039 0.0081 0.9807 0.1622
MMLE-II 0.5226 0.0069 1.0541 0.1700
MMLE-I 0.4702 0.0172 0.9816 0.1779
ME 0.6151 0.0263 1.2863 0.3425
LSE 0.4984 0.0087 1.0932 0.2037
WLSE 0.5034 0.0076 1.0795 0.1878
PE 0.4800 0.0276 1.0577 0.2268

50 0.5

MLE 0.5147 0.0037 1.0276 0.0951
LME 0.5125 0.0059 0.9891 0.1019
TLME 0.5032 0.0045 0.9829 0.0945
MMLE-II 0.5139 0.0038 1.0280 0.0959
MMLE-I 0.4689 0.0139 0.9654 0.1154
ME 0.5782 0.0149 1.1955 0.1874
LSE 0.5000 0.0048 1.0490 0.1094
WLSE 0.5039 0.0041 1.0401 0.1014
PE 0.4664 0.0210 0.9622 0.3263
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Table 1. Continued

α̂ β̂
n α Estimator Mean MSE Mean MSE

100 0.5

MLE 0.5068 0.0016 1.0112 0.0458
LME 0.5068 0.0029 0.9931 0.0506
TLME 0.5012 0.0022 0.9894 0.0472
MMLE-II 0.5063 0.0017 1.0111 0.0461
MMLE-I 0.4697 0.0106 0.9586 0.0661
ME 0.5487 0.0076 1.1264 0.0959
LSE 0.4994 0.0023 1.0223 0.0516
WLSE 0.5020 0.0019 1.0170 0.0481
PE 0.4653 0.0142 0.9208 0.1755

20 1.5

MLE 1.6090 0.1041 1.0010 0.0245
LME 1.5292 0.0878 0.9943 0.0247
TLME 1.5333 0.1304 0.9968 0.0270
MMLE-II 1.5989 0.1055 1.0008 0.0246
MMLE-I 1.4225 0.1959 0.9712 0.0281
ME 1.6194 0.1051 1.0016 0.0245
LSE 1.4949 0.1262 1.0165 0.0276
WLSE 1.5087 0.1116 1.0129 0.0262
PE 1.4362 0.0968 1.0172 0.0734

30 1.5

MLE 1.5740 0.0625 0.9999 0.0166
LME 1.5225 0.0563 0.9956 0.0167
TLME 1.5218 0.0793 0.9977 0.0179
MMLE-II 1.5689 0.0634 0.9998 0.0167
MMLE-I 1.4112 0.1556 0.9732 0.0202
ME 1.5826 0.0651 1.0003 0.0167
LSE 1.4981 0.0787 1.0104 0.0183
WLSE 1.5125 0.0683 1.0071 0.0174
PE 1.4471 0.0667 1.0107 0.0021

50 1.5

MLE 1.5438 0.0331 0.9995 0.0099
LME 1.5137 0.0319 0.9969 0.0100
TLME 1.5133 0.0445 0.9982 0.0108
MMLE-II 1.5413 0.0344 0.9994 0.0100
MMLE-I 1.4103 0.1258 0.9763 0.0133
ME 1.5496 0.0353 0.9997 0.0100
LSE 1.4989 0.0450 1.0058 0.0110
WLSE 1.5107 0.0381 1.0034 0.0104
PE 1.4549 0.0398 1.0057 0.1723

100 1.5

MLE 1.5213 0.0151 1.0000 0.0050
LME 1.5065 0.0152 0.9988 0.0050
TLME 1.5067 0.0206 0.9993 0.0054
MMLE-II 1.5199 0.0158 1.0000 0.0050
MMLE-I 1.4063 0.0976 0.9790 0.0081
ME 1.5244 0.0165 1.0001 0.0050
LSE 1.4998 0.0213 1.003 0.0055
WLSE 1.5075 0.0175 1.0017 0.0052
PE 1.4658 0.0205 1.0025 0.0735
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Table 2.The simulated, means and MSEs values under different
loss function for the Lindley approximation of α and β

Lindley’s approximation
α̂ β̂

NP GP NP GP
n α LF Mean MSE Mean MSE Mean MSE Mean MSE

20 0.5

SELF 0.5178 0.0102 0.5240 0.0100 1.1895 0.3391 1.2313 0.3487
GELF 0.5008 0.0092 0.5060 0.0089 0.9441 0.2152 0.9746 0.2060
WSELF 0.5038 0.0094 0.5092 0.0090 0.9825 0.2258 1.0182 0.2177
PLF 0.5258 0.0108 0.5321 0.0108 1.2758 0.4192 1.3101 0.4347

30 0.5

SELF 0.5110 0.0061 0.5154 0.0062 1.1349 0.2053 1.1635 0.2104
GELF 0.4993 0.0057 0.5032 0.0057 0.9640 0.1468 0.9868 0.1429
WSELF 0.5015 0.0057 0.5054 0.0058 0.9930 0.1524 1.0186 0.1494
PLF 0.5163 0.0063 0.5207 0.0065 1.1976 0.2441 1.2220 0.2518

50 0.5

SELF 0.5068 0.0034 0.5097 0.0035 1.0759 0.1071 1.0974 0.1128
GELF 0.4996 0.0033 0.5023 0.0033 0.9709 0.0875 0.9897 0.0880
WSELF 0.5009 0.0033 0.5037 0.0033 0.9899 0.0894 1.0099 0.0906
PLF 0.5099 0.0035 0.5129 0.0036 1.1157 0.1209 1.1356 0.1284

100 0.5

SELF 0.5029 0.0016 0.5031 0.0016 1.0354 0.0487 1.0418 0.0507
GELF 0.4992 0.0015 0.4994 0.0016 0.9816 0.0441 0.9876 0.0453
WSELF 0.4999 0.0015 0.5002 0.0016 0.9918 0.0445 0.9979 0.0459
PLF 0.5045 0.0016 0.5047 0.0016 1.0564 0.0521 1.0628 0.0545

20 1.5

SELF 1.5480 0.0877 1.5585 0.0894 1.0161 0.0250 1.0177 0.0250
GELF 1.4974 0.0799 1.5069 0.0807 0.9874 0.0245 0.9889 0.0243
WSELF 1.5061 0.0809 1.5158 0.0818 0.9930 0.0245 0.9946 0.0243
PLF 1.5720 0.0932 1.5828 0.0955 1.0274 0.0258 1.0287 0.0258

30 1.5

SELF 1.5340 0.0553 1.5387 0.0548 1.0102 0.0169 1.0122 0.0163
GELF 1.4989 0.0517 1.5031 0.0509 0.9906 0.0166 0.9927 0.0160
WSELF 1.5053 0.0521 1.5096 0.0514 0.9945 0.0166 0.9965 0.0160
PLF 1.5498 0.0577 1.5545 0.0574 1.0179 0.0172 1.0199 0.0166

50 1.5

SELF 1.5202 0.0306 1.5229 0.0300 1.0057 0.0100 1.0090 0.0100
GELF 1.4984 0.0294 1.5010 0.0287 0.9938 0.0099 0.9970 0.0098
WSELF 1.5025 0.0295 1.5051 0.0288 0.9961 0.0099 0.9994 0.0098
PLF 1.5295 0.0315 1.5322 0.0309 1.0104 0.0101 1.0137 0.0101

100 1.5

SELF 1.5096 0.0145 1.5119 0.0150 1.0032 0.0050 1.0037 0.0049
GELF 1.4985 0.0142 1.5008 0.0146 0.9971 0.0050 0.9976 0.0049
WSELF 1.5006 0.0142 1.5029 0.0147 0.9983 0.0050 0.9988 0.0049
PLF 1.5142 0.0147 1.5166 0.0152 1.0056 0.0051 1.0061 0.0049

In all cases, the biases and MSEs of the estimators decrease as the sample size
n increases. It indicates that all the estimators are asymptotically unbiased and
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Table 3.The simulated, means and MSEs values under different
loss function for Tierney Kadaneâ€TM s approximation parameter
estimators of α and β

Tierney-Kadane’s approximation
α̂ β̂

NP GP NP GP
n α LF Mean MSE Mean MSE Mean MSE Mean MSE

20 0.5

SELF 0.5288 0.0107 0.5348 0.0107 1.2014 0.3498 1.2423 0.3448
GELF 0.5081 0.0091 0.5143 0.0089 0.9001 0.3049 0.9501 0.1962
WSELF 0.5123 0.0094 0.5185 0.0092 0.9549 0.2193 1.0046 0.2093
PLF 0.5369 0.0115 0.5428 0.0116 1.3497 0.4496 1.3823 0.4838

30 0.5

SELF 0.5175 0.0063 0.5218 0.0065 1.1420 0.2066 1.1656 0.2083
GELF 0.5040 0.0057 0.5084 0.0058 0.9430 0.1433 0.9714 0.1393
WSELF 0.5068 0.0058 0.5111 0.0059 0.9809 0.1485 1.0084 0.1460
PLF 0.5229 0.0066 0.5271 0.0069 1.2317 0.2645 1.2527 0.2662

50 0.5

SELF 0.5103 0.0034 0.5132 0.0036 1.0765 0.1096 1.0982 0.1124
GELF 0.5024 0.0032 0.5053 0.0033 0.9609 0.0888 0.9836 0.0871
WSELF 0.5040 0.0033 0.5069 0.0034 0.9833 0.0906 1.0058 0.0898
PLF 0.5134 0.0036 0.5163 0.0037 1.1258 0.1273 1.1470 0.1318

100 0.5

SELF 0.5045 0.0016 0.5047 0.0016 1.0534 0.0551 1.0486 0.0505
GELF 0.5006 0.0015 0.5008 0.0016 0.9966 0.0481 0.9923 0.0443
WSELF 0.5014 0.0016 0.5016 0.0016 1.0078 0.0490 1.0034 0.0450
PLF 0.5060 0.0016 0.5063 0.0017 1.0769 0.0599 1.0718 0.0549

20 1.5

SELF 1.5464 0.0339 1.4050 0.0321 1.0161 0.0250 1.0184 0.0250
GELF 1.4859 0.1329 1.3065 0.1373 0.9819 0.0246 0.9849 0.0243
WSELF 1.4801 0.1009 1.3183 0.1119 0.9887 0.0245 0.9915 0.0243
PLF 1.4260 0.0342 1.4348 0.0329 1.0299 0.0259 1.0320 0.0260

30 1.5

SELF 1.5436 0.0277 1.4485 0.0274 1.0101 0.0169 1.0126 0.0163
GELF 1.4844 0.0379 1.400 0.0317 0.9882 0.0167 0.9908 0.0160
WSELF 1.4848 0.0325 1.4114 0.0279 0.9926 0.0166 0.9952 0.0160
PLF 1.4608 0.0285 1.4654 0.0283 1.019 0.0172 1.0213 0.0167

50 1.5

SELF 1.5229 0.0211 1.4757 0.0205 1.0057 0.0100 1.0091 0.0100
GELF 1.4894 0.0212 1.4523 0.0206 0.9929 0.0099 0.9964 0.0098
WSELF 1.4841 0.0211 1.4571 0.0205 0.9955 0.0099 0.9989 0.0098
PLF 1.4822 0.0212 1.4849 0.0207 1.0108 0.0101 1.0143 0.0101

100 1.5

SELF 1.4886 0.0122 1.4908 0.0126 1.0032 0.0050 1.0037 0.0049
GELF 1.4873 0.0124 1.4795 0.0126 0.9969 0.0050 0.9974 0.0049
WSELF 1.4895 0.0123 1.4818 0.0126 0.9982 0.0050 0.9987 0.0049
PLF 1.4931 0.0123 1.4953 0.0126 1.0057 0.0051 1.0062 0.0049
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consistent for the parameters α and β. When the classical methods are compared
with each other, for the shape parameter α, as far as bias is concerned, LSE, WLSE
and TLME work the best for all sample sizes. With respect to the MSEs, for α < 1 ,
MMLE-II performs better than the other estimators for small sample sizes (n < 20)
and otherwise MLE outperforms the rest. For α ≥ 1, LME works the best for small
sample sizes (n ≤ 20). For large sample sizes (n ≥ 50), MLE and MMLE-II both
works very well.
Similarly, if we compare the classical estimators for β , comparing the biases, for
α < 1 , it is observed that LME and TLME work the best for particularly small
sample sizes and for large sample sizes (n > 50), the performances of the LME
and TLME are close to that of the MLE and MMLE-II. When α ≥ 1, LME and
TLME work the better than the other estimators for small sample sizes (n ≤ 20)
and otherwise MLE and MMLE-II outperform the rest.
Then, if we compare the performance of Bayes estimators obtained by Lindley’s
method, it is clear that as far as MSE and bias are concerned, Bayes estimators
under GELF and WSELF work the best in all cases. Similarly, comparing the
performance of Bayes estimators obtained by Tierney Kadane’s approximation, it
is observed that, if α ≤ 1 , Bayes estimators obtained under GELF works the best
in all cases for estimating α parameter, followed by Bayes estimation under the
WSELF. When α > 1, for estimating parameter, Bayesian estimations under SELF
and PLF work very well.
For estimating β parameter, Bayes estimation under WSELF performs better than
the other estimators for small sample sizes (n ≤ 20) and otherwise Bayesian esti-
mations under WSELF and GELF give the same result.
When we compare the Bayesian and classical methods for estimating the α and β
parameters, it is clear that as far as bias and MSE are concerned; Bayesian methods
outperform the classical methods. Furthermore, Lindley’s method works well than
the Tierney-Kadane’s method in the most of the cases. Also, the GP gives better
estimators than the NP for all loss functions.

6. Application

In this section, an actual data set is used to illustrate the estimation procedure
developed in section 3-4. The data set measured from Sivas, Turkey during 2017
was used. There were 6011 observations recorded. The data was taken from the
Turkish State Meteorological Service. All measurements were made at the heights
of 10m in hourly basis.
In this paper, the performance of the Weibull distribution (WD) was compared
with the Gamma distribution (GD), log- normal distribution (LND) and inverse
Gauss distribution (IGD). These distributions for wind speed data were analyzed
seasonally and annually. To determine the distribution providing better fit to wind
speed data, we computed the root mean square error (RMSE), the coeffi cient of
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determination (R2) and Akaike information criteria(AIC) values for each distribu-
tion, as shown in Table 4. The formulas for model selection criteria were given in
Table 5. In addition to these statistical criteria, the cumulative density function of
the WD, GD, IGD and LND were presented in Figure 1 for seasonal and annual
wind speed data.

Table 4. RMSE, R2 and AIC values for distributions

n Criteria WD IGD LN GD

6011 Annual
RMSE 0.0215 0.0746 0.0502 0.0301
R2 0.9946 0.9214 0.9664 0.989
AIC 2.5736 2.7704 2.7488 2.6058

1560 Winter
RMSE 0.0215 0.0821 0.0571 0.0353
R2 0.9945 0.9053 0.9564 0.9847
AIC 6.6889 7.2235 6.9984 6.7801

1710 Spring
RMSE 0.025 0.0627 0.0419 0.0261
R2 0.9926 0.9453 0.977 0.9918
AIC 7.2749 7.7628 8.3423 7.3414

1429 Summer
RMSE 0.0236 0.0796 0.0538 0.0338
R2 0.9936 0.9084 0.9606 0.986
AIC 6.1904 6.7319 6.8202 6.298

1312 Autumn
RMSE 0.0231 0.0721 0.0482 0.0287
R2 0.9936 0.9276 0.9693 0.99
AIC 5.5252 5.8949 5.6003 5.5729

Table 5. The formulas of criteria for model evaluation

Criteria Formulas
RMSE 2k − 2 lnα

R2 1−
(∑n

i=1 F̂
(
X(i)

)
− i

n+1

)2
/
(∑n

i=1 F̂ (Xi)− F̂ (Xi)
)2

AIC
[∑n

i=1

(
F̂
(
X(i)

)
− i

n+1

)2
/n

]1/2

According to Table 4, Weibull distribution has the smallest RMSE, AIC values
and the highest R2 values. In Table 5, k is the number of the unknown parameters,
In L is the value of log-likelihood function for each distribution, F̂ is the estimated
cumulative density function, Xi is i − th order statistics, n is sample size and
¯̂
F =

∑n
i=1 F̂i/n .
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Figure 1. The cumulative density function for annual and seasonal wind speed
data (m/s) for Sivas.
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Table 6. Classical parameter estimations for the wind speed data.

n Estimator α̂ β̂

6011 Annual

MLE 2.1520 4.9177
LME 2.1422 4.9202
TLME 2.1256 4.9326
MMLE-I 2.1318 4.9088
MMLE-II 3.0342 5.2794
ME 2.1551 4.9203
LSE 2.1083 4.9360
WLSE 2.1571 4.9221
PE 2.1876 4.9300

1560 Winter

MLE 2.1052 4.8413
LME 2.1020 4.8463
TLME 2.0534 4.8832
MMLE-I 2.0780 4.8291
MMLE-II 2.6032 5.0557
ME 2.1139 4.8465
LSE 2.1089 4.8786
WLSE 2.1168 4.8610
PE 2.1452 4.8600

1710 Spring

MLE 2.2734 5.0726
LME 2.2605 5.0705
TLME 2.3060 5.0389
MMLE-I 2.2730 5.0724
MMLE-II 2.6083 5.2082
ME 2.2674 5.0704
LSE 2.1956 5.0535
WLSE 2.2540 5.0615
PE 2.2746 5.0723

1429 Summer

MLE 2.2483 5.1749
LME 2.2290 5.1816
TLME 2.1682 5.2274
MMLE-I 2.2058 5.1573
MMLE-II 2.5317 5.2892
ME 2.2541 5.1812
LSE 2.1641 5.2318
WLSE 2.2420 5.1998
PE 2.3019 5.1970
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Table 6. Continued.

n Estimator α̂ β̂

1312 Autumn

MLE 2.0056 4.5226
LME 2.0020 4.5226
TLME 2.0117 4.5155
MMLE-I 1.9993 4.5196
MMLE-II 2.5919 4.7879
ME 2.0060 4.5228
LSE 1.9794 4.5225
WLSE 2.0062 4.5257
PE 2.0140 4.5285

Table 7.Lindley’s and Tierney Kadane’s parameter estimations un-
der NP for the wind speed data

Lindley’s Tierney-Kadane’s
n LF α̂ β̂ α̂ β̂

6011 Annual

SELF 2.1517 4.9178 2.1494 4.9178
GELF 2.1515 4.9176 2.1493 4.9177
WSELF 2.1515 4.9176 2.1492 4.9176
PLF 2.1518 4.9179 2.1496 4.9179

1560 Winter

SELF 2.1041 4.8419 2.0963 4.8418
GELF 2.1034 4.8412 2.0956 4.8414
WSELF 2.1033 4.8411 2.0954 4.8413
PLF 2.1046 4.8423 2.0967 4.8423

1710 Spring

SELF 2.2724 5.0731 2.2619 5.0731
GELF 2.2717 5.0725 2.2611 5.0726
WSELF 2.2716 5.0724 2.2611 5.0724
PLF 2.2728 5.0734 2.2624 5.0734

1429 Summer

SELF 2.2471 5.1755 2.2349 5.1753
GELF 2.2463 5.1748 2.2340 5.1749
WSELF 2.2462 5.1747 2.2338 5.1748
PLF 2.2476 5.1759 2.2355 5.1758

1312 Autumn

SELF 2.0044 4.5232 1.9973 4.5233
GELF 2.0036 4.5224 1.9965 4.5223
WSELF 2.0035 4.5223 1.9963 4.5222
PLF 2.0049 4.5237 1.9978 4.5237
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Table 8. Lindley’s and Tierney Kadane’s parameter estimations
under GP for the wind speed

Lindley’s Tierney-Kadane’s
n LF α̂ β̂ α̂ β̂

6011 Annual

SELF 2.1517 4.9186 2.1489 4.918
GELF 2.1515 4.9184 2.1487 4.9131
WSELF 2.1515 4.9184 2.1487 4.9131
PLF 2.1518 4.9187 2.1490 4.9187

1560 Winter

SELF 2.1039 4.8365 2.0939 4.8365
GELF 2.1034 4.8358 2.0953 4.8358
WSELF 2.1033 4.8357 2.0951 4.8357
PLF 2.1046 4.8369 2.0965 4.8369

1710 Spring

SELF 2.2727 5.0731 2.2623 5.0731
GELF 2.2720 5.0725 2.2615 5.0725
WSELF 2.2719 5.0725 2.2614 5.0725
PLF 2.2731 5.0734 2.2627 5.0734

1429 Summer

SELF 2.2494 5.1776 2.2371 5.1777
GELF 2.2486 5.1769 2.2361 5.1770
WSELF 2.2484 5.1768 2.2360 5.1769
PLF 2.2499 5.1780 2.2376 5.1781

1312 Autumn

SELF 2.0059 4.5218 1.9984 4.5218
GELF 2.0047 4.5210 1.9976 4.5210
WSELF 2.0046 4.5209 1.9975 4.5209
PLF 2.0060 4.5223 1.9989 4.5223

It is clear that the results in Figure 1 are consistent with Table 4. Thus, in terms
of all criteria, WD performed better than GD, IGD and LND for the seasonal and
the annual wind speed data. Therefore, the two-parameter Weibull distribution
was used for modelling the wind speed data. The estimators of the α and β ob-
tained by using Bayesian and classical methods are given in Table 6-8. In light
of the aforementioned information, we recommend the Bayesian estimations under
WSELF and GELF for estimating the unknown parameters of Weibull distribution.

7. Conclusion

In this paper, we obtained different methods of estimation of the unknown pa-
rameters both with Bayesian and classical approximation. In classical method, the
parameters α and β were estimated by using nine different method. In Bayesian
method, we computed the Bayesian estimators of unknown parameters based on
symmetric and asymmetric loss functions. The Bayes estimators do not have ex-
plicit form. Hence, we used the Lindley and Tierney Kadane’s techniques under
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the assumption of Gamma priors. We also compare the performances of the esti-
mators via simulation study. It is clear from the simulation results given in Table
1-3 that Lindley approximation under GELF and WSELF are more preferable than
the other estimators according to the MSE and bias criteria in both scenarios i.e.
informative prior and non-informative prior (especially for sample size n > 50 ).
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