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ABSTRACT 
 

It is important for an insurance company to predict the future claims in order to evaluate premiums, to determine the reserve 

necessary to meet its obligation and probabilities of ruin, etc. as the claim data is highly positively skewed and has heavy tail, 

no standard parametric model seems to provide an acceptable fit to both small and large losses. Composite models that use one 

standard distribution up to a threshold and other standard distribution thereafter are developed and it is seen that these composite 

models provide better fit than the standard models when claim data involve small and high claims.  

 

The aim of this study is to investigate the use of the composite models namely Exponential-Pareto, Weibull-Pareto and 

Lognormal-Pareto to model the Turkish Motor Insurance claim data. From the results obtained, it is concluded that the 

composite Weibull-Pareto model provides better fit to Turkish Motor Insurance claim data than the all other models considered. 

 

Keywords: Composite models, Standard parametric models, Turkish motor insurance loss data 

 

 

1. INTRODUCTION 
 

The classical parametric models such as Exponential, Gamma, Pareto, Weibull and Lognormal do 

not provide a better fit when data are highly positively and heavy tailed. Therefore, the composite 

models made up by piecing together two weighted distributions at a specified threshold have been 

proposed to model this data. For an insurance company, it is extremely important to predict future 

claims in order to calculate the premium to be charged, to determine the reserves required to meet 

its obligations, to calculate the probability of ruin, etc. As the insurance loss data involve both 

small and high claims in other words they are highly positively skewed and heavy tailed, the 

composite models are widely used. Cooray and Ananda [1] proposed the composite Lognormal -

Pareto model. Ciumara [2] considered Weibull density up to an unknown threshold and Pareto 

density thereafter. Preda and Ciumara [3] compared the composite Lognormal-Pareto and 

Weibull-Pareto models. Teodorescu and Vernic [4] presented the composite Exponential -Pareto 

model. Scollnik [5] improved the composite Lognormal-Pareto model by incorporating 

unrestricted mixing weight in each component. Teodorescu and Vernic [6] designed a composite 

model by mixing a truncated Exponential and Pareto distribution and composite Exponential -

Type II Pareto model. Vernic et al. [7] studied the composite Lognormal-Lognormal model. 

Nadarajah and Bakar [8] developed the composite Lognormal-Burr model. Maghsoudi et al. [9] 

concluded that among composite Weibull-Gamma family, composite Weibull-Inverse 

Transformed Gamma model is better than other models. Composite models based on Stoppa 

distribution were developed by Calderin-Ojeda and Kwok [10]. Abu Bakar et al. [11] developed 

several new composite models based on the Weibull distribution.  The fit of almost all of these 

composite models above to insurance loss data is investigated using Danish fire loss data. It is 

concluded that these models provide a better fit when the data is extremely skewed.   
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The outline of this paper is as follows. Section 2 involves the construction and the basic properties 

including the probability function, distribution function and non-central moments of the 

composite models and in Section 3 the maximum likelihood and ad-hoc procedure based on 

percentiles used for the estimation of the unknown parameters are given. The composite models 

namely the Exponential-Pareto, Weibull-Pareto and Lognormal-Pareto and comparison of these 

composite models with the standard parametric models namely Exponential, Weibull, Pareto and 

Lognormal are given in Section 4. The results of the application carried out on a Turkish Motor 

Insurance claim data is presented in Section 5. Finally, conclusion is given in Section 6.  

 

2. CONSTRUCTION OF COMPOSITE MODELS AND THEIR BASIC PROPERTIES 

 

Assuming that the loss data (X) involves small and high claims and the small claims have a probability 

density function  f x1  usually a light-tailed distribution and high claims have a probability density 

function  f x2  usually a heavy-tailed, then the random variable X has the following probability density 

function: 

  
 

 
1

2

  ,    

,    

c f x x
f x

cf x x





 
 


  (1) 

where   is threshold and c  is the normalizing constant. 

To have a continuous and differentiable density, the following conditions at threshold must be 

imposed: 
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Normalizing constant c  in the Eq. (1) can be obtained from 
0

( ) 1Xf x dx


  as 

   
c
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 1 20

1
 [1]. 

Denoting the cumulative distribution function of  if x  by   iF x for 1,2i  , the cumulative 

distribution function of the probability density function in Eq. (1) is:  

 
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The kth non-central moment is given by 

     1 2
0

.k k kE X c x f x dx x f x dx




 
    

 

As this model has a fixed and priori known mixing weight, its default application and use for 

predictive modelling would seem ill-advised without very careful consideration in practical 

situations.   

Scollnik [5] pointed out that the model given in Eq.(1) might also be written as convex 

combinations of two probability density functions: 
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where 0 1r   and *( )f x1
 and  *

2f x  which are the adequate truncations of  f x1  and  2f x  are 

respectively as follows: 
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In this model, the mixing weight 𝑟 can not be obtained from the integral 

       * *

1 2
0 0

1 1f x dx rf x dx r f x dx
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      . It is a function of the parameters of  1f x  and  2f x  

varying in the interval [0,1] obtained by imposing the continuity and differentiability conditions 

at threshold in Eq. (2). 

The cumulative distribution function of the probability density function in Eq. (3) can be given 

as: 
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The kth non-central moment is given by 
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3. PARAMETER ESTIMATION 

 

As the maximum likelihood and ad-hoc procedure based on percentiles are two widely used 

methods for the estimation of the unknown parameters of the composite models, here these 

methods are mentioned briefly. 

 

3.1. Maximum Likelihood Estimation 

 

Let , , , nx x x1 2  be a random sample. If we assume this is an ordered sample  1 2  nx x x    and 

the threshold is between mth observation and m+1th observation  1m mx x   , then the likelihood 

function for model in Eq.(1) is given by  

   1 2
1 1

m n
n

i i
i i m

L c f x f x
  

   . 

So, the log-likelihood function is 
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1 1

 
m n

i i
i i m

lnL nlnc lnf x lnf x
  

      (4) 
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The likelihood function for model in Eq. (3) is given by  

     * *
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L r r f x f x
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      

So, the log-likelihood function is: 

        * *

1 2
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    1
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i i m

lnL mlnr n m ln r lnf x lnf x
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As the score functions obtained taking partial derivatives of Eq.(4) or Eq.(5) with respect to unknown 

parameters can’t be usually solved analytically, the numeric methods developed to find a solution to 

nonlinear system such as Newton-Raphson and Secant methods can be used. 

 

3.2. An ad-hoc procedure based on percentiles 

It is a procedure providing closed form expressions for the parameters to be estimated. In this procedure, 

threshold is estimated using percentile and the other parameters are estimated using maximum likelihood 

method.  As in the maximum likelihood method, let us consider an ordered sample 1 2  nx x x   

where 1m mx x   . 

The threshold parameter   can be estimated using the smooth empirical estimate of pth percentile as: 

  11 m mh x hx     

where    1m n p    ,  1h n p m    and  p F  [12]. 

 

4. COMPOSITE MODELS and THEIR BASIC PROPERTIES 

This section involves the probability density function, cumulative distribution function and non -

central moments of the composite Exponential-Pareto, Weibull-Pareto and Lognormal-Pareto 

models respectively. Here, the densities of these composite models are  also illustrated for some 

parameter values for comparison purpose. 

 

4.1. Exponential-Pareto Composite Model 

 

Suppose in the Eq.(1)  1f x  has the form of a one-parameter Exponential density and  2f x  has 

the form of a two-parameter Pareto density given in the Eq.(6) and Eq.(7) respectively: 

    1     ,  0,  0f x exp x x        (6) 

  2 1

 
   ,  ,   0,  0.f x x
x






  


      (7) 

By imposing the continuity and differentiability conditions in Eq.(2) at threshold   to obtain a 

smooth composite density function, the following two equations are obtained:  

From the Condition 1         e                (8) 

From the Condition 2   
2  

2

( 1)
  .e    




 
            (9) 

Using the Eq.(8) in the Eq. (9), the following equation is obtained: 
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Using the numerical methods, the solution of the Eq.(10) is calculated as   1.35  . So, 

1.35
  .


  The parameter   is 0.35.  

By imposing the condition  
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So, the composite Exponential-Pareto density function becomes 
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The cumulative distribution function of this composite model is 
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For the composite Exponential-Pareto model, the rth non-central moment can be given by 
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 is the incomplete Gamma function. 

Using the Eq. 4), the likelihood function is obtained as 
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
 [4]. 

In Figure 1, the Exponential, Pareto and composite Exponential-Pareto densities are illustrated for 

10  . It is seen that composite Exponential-Pareto model has a heavier tail than the Exponential. 
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Figure 1. The Densities of Exponential, Pareto and Composite Exponential -Pareto Models for 10  . 

 

In order to see the effect of the change in threshold  , the densities of the composite Exponential-Pareto 

model for 10,20,40  are illustrated in Figure 2. 

 

Figure 2. The Densities of the Composite Exponential-Pareto Model for 10,20,40  . 

 

As seen from Figure 2, as the   increases, the tail of the composite Exponential-Pareto model 

becomes heavier.  

 

4.2. Weibull-Pareto Composite Model 

 

Suppose in Eq.(1)  f x1  has the form of a two-parameter Weibull density and  f x2  has the 

form of a two-parameter Pareto density in Eq.(11) and Eq.(7) respectively: 

   1
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By imposing the continuity and differentiability conditions in Eq.(2) at threshold   to obtain a 

smooth composite density function, the following two equations are obtained:  

From the Condition 1  exp

 
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From the Condition 2  
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Putting the Eq.(12) in the Eq.(13), one can obtain: 
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By equating the Eq.(12) to the Eq.(14),  
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So, the composite Weibull-Pareto density becomes: 
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The cumulative distribution function of this composite model is  
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For the composite Weibull-Pareto model, the rth non-central moment can be given by 
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Using the Eq.(4), the likelihood function is obtained as 
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In Figure 3, the Weibull, Pareto and composite Weibull-Pareto densities are illustrated for 10  . It is 

seen that composite Weibull-Pareto model has a heavier tail than the Weibull.  

 

 
Figure 3. The Densities of Weibull, Pareto and Composite Weibull -Pareto Models for 10   and 2  . 

 

In order to see the effect of the change in threshold  , the densities of the composite Weibull-Pareto 

model for 2   and 10,20,40  are illustrated in Figure 4. 

 

 

Figure 4. The Densities of the Composite Weibull-Pareto Model for 2   and 10,20,40  . 

 

As seen from Figure 4, as the   increases, the tail of the composite Weibull-Pareto model becomes 

heavier.  

 

4.3. Lognormal-Pareto Model 

 

Suppose in Eq.(1)  f x1   has the form of a two-parameter Lognormal density and  f x2  has the 

form of a two-parameter Pareto density in Eq.(16) and Eq.(7) respectively 
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1 1
0 0

22
  (16) 

 

By imposing the continuity and differentiability conditions in Eq.(2) at threshold   to obtain a 

smooth composite density function, the following two equations are obtained:  

From the Condition 1  

2
1 1 ln

exp
22

 




  
   

   

    (17) 

From the Condition 2   2

1
ln .  


        (18) 

As seen form Eq. (18), 2ln .     

By equating the Eq.(17) to the Eq.(18), one can obtain: 

 2 2 2exp 2 .           (19) 

Using numerical methods, the solution of the Eq. (19) is calculated as 0.372238898k   .  

By imposing the condition  f x



0

1, the normalizing constant is calculated as 
 

1

1 Φ k
c 



where   .  is the cumulative distribution function of the standard normal distribution.  

So, the Lognormal-Pareto composite density becomes: 

 
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

   
     

   
 
   
 

 

The cumulative distribution function of this composite model is:  

 
 
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 Φ k

, .
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F x
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

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      

   
 

 
       

1
0

1

1
1

1

 

For the composite Lognormal-Pareto model, the rth non-central moment can be given by: 

 
 

2

21 1
 Φ ( 2       .

1  Φ k 2

r k kr k
E X k exp r r for r

r


  

  

     
                 

 

As mentioned in Section (3.1), the likelihood function of the Lognormal-Pareto composite model is: 
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n
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x



 

 
 


 [1]. 

In Figure 5, Lognormal, Pareto and composite Lognormal-Pareto densities are illustrated for 1   and 

10  . It is seen that composite Lognormal-Pareto model has a heavier tail than the Lognormal.   

 

 
Figure 5. The Densities of Lognormal, Pareto and Composite Lognormal -Pareto Models for 1   and 10  . 

 

In order to see the effect of the change in threshold  , the densities of the composite Lognormal-Pareto 

model for 1   and 10,20,40  are illustrated in Figure 6. 

 

Figure 6. The Densities of the Composite Lognormal-Pareto Model for 1   and 10,20,40.   

 

As seen from Figure 6, as the   increases, the tail of the composite Lognormal-Pareto model 

becomes heavier.  

 

5. APPLICATION OF COMPOSITE MODELS TO TURKISH MOTOR INSURANCE 

CLAIM DATA  

 

In this section, in addition to the composite models given in Section 4 some standard distributions 

namely Exponential, Weibull, Pareto and Lognormal are applied to Turkish Motor Insurance 

claim data taken from an insurance company consisting of 976 losses paid in 2003 for the damages 

in the automobile insurance. The summary statistics of the data divided by one thousand and the 

histogram and boxplot are given in Table 1 and Figure 7 respectively. 
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Table 1. Summary Statistics of the Claim Data. 

 

Summary Statistics 

Minimum 0.0875 

First Quantile 0.7937 

Median 1.4060 

Mean 2.1274 

Third Quantile 1.4060 

Maximum 98.1953 

 

As seen from Table 1, the first and third quantiles are far apart from the maximum value, meaning 

that the data is highly skewed. The histogram and boxplot in Figure 7 also verify this.   
 

 
 

 

Figure 7. The Histogram with Density Curve and Boxplot of the Data. 

 
Appropriate R optimization functions are used to estimate the parameters. The goodness of fit 

measures the Negative Log-Likelihood  NLL lnL   and the Akaike Information Criterion 

( 2 2AIC k lnL   where k  is the number of the parameters of the fitted model) are used to 

measure the appropriateness of the fitted model along with the Kolmogorov–Simirnov (K-S) 

statistic. The smaller the NLL  and AIC  values and also K-S, the better the fit of the model 

considered. The results obtained are given in Table 2. 

 

Table 2. The Estimated Values of the Fitted Models for the Turkish Motor Insurance Data . 

Model R optimization 

function 

Estimated parameters NLL AIC K-S 

Exponential - 
.  0 47   

1554.843 3111.686 0.293 

Weibull nlm 
. .  0 82 1 75   

1489.753 2983.505 0.227 

Pareto nlm 
. .  0 09 0 38   

1931.718 3867.436 0.419 

Lognormal - 
. .  0 12 0 77   

1020.306 2044.612 0.626 

Exponential-Pareto bbsolve 
.  58 62   

1457.397 2916.251 0.908 

Weibull-Pareto uniroot 
. .  0 96 4 15   

961.677 1927.355 0.096 

Lognormal-Pareto uniroot 
. .  0 91 0 99  

1085.202 2174.403 0.169 

 

The results in Table 2 suggest that the composite Weibull-Pareto model provides a better fit to 

this data than all other models considered. So, the composite models can be used to model Turkish 

Motor Insurance claim data. In Figure 7, the density curve belongs to the composite Weibull-

Pareto model which has the best fit among all the models considered here.  
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6. CONCLUSION 
 

In this paper, we investigated the fit of the composite Exponential -Pareto, Weibull-Pareto and 

Lognormal-Pareto models to the Turkish Motor Insurance claim data. After giving brief 

information about these composite models, all of these composite models along with the classical 

models namely Exponential, Weibull, Pareto and Lognormal are applied to the claim data taken 

from an insurance company. It is concluded that the composite Weibull-Pareto model provides a 

better fit than all other models considered. When the data is highly positively skewed and has 

heavy tailed, the necessity of the use of composite models is verified by the application.  
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