DOI:10.25092/baunfbed.680685 J. BAUN Inst. Sci. Technol., 22(1), 248-254, (2020)

On new modular sequence space defined over 2-normed spaces

Gülcan ATICİ TURAN*

Department of Mathematics, University of Muş Alparslan, Muş, Turkey

Geliş Tarihi (Received Date): 06.07.2019 Kabul Tarihi (Accepted Date): 17.09.2019

Abstract

In this paper, a new sequence space $F(||., ||, M, p, u)$ *is defined by using a sequence of Orlicz functions in 2-normed spaces. Some various properties and some inclusions are also examined on this space.*

Keywords: Orlicz function, sequence spaces, 2-norm, paranormed spaces.

2-normlu uzaylarda tanımlı yeni modular dizi uzayı

Öz

Bu çalışmada, 2-normlu uzaylarda Orlicz fonksiyonlarının bir dizisi kullanılarak (‖. , . ‖,ℳ, ,) *yeni dizi uzayı tanımlanmıştır. Ayrıca bu uzayın bazı özellikleri ve bazı kapsama bağıntıları incelenmiştir.*

Anahtar Kelimeler: Orlicz fonksiyon, dizi uzayları, 2-norm, paranormlu uzaylar.

1. Introduction

The concept of 2-normed spaces was introduced and studied by Siegfried Gähler, a German Mathematician who worked at German Academy of Science, Berlin, in a series of paper in German language published in Mathematische Nachrichten, see for example references [1,2]. This notion which is nothing but a two dimensional analogue of a normed space got the attention of a wider audience after the publication of a paper by Albert George, White Jr. of USA in 1969 entitled 2-Banach spaces [3]. In the same year Gähler published another paper on this theme in the same journal [1]. A.H. Siddiqi

^{*} Gülcan ATICİ TURAN, gatici23@hotmail.com, <https://orcid.org/0000-0002-1009-6072>

delivered a series of lectures on this theme in various conferences in India and Iran. His joint paper with Gähler et al. [4] of 1975 also provide valuable results related to the theme of this paper. Results up to 1977 were summarized in the survey paper by Siddiqi [5].

An Orlicz function $M : [0, \infty) \rightarrow [0, \infty)$ is a function, which is continuous, nondecreasing and convex such that $M(0) = 0$, $M(x) > 0$ for $x > 0$ and $M(x) \rightarrow$ ∞ as $x \to \infty$.

Note that for M is an Orlicz function, we have $M(\lambda x) \le \lambda M(x)$ where $0 \le \lambda \le 1$ ℓ_M sequence space defined as following:

$$
\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} \left(M \left(\frac{|x_k|}{\rho} \right) \right) < \infty, \text{for some } \rho > 0 \right\} [6].
$$

Let X be a real linear space and \parallel ... \parallel is defined a real valued mapping on $X \times X$. For $x, y, z \in X$ and $\lambda \in \mathbb{R}$, the function $\|\cdot\|$, which satisfies the following conditions is called 2-norm and the pair $(X, \|\cdot\|)$ is called a linear 2-normed space or shortly 2normed space. $\|\cdot\|$, $\|\cdot\|$ is a non-negative function.

 (N_1) $||x, y|| = 0$ if and only if x and y are linearly dependent; (N_2) $||x, y|| = ||y, x||;$ (N_3) $\|\lambda x, y\| = |\lambda| \|x, y\|, \lambda \in \mathbb{R};$ (N_4) $||x, y + z|| \le ||x, y|| + ||x, z||$.

 $(X, \|\cdot\|)$ is a 2-Banach space if every Cauchy sequence in X is convergent to some x in X [7].

Let X be a linear metric space. A function $g: X \to \mathbb{R}$ is called paranorm, if

(i) $q(x) \geq 0$, for all $x \in X$ (ii) $g(-x) = g(x)$, for all $x \in X$ (iii) $g(x + y) \le g(x) + g(y)$, for all $x, y \in X$ (iv) if (μ_n) is a sequence of scalars with $\mu_n \to \mu$ as $n \to \infty$ and (x_n) is a sequence of vectors with $g(x_n - x) \to 0$ as $n \to \infty$, then $g(\mu_n x_n - \mu x) \to 0$ as $n \to \infty$ [8].

A scalar valued paranormed sequence space (F, g_F) , where g_F is a paranorm on F is called monotone paranormed space if $x = (x_k)$, $y = (y_k) \in F$ and $|x_k| \le |y_k|$ for all *k* implies $g_F(x) \leq g_F(y)$ [8].

Definition 1.1. Let *X* be a sequence space.

(i) If $y = (y_k) \in X$ whenever $|y_i| \le |x_i|, i \ge 1$ for some $x = (x_k) \in X$, then X is called solid (or normal).

(ii) If $(x_k) \in X$ implies $(X_{\pi(k)}) \in X$ such that $\pi(k)$ is a permutation of N, then X is called symmetric [9].

U is showed as the set of all real sequences $u = (u_k)$, where $u_k > 0$ for all $k \in \mathbb{N}$.

Throughout this study the following inequality will be used. Let $p = (p_k)$ be a positive sequence of real numbers with $0 < p_k \leq \sup p_k = H, D = \max(1, 2^{H-1})$, then for all a_k , $b_k \in \mathbb{C}$, we have

$$
|a_k + b_k|^{p_k} \le D\{|a_k|^{p_k} + |b_k|^{p_k}\}.
$$
 (1)

2. Main results

Let (F, g_F) be a normal paranormed sequence space with paranorm g_F which satisfies the following properties:

(i) g_F is a monotone paranorm;

(ii) coordinatewise convergence implies convergence in paranorm g_F , which implies that for each $(X^n) = (X_k^n) \in F$, $n, k \in \mathbb{N}$, $X_k^n \to 0$ as $n \to \infty$ (for each k) $\Rightarrow g_F(X^n) \to$ 0 as $n \to \infty$ [10].

Let $(N, \|\cdot\|)$ be a 2-normed space and $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions. Further, let $p = (p_k)$ be a bounded sequence of strictly positive real numbers. We define the set:

$$
F(||.,||, \mathcal{M}, p, u)
$$

= $\left\{ X = (X_k) : X_k \in N, \left(u_k \left[M_k \left(\frac{||X_k, Z||}{\rho} \right) \right]^{p_k} \right) \in F, \text{ for some } \rho > 0 \right\}$
for every $Z \in N$.

For $p_k = 1$ for all $k \in \mathbb{N}$, we write this space as $F(||...||, \mathcal{M}, u)$.

Theorem 2.1. If $M = (M_k)$ is a sequence of Orlicz functions then $F(||., ||, M, p, u)$ is a linear space.

Proof. Let $X = (X_k)$, $Y = (Y_k) \in F(\|\cdot\|, \cdot\|\, \mathcal{M}, p, u)$ and $a, b \in \mathbb{R}$, thus there are some positive numbers ρ_1 and ρ_2 such that

$$
\left(u_k \left[M_k \left(\frac{\|X_k, Z\|}{\rho_1}\right)\right]^{p_k}\right) \in F \text{ and } \left(u_k \left[M_k \left(\frac{\|Y_k, Z\|}{\rho_2}\right)\right]^{p_k}\right) \in F
$$

for every $Z \in N$. Define $\rho = max\{2|a|\rho_1, 2|b|\rho_2\}$. Because of the definition of the Orlicz function, we can write

$$
u_k \left[M_k \left(\frac{\|aX_k + bY_k, Z\|}{\rho} \right) \right]^{p_k} \leq u_k \left[M_k \left(\frac{\|aX_k, Z\| + \|bY_k, Z\|}{\rho} \right) \right]^{p_k}
$$

$$
< u_k \left[M_k \left(\frac{\|X_k, Z\|}{\rho_1} \right) + M_k \left(\frac{\|Y_k, Z\|}{\rho_2} \right) \right]^{p_k}
$$

$$
\leq Du_k \left[M_k \left(\frac{\|X_k, Z\|}{\rho_1} \right) \right]^{p_k} + Du_k \left[M_k \left(\frac{\|Y_k, Z\|}{\rho_2} \right) \right]^{p_k} \in F,
$$

such that $D = max\{1, 2^{H-1}\}\.$ Therefore $aX + bY \in F(\|\.\,,\,\cdot\|, \mathcal{M}, p, u)$. Hence $F(||. \, . \, ||, \mathcal{M}, p, u)$ is a linear space.

Theorem 2.2. For any sequence $\mathcal{M} = (M_k)$ of Orlicz function, $F(||., ||, \mathcal{M}, p, u)$ is a paranormed space with

$$
g_T(X) = \inf \left\{ \rho^{\frac{p_k}{T}} > 0 : \left[g_F \left(u_k \left[M_k \left(\frac{\|X_k, Z\|}{\rho} \right) \right]^{p_k} \right) \right]^{\frac{1}{T}} \le 1, k = 1, 2, \dots \right\} \right\}
$$
(2)

such that $T = max(1, H)$, $H = sup_k p_k < \infty$ and $inf p_k > 0$ and for $Z \in N$.

Proof. It is easy to prove that $g_T(\theta) = 0$ and $g_T(-X) = g_T(X)$. Since g_F is monotone and when $a = b = 1$ is taken in the proof of Theorem 2.1, we write $g_T(X + Y) \le$ $g_T(X) + g_T(Y)$ for $X = (X_k), Y = (Y_k) \in F(\|\dots\|, \mathcal{M}, p, u).$

Let $\lambda \neq 0$ be any complex number. Because of the continuity of the scalar multiplication, we can write

$$
g_T(\lambda X) = \inf \left\{ \rho^{\frac{p_k}{T}} > 0 : \left[g_F \left(u_k \left[M_k \left(\frac{\|\lambda X_k, Z\|}{\rho} \right) \right]^{p_k} \right) \right]^{\frac{1}{T}} \le 1, k = 1, 2, \dots \right\}
$$

=
$$
\inf \left\{ (|\lambda|r)^{\frac{p_k}{T}} > 0 : \left[g_F \left(u_k \left[M_k \left(\frac{\|X_k, Z\|}{r} \right) \right]^{p_k} \right) \right]^{\frac{1}{T}} \le 1, k = 1, 2, \dots \right\}
$$

where $r = \rho/|\lambda|$.

Since $|\lambda|^{p_k} \le \max(1, |\lambda|^H)$. We have $|\lambda|^{\frac{p_k}{T}} \le (\max(1, |\lambda|^H))^{\frac{1}{T}}$ T . Thus $g_T(\lambda X)$ converges to zero when $g_T(X)$ converges to zero in $F(\parallel, \ldots \parallel, \mathcal{M}, p, u)$. Let $X = (X_k) \in F(\|\cdot\|, \mathcal{M}, p, u)$ and assume that $\lambda_n \to 0$ as $n \to \infty$. Let $\varepsilon > 0$ and

 K be a positive integer. Then we can write

$$
g_F\left(u_k\left[M_k\left(\frac{\|X_k,Z\|}{\rho}\right)\right]^{p_k}\right) < \left(\frac{\varepsilon}{2}\right)^T
$$

every some $\rho > 0$ and for $k > K$ such that $k \in N$,

$$
\left[g_F\left(u_k\left[\mathbf{M}_k\left(\frac{\|X_k,Z\|}{\rho}\right)\right]^{p_k}\right)\right]^{\frac{1}{T}} \leq \frac{\varepsilon}{2}.
$$

Let $0 < |\lambda| < 1$. Because of the definition of the Orlicz function and by the condition (iii) of 2-norm, we have

$$
g_F\left(u_k\left[\mathbf{M}_k\left(\frac{\|\lambda X_k, Z\|}{\rho}\right)\right]^{p_k}\right) = g_F\left(u_k\left[\mathbf{M}_k\left(|\lambda|\frac{\|X_k, Z\|}{\rho}\right)\right]^{p_k}\right) < g_F\left(u_k\left[|\lambda|\mathbf{M}_k\left(\frac{\|X_k, Z\|}{\rho}\right)\right]^{p_k}\right)
$$

$$
< g_F\left(u_k\left[M_k\left(\frac{||X_k, Z||}{\rho}\right)\right]^{p_k}\right) < \left(\frac{\varepsilon}{2}\right)^T
$$

for $k > K$. Since *M* is continuous everywhere in [0, ∞) and by the definition of g_F , it follows that for $k \leq K$

$$
\varphi(t) = g_F\left(u_k \left[\mathbf{M}_k \left(\frac{\|tX_k, Z\|}{\rho}\right)\right]^{p_k}\right)
$$

is continuous at 0. Therefore $|\varphi(t)| < \frac{\varepsilon}{2}$ $\frac{\epsilon}{2}$ for $0 < t < \delta$ such that $0 < \delta < 1$. Let L be any integer such that $|\lambda_n| < \delta$ for $n > L$, then

$$
\left[g_F\left(u_k\left[\mathbf{M}_k\left(\frac{\|\lambda_n X_k, Z\|}{\rho}\right)\right]^{p_k}\right)\right]^{\frac{1}{T}} < \frac{\varepsilon}{2}
$$

for $n > L$ and $k \leq K$. Therefore

$$
\left[g_F\left(u_k\left[\mathsf{M}_k\left(\frac{\|\lambda_n X_k, Z\|}{\rho}\right)\right]^{p_k}\right)\right]^{\frac{1}{T}} < \varepsilon
$$

for $n > L$ and for all k. So $\lambda_n X \to \theta$ as $n \to \infty$. This completes the prof of the theorem.

Theorem 2.3. Let $(N, \|\cdot\|)$ be a 2-Banach space, then the space $F(\|\cdot\|, \mathcal{M}, p, u)$ is a complete paranormed space with $g_T(X)$, where F is a K-space.

Proof. The proof is routine verification by using standard arguments and therefore omitted.

Theorem 2.4. If F is a K-space, then $F(||\cdot||, ||, \mathcal{M}, p, u)$ is a K-space.

Proof. Let us define a mapping $\tau_n: F(||...||, \mathcal{M}, p, u) \to N$ by $\tau_n(X) = X_n$, $\forall n \in \mathbb{N}$. Our aim is to show τ_n is continuous.

Let (X^m) be a sequence in $F(||...||, \mathcal{M}, p, u)$ such that $X^m \stackrel{g}{\rightarrow} 0$ as $m \rightarrow \infty$. Then for some suitable choice of $\rho > 0$,

$$
\left[g_F\left(u_k\left[\mathbb{M}_k\left(\frac{\left\Vert X_k^m,Z\right\Vert}{\rho}\right)\right]^{p_k}\right)\right]^{\frac{1}{T}}\rightarrow 0
$$

as $m \to \infty$. Since F is a K –space, this implies that for each k and as m tending to ∞ ,

$$
u_k \left[M_k \left(\frac{\|X_k^m, Z\|}{\rho} \right) \right]^{p_k} \to 0
$$

for some $\rho > 0$. Since M_k be a sequence of Orlicz functions, it follows that $||X_k^m, Z|| \to$ 0 as $m \to \infty$. Consequently, $X^m \to 0$ in N.

Theorem 2.5. Let M and T be two sequence of Orlicz functions. Then

 $F(||., .||, M, p, u) \cap F(||., .||, T, p, u) \subseteq F(||., ||, M + T, p, u)$

where F is a normal sequence space.

Proof. Let $X = (X_k) \in F(\|\cdot\|, \mathcal{M}, p, u) \cap F(\|\cdot\|, \mathcal{M}, p, u)$. Then we can choose $\rho_1, \rho_2 > 0$ such that

$$
\left(u_k \left[M_k \left(\frac{\|X_k, Z\|}{\rho_1}\right)\right]^{p_k}\right) \in F \text{ and } \left(u_k \left[T_k \left(\frac{\|X_k, Z\|}{\rho_2}\right)\right]^{p_k}\right) \in F.
$$

Define $\rho = max\{\rho_1, \rho_2\}$. We can write

$$
u_k \left[(M_k + T_k) \left(\frac{\|X_k, Z\|}{\rho} \right) \right]^{p_k} \leq u_k D \left\{ \left[M_k \left(\frac{\|X_k, Z\|}{\rho_1} \right) \right]^{p_k} + \left[T_k \left(\frac{\|X_k, Z\|}{\rho_2} \right) \right]^{p_k} \right\} \in F,
$$

where $D = max\{1, 2^{H-1}\}\$. Since F is normal, $X \in F(\|\cdot\|, \cdot\|, \mathcal{M} + \mathcal{T}, p, u)$.

Theorem 2.6. Let $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions. Then $c_0(||\ldots||, \mathcal{M}, p, u) \subset c(||\ldots||, \mathcal{M}, p, u) \subset \ell_\infty(||\ldots||, \mathcal{M}, p, u).$

Proof. It is obvious that $c_0(\|\cdot\|, \mathcal{M}, p, u) \subset c(\|\cdot\|, \mathcal{M}, p, u)$. The second inclusion follows from the following inequality. Let $X = (X_k) \in c(\|\dots\|, \mathcal{M}, p, u)$ and for some $\rho = 2\mu > 0$, we obtain

$$
u_k \left[M_k \left(\frac{\|X_k, Z\|}{\rho} \right) \right]^{p_k} \leq u_k D \left[M_k \left(\frac{\|X_k - L, Z\|}{\mu} \right) \right]^{p_k} + u_k D \max \left\{ 1, \left[M_k \left(\frac{\|L, Z\|}{\mu} \right) \right]^{H} \right\}.
$$

Thus $X = (X_k) \in \ell_\infty(\mathbb{I}, \mathbb{I}, \mathcal{M}, p, u).$

Theorem 2.7. Let $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions. Then (i) If $0 \le \inf p_k \le p_k \le 1$, then $c_0(\|\cdot\|, \mathcal{M}, u) \subset c_0(\|\cdot\|, \mathcal{M}, p, u)$; (ii) If $1 \leq p_k \leq \text{supp}_k < \infty$, then $c_0(||\cdot, ||, \mathcal{M}, p, u) \subset c_0(||\cdot, ||, \mathcal{M}, u)$.

Proof. (i) Let $X = (X_k) \in c_0(\mathbb{I}, \mathbb{I}, \mathbb{M}, u)$. Since $0 < \inf p_k \leq p_k \leq 1$, then we have

$$
\left[\mathbf{M}_k\left(\frac{\|X_k, Z\|}{\rho}\right)\right]^{p_k} \le \mathbf{M}_k\left(\frac{\|X_k, Z\|}{\rho}\right).
$$

Therefore $X = (X_k) \in c_0(\mathbb{I}, \mathbb{I}, \mathbb{M}, p, u)$. (ii) Let $1 \leq p_k \leq \text{supp}_k < \infty$ and $X = (X_k) \in c_0(\mathbb{I}, \mathbb{I}, \mathbb{M}, p, u)$. Then for each $0 < \varepsilon < 1$ there is a positive integer L such that

$$
u_k \left[\mathbf{M}_k \left(\frac{\|X_k, Z\|}{\rho} \right) \right]^{p_k} \le \varepsilon < 1, \qquad \forall k \ge L.
$$

Since $1 \leq p_k \leq \text{supp}_k < \infty$, then we have

$$
u_k\left[\mathbf{M}_k\left(\frac{\|X_k,Z\|}{\rho}\right)\right] \leq u_k\left[\mathbf{M}_k\left(\frac{\|X_k,Z\|}{\rho}\right)\right]^{p_k}.
$$

Therefore $X = (X_k) \in c_0(\mathbb{I}, \mathbb{I}, \mathcal{M}, u)$. This completes the proof of the theorem.

Theorem 2.8. The space $F(||,||,||, \mathcal{M}, p, u)$ is both solid(normal) and symmetric.

Proof. The proof is similar to [10].

References

- [1] Gähler, S., Uber 2-Banach räume, **Mathematische Nachrichten**, 42, 335-347, (1969).
- [2] Diminnie, C., Gähler, S. and White Jr. A.G., 2-inner product spaces, **Demonstrario Mathematica**, 6, 525-536, (1973).
- [3] White Jr. A.G., 2-Banach spaces, **Mathematische Nachrichten**, 42, 43-60, (1969).
- [4] Gähler, S., Siddiqi, A.H. and Gupta, S.C., Contributions to non-archimedean functional analysis, **Mathematische Nachrichten**, 69, 162-171, (1975).
- [5] Siddiqi, A.H., 2-normed spaces, **The Aligarh Bulletin of Mathematics,** 53-70, (1980).
- [6] Lindenstrauss, J., Tzafriri, L. On Orlicz sequence spaces, **Israel Journal of Mathematics,** 101, 379–390, (1971).
- [7] Gähler, S., Lineare 2-normierte Räume, **Mathematische Nachrichten,** 28, 1–43, (1965).
- [8] Maddox, I. J., **Elements of functional analysis**, Cambridge University Press, Cambridge, (1970).
- [9] Kamthan, P.K., Gupta, M., **Sequence spaces and series**, Marcel Dekker, New York, (1981).
- [10] Dutta, H., Kılıçman, A., Altun, Ö., Topological properties of some sequences defined over 2-normed spaces, **SpringerPlus**, 5, 2-16, (2016).
- [11] Dutta, H., Some statistically convergent difference sequence spaces defined over real 2-normed linear spaces, **Applied Sciences**, 12, 37–47, (2010).
- [12] Bektaş, Ç.A., Altin, Y., The sequence space $l_M(p,q,s)$ on seminormed spaces, **Indian Journal of Pure Applied Mathematics**, 34(4), 529–534, (2003).
- [13] Rao, M.M., Ren, Z.D., **Theory on Orlicz spaces**, Marcel Dekker, New York, (1991).
- [14] Gürdal, M. and Şahiner, A., Ideal Convergence in n-normed spaces and some new sequence spaces via n-norm, **Journal of Fundamental Sciences**, 4(1), 233- 244, (2008).
- [15] Sahiner, A., Gürdal, M., Saltan, S. and Gunawan, H., Ideal convergence in 2normed spaces, **Taiwanese Journal of Mathematics**, 11(5), 1477-1484, (2007).
- [16] Sahiner, A. and Gürdal, M., New sequence spaces in n-normed spaces with respect to an Orlicz function, **The Aligarh Bulletin of Mathematics**, 27(1), 53- 58, (2008).