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Abstract 

 

In this paper, a new analysis of nonlinear modified Boussinesq-Burger equation is 

revisited via optimal perturbation iteration technique. We first consider artificial 

parameters and perturbation theory and combine them to deal with nonlinear partial 

differential equations. After that, the recommended theory is employed to get new semi-

analytical solutions of nonlinear partial differential equations. As will be seen from the 

results, this technique needs no discretization or linearization and can be directly applied 

to many nonlinear differential equations. 

 

Keywords: Optimal perturbation iteration techniques, nonlinear partial differential 

equations. 

XX 

XX 

Değiştirilmiş Boussinesq-Burger denklemlerinin yarı analitik 

incelemesi 
XX 

XX 

Öz 

XX 

Bu çalışmada değiştirilmiş Boussinesq-Burger denklemlerinin optimal perturbasyon 

iterasyon yöntemi ile yarı analitik incelemesi yapılmıştır. Öncelikle önerilen metodun 

inşası için yapay parametreler ve perturbasyon teorisi ele alınmış ve bunlar 

birleştirilerek lineer olmayan kısmi diferansiyel denklemler için bir çözüm metodu 

geliştirilmiştir. Daha sonra ise elde edilen algoritmalar ile ele alınan problem yarı 

analitik olarak çözülmüştür. Sonuçlardan da anlaşılabileceği üzere bu teknik birçok 

lineer olmayan diferansiyel denkleme herhangi bir lineerizasyon gerektirmeden 

rahatlıkla uygulanabilmektedir. 

XX 
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Anahtar kelimeler Optimal perturbasyon iterasyon yöntemi, lineer olmayan kısmi 

diferansiyel denklemler. 

XX 

1. Introduction 

 

The solitons and their equations are very prominent subjects in the field of engineering 

and mathematics. Over the last decades, many iterations have been made to analyze 

various nonlinear soliton equations. The exact analytical solutions of nonlinear wave 

equations help to understand the behavior and characteristics of nonlinear soliton 

equations. For this reason, seeking exact solutions of nonlinear wave equations is an 

important and interesting subject. Up to now, there have been many methods to solve 

these types of equations, such as Bäcklund transformation method [1], Adomian 

decomposition method [2], Darboux transformation method [3], Chebyshev spectral 

collocation method [4], tanh–coth method [5], Taylor collocation method [6],  

homogeneous balance method [7], variational iteration method [8]. Differential transform 

[9] and homotopy perturbation methods [10] are also very useful methods for solving 

ordinary and partial differential equations.  

 

Over the last 5 years, there have been many attempts via many researchers for solving 

ODEs and PDEs. Among them, semi analytical techniques are much more considered as 

a direct solution to many types of ODEs and PDEs. One of them is optimal perturbation 

iteration method (OPIM) and it is used for handling many different and well-known 

nonlinear equations such as Bratu [11], delay [12], heat transfer [13] and Lane-Emden 

type equations [14]. This technique is also proved to be very efficient for nonlinear PDEs 

such as Burgers’ [15], generalized regularized long wave equations [16]. Fractional 

differential equations can also be analyzed by using OPIM as in [17].  In those paper, one 

can see that, OPIM uses only algorithms for solving nonlinear equations. Fundamental 

idea is to decompose the equation in its nonlinear and linear part, then struggling with the 

nonlinear part by manipulating the artificial parameter and perturbation theory. After 

solving algorithm for the equations, we solve the algebraical equations arised from 

OPIAs. After obtaining the unknown parameters, we just substitute them to get the semi-

analytical solutions. More information about techniques related on soliton equations can 

also be seen in [18-20] 

 

The classical Boussinesq-Burger equations can be given as  

 

𝑢𝑡 −
1

2
𝑣𝑥 + 2𝑢𝑢𝑥 = 0,

𝑣𝑡 −
1

2
𝑢𝑥𝑥𝑥 + 2(𝑢𝑣)𝑥 = 0,    0 ≤ 𝑥 ≤ 1,

                                                                     (1) 

 

with the initial conditions 

 

 
𝑢(𝑥, 0) =

𝑐𝑘

2
+

𝑐𝑘

2
𝑡𝑎𝑛ℎ (

−𝑘𝑥−ln𝑏

2
) ,

𝑣(𝑥, 0) =
−𝑘2

8
secℎ2 (

𝑘𝑥+ln𝑏

2
) .

                      (2) 

 

The exact solution of these equations can be given as [21] 

 

𝑢(𝑥, 𝑡) =
𝑐𝑘

2
+

𝑐𝑘

2
𝑡𝑎𝑛ℎ (

𝑐𝑘2𝑡−𝑘𝑥−ln𝑏

2
),              (3) 
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𝑣(𝑥, 𝑡) =
−𝑘2

8
secℎ2 (

𝑘𝑥−𝑐𝑘2𝑡+ln𝑏

2
).                 (4) 

 

The Boussinesq - Burger equations arise in the study of fluid flow and describe the 

propagation of shallow water waves. Here 𝑥 and 𝑡  respectively represent the normalized 

space and time, 𝑢(𝑥, 𝑡) is the horizontal velocity field and 𝑣(𝑥, 𝑡) denotes the height of 

the water surface above a horizontal level at the bottom [17]. In this paper, we will deal 

with the modified form of the above equations such as  

 

 
𝑢𝑡 −

1

2
𝑣𝑥 + 2𝑢𝑢𝑥 + 𝑢 = 0,

𝑣𝑡 −
1

2
𝑢𝑥𝑥𝑥 + 2(𝑢𝑣)𝑥 + 𝑣 = 0,    0 ≤ 𝑥 ≤ 1,

                                        (5) 

 

with the initial conditions 

 

 
𝑢(𝑥, 0) =

𝑐𝑘

2
+

𝑐𝑘

2
𝑡𝑎𝑛ℎ (

−𝑘𝑥2+𝑥−ln𝑏

2
) ,

𝑣(𝑥, 0) =
−𝑘2

8
secℎ2 (

𝑘𝑥2+ln𝑏

2
) .

                         (6) 

 

 

2. OPIM algorithms for general optimal nonlinear differential equations 

 

In order to perform OPIM fort he aforementioned equations, one can follow the steps 

below. 

 

First, the Eqs. (1) can be taken as: 

 

𝐹1(𝑢𝑥, 𝑢𝑡 , 𝑣𝑥, 𝜀) = 𝑢𝑡 −
1

2
𝑣𝑥 + 2𝜀𝑢𝑢𝑥 + 𝑢 = 0,                     (7) 

𝐹2(𝑢𝑥𝑥𝑥, 𝑢𝑥, 𝑣𝑡 , 𝑣𝑥 , 𝜀) = 𝑣𝑡 −
1

2
𝑢𝑥𝑥𝑥 + 2𝜀(𝑢𝑣)𝑥 + 𝑣 = 0              (8) 

 

where 𝜀 is  the perturbation parameter. Without processing whole of the system, we can 

give the following general procedure. All 𝐹in (5) will be split up as 

 

𝐹 = 𝑆 + 𝑅.                                                    (9) 

 

We do this decomposition fort he sake of more comfortable computations. First part of 

the equation (9)  is easier part of the problem. One can readily solve that part.  

Additionally, 𝑅 second part and one need to solve this part to obtain a new algorithm for 

the problems. Now, we use the theory of perturbation theory. Taking the straightforward 

expansion of perturbation series, one can write the following equality  

 

𝑢𝑛+1 = 𝑢𝑛 + 𝜀(𝑢𝑐)𝑛 .             (10) 

 

Here (𝑢𝑐)𝑛 is a correction term and can be found by solving the first order OPIA problem. 

Now using the equation (10) - (7) and (8) we can get the OPIM algorithms.  Replacing 

those equations and expanding them in a series, we have 

 

𝑅1 + 𝑅1𝑢𝑡
((𝑢𝑐)𝑛)𝑡𝜀 + 𝑅1𝑣𝑥

((𝑣𝑐)𝑛)𝑥𝜀 + 𝑅1𝑢𝑥
((𝑢𝑐)𝑛)𝑥𝜀 + 𝑅1𝜀

𝜀 = −𝑆1,               (11) 
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𝑅2 + 𝑅2𝑢𝑡
((𝑢𝑐)𝑛)𝑡𝜀 + 𝑅2𝑣𝑥

((𝑣𝑐)𝑛)𝑥𝜀 + 𝑅2𝑢𝑥
((𝑢𝑐)𝑛)𝑥𝜀 + 𝑅2𝜀

𝜀 = −𝑆2.               (12) 

 

Note that all computations are at 𝜀 = 0.  Doing the mandatory computations for the (3), 

one can have 

 

((𝑢𝑐)𝑛)𝑡 = (
1

2
𝑣𝑛)

𝑥
− 2(𝑢𝑛)𝑥(𝑢𝑛) + (𝑢𝑛),            (13) 

((𝑣𝑐)𝑛)𝑡 = (
1

2
𝑢𝑛)

𝑥
− 2((𝑢𝑣)𝑛)𝑥 + (𝑣𝑛).                       (14) 

 

The above expressions are called as OPIAs for the modified Boussinesq-Burger 

equations. After finding those OPIAs, we can begin to iterate with selecting appropriate 

𝑢0and 𝑣0 (initial functions). There is no general theorem for those functions, and they can 

be elected by using ICs.   By solving the algorithm (13) - (14), the first correction terms 

are obtained. However, generally first order approximations are not good enough for most 

of the problems. Therefore, we need to iterate more. Besides that, solutions can be healed 

by using the following parameters: 

 
𝑢𝑛+1 = 𝑢𝑛 + 𝑃𝑛(𝑢𝑐)𝑛

𝑣𝑛+1 = 𝑣𝑛 + 𝑃𝑛(𝑣𝑐)𝑛
.             (15) 

 

𝑃0, 𝑃1, 𝑃2, … can be seen as convergence-control constants. By using those parameters, we 

can easily control the convergence of the solutions. Generalizing with 𝑛 = 0,1, …, we get 

 
𝑢1 = 𝑢(𝑥, 𝑡; 𝑃0) = 𝑢0 + 𝑃0(𝑢𝑐)0

𝑣1 = 𝑣(𝑥, 𝑡; 𝑃0, 𝑃1) = 𝑣1 + 𝑃1(𝑣𝑐)1

       ⋮
𝑢𝑚(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1) = 𝑢𝑚−1 + 𝑃𝑚−1(𝑢𝑐)𝑚−1

𝑣𝑚(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1) = 𝑣𝑚−1 + 𝑃𝑚−1(𝑣𝑐)𝑚−1

.                                (16) 

 

After substituting 𝑢𝑚, 𝑣𝑚 into the Eq. (6), the whole problem will be: 

 
𝑅𝑒1(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1) = 𝐹1(𝑢𝑥, 𝑢𝑡, 𝑣𝑥, 𝜀),

𝑅𝑒2(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1) = 𝐹2(𝑢𝑥𝑥𝑥, 𝑢𝑥, 𝑣𝑡 , 𝑣𝑥 , 𝜀)
 .                (17) 

 

Apparently, when 𝑅𝑒1,2(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1) = 0  we say that 𝑢𝑚(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1)  and 

𝑣𝑚(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1) are the exact analytical solutions for the problem.  But we do not 

usually encounter such a situation especially for nonlinear ODEs and PDEs. Besides that, 

we can try to minimize the following: 

 

𝐽(𝑃0, … , 𝑃𝑚−1) = ∫ ∫ 𝑅𝑒𝑖
2𝑏

𝑎

𝑇

0
(𝑥, 𝑡; 𝑃0, … , 𝑃𝑚−1)𝑑𝑥𝑑𝑡 .                 (18)  

 

Here 𝑎, 𝑏, 𝑇 are chosen from the physical domain of the problem. Lastly, 𝑃0, 𝑃1, … are 

found optimally by implementing many types of different techniques. Mostly used of 

them are collocation or the method of least squares. After finding  𝑃0, 𝑃1, … and placing 

them into the Eq. (17), the OPIM approximate solution of order m can be easily obtained 

For much more detailed data, we refer readers to [11-14]. 
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3. Illustration 

 

In this section, we try to show the effectiveness of the proposed method. To do this we 

will solve NPDE with initial conditions  

 

𝑢0 =
−1

2
−

1

2
tanh (

𝑥2+𝑥

2
),                                                                      (19) 

𝑣0 =
−1

8
sech2 (

−𝑥

2
).                                         (20) 

 

Then progressing as mentioned in the previous section, one can reach the following 

second order approximate OPIM solutions 

 

 
𝑢2 =

−1

2
−

1

2
tanℎ (

𝑥2+𝑥

2
) − 6𝑃0𝑡coth (

𝑥2+𝑥

2
)

− (2𝑡cosh [
𝑥2+𝑥

2
] − 𝑡cosh [

𝑥2+𝑥

2
] 𝑃0 − 2𝑡2sinh[𝑥2 + 𝑥]𝑃0) 𝑃1,

                     (21) 

 

  
𝑣2 =

−1

8
sech2 (

−𝑥2+𝑥

2
) − 2𝑃0𝑡sinh𝑥 −

(4𝑡sinh [
𝑥2+𝑥

2
] − 3𝑡2cosh [

𝑥

2
] 𝑃0 − 3𝑡2sinh[𝑥2 + 𝑥]𝑃0) 𝑃1

          (22) 

 

and more of them can be reached by iterating. To get convergence-control parameters, 

we need to compute the residuals of both of the solutions.  Putting 𝑎 = 0, 𝑏 = 1, 𝑇 = 10 

fort he Eq. (18) and solving the equality  

 
𝜕𝐽

𝜕𝑃0
=

𝜕𝐽

𝜕𝑃1
=

𝜕𝐽

𝜕𝑃2
=. . . = 0     

   

we will get 𝑃0 = 1.80256 , 𝑃1 = 1.99044 and 𝑃1 = −1.90033 . Substituting these 

constans into the corresponding approximate solutions, we have the third order OPIM 

solutions. Figure 1 and Figure 2 give absolute errors for approximate results in the 9th 

and 10th order solutions. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure1.  Absolute residual errors for ninth order OPIM solution. 
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Figure 2. Absolute residual errors for tenth order OPIM solution. 

 

 

4. Conclusion 

 

In this research, the nonlinear modified Boussinesq-Burger have been studied with the 

aid of newly proposed optimal perturbation iteration method. Like in many other papers 

stated in the introduction part, OPIM results are efficient for NPDEs.  The graphics of 

absolute errors are sketched by using the numerical solutions in order to approve he 

efficiency of the proposed scheme. As can be seen from those figures, absolute errors are 

not too much for higher order approximations. So, one can deduce that OPIM provides a 

simple way to control the convergence region for strong nonlinearity problem like 

Boussinesq-Burger equations. 
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