Düzce University Journal of Science \& Technology

Special Pell And Pell Lucas Matrices Of Size 3×3

(D) Fikri KÖKEN
Eregli Kemal Akman Vocational School, Necmettin Erbakan University, Konya, TURKEY Corresponding author's e-mail address: kokenfikri@gmail.com DOI: 10.29130/dubited. 582108

Abstract

In this study, we study on special Pell and Pell Lucas matrices of size 3×3, entries of whose nth powers are related specific Pell and Pell Lucas numbers with indices certain positive integer according to powers these matrices.

Keywords: Pell numbers, Pell Lucas numbers, Pell matrices

$3 x 3$ Boyutlu Özel Pell Ve Pell Lucas Matrisleri

Özet

Bu çalışada, 3×3 boyutlu matrisler için, matrisin n. kuvvetinin elemanları bu matrislerin kuvvetlerine göre belirli pozitif tamsayı indisli Pell ve Pell Lucas sayıları ile ilişkilendirilerek, özel Pell ve Pell Lucas matrisleri üzerinde çalişıldı.

Anahtar Kelimeler: Pell sayllar, Pell Lucas sayllar, Pell matrisler

I. INTRODUCTION

Pell numbers P_{n} and Pell Lucas numbers Q_{n} satisfy same recurrence relation $X_{n}=2 X_{n-1}+X_{n-2}$, $n \geq 2$ with different initial conditions: $P_{0}=0, P_{1}=1, Q_{0}=2, Q_{1}=2$. Also, by solving characteristic equation of this recurrence, $x^{2}-2 x-1=0$, two distinct characteristic roots can be obtained: $\varphi=1+\sqrt{2}$ and $\phi=1-\sqrt{2}$, and then, let us recall that the $n t h$ Pell and Pell Lucas numbers can be defined explicitly by Binet's formulas:

$$
\begin{equation*}
P_{n}=\frac{\varphi^{n}-\phi^{n}}{\varphi-\phi}, Q_{n}=\varphi^{n}+\phi^{n}, n \in Z \tag{1}
\end{equation*}
$$

Herein, it is seen that Pell and Pell Lucas numbers with negative subscripts can be derived from positive subscripts in the way that $P_{-n}=(-1)^{n+1} P_{n}$ and $Q_{-n}=(-1)^{n} Q_{n}, n>0$. And also, the numbers $\varphi=1+\sqrt{2}$ and $\phi=1-\sqrt{2}$ are related to the P_{n} and P_{n-1} numbers, the powers of φ and ϕ reveal as

$$
\begin{equation*}
\varphi^{n}=P_{n} \varphi+P_{n-1}, \phi^{n}=P_{n} \phi+P_{n-1} . \tag{2}
\end{equation*}
$$

In addition, by some observations from the Pell Lucas recurrence and initial conditions of the Pell Lucas number, it is seen that all of them are even, $Q_{n}=2 q_{n}$, and q_{n} satisfies the same recurrence. That is, q_{n} is defined by $q_{n}=2 q_{n-1}+q_{n-2}$ with initial conditions $q_{0}=1, q_{1}=1$. All of these numbers are related to each other with the following identities [2-4], [6-8]:
$P_{n}+P_{n-1}=q_{n}, \quad P_{n}+q_{n}=P_{n+1}, 3 P_{n}-P_{n+1}=q_{n-1}$,
$P_{n+1}+P_{n-1}=Q_{n}, \quad q_{n+1}+q_{n-1}=4 P_{n}, \quad 3 P_{n}+P_{n-1}=q_{n+1}, \quad 3 q_{n}+4 P_{n}=q_{n+2}$.

The P_{n} and Q_{n} numbers are also connected with a integer nth powers of certain matrices of size $2 \times 2,3 \times 3, \ldots, n \times n$. In [2], the author develops a matrix method for generating the Pell sequence by using the first three elements of the Pell sequence as elements of a symmetric matrix;

$$
\left(\begin{array}{ll}
2 & 1 \tag{5}\\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right)
$$

and also, in [6], the authors give a Pell Lucas matrix M_{Q} of size 2×2, entries of which are the first three elements of the Pell Lucas sequence, it holds

$$
\begin{equation*}
\binom{Q_{n+1}}{Q_{n}}=M_{Q}\binom{P_{n}}{P_{n-1}} \text { and }\binom{8 P_{n+1}}{8 P_{n}}=M_{Q}\binom{Q_{n}}{Q_{n-1}} \tag{6}
\end{equation*}
$$

it is seen that

$$
M_{Q}=2\left(\begin{array}{ll}
3 & 1 \tag{7}\\
1 & 1
\end{array}\right), \quad M_{Q}^{2 n}=2^{3 n}\left(\begin{array}{cc}
P_{2 n+1} & P_{2 n} \\
P_{2 n} & P_{2 n-1}
\end{array}\right) \text { and } M_{Q}^{2 n+1}=2^{3 n}\left(\begin{array}{cc}
Q_{2 n+2} & Q_{2 n+1} \\
Q_{2 n+1} & Q_{2 n}
\end{array}\right)
$$

In addition, in [3], R.S. Melham study the 3×3 matrix $R(p, q)$ for the sequence $\left\{U_{n}(p, q)\right\}_{n=0}^{\infty}$, it is seen the Pell matrix $R_{p}=R(2,-1)$ in the Pell sequence $\left\{P_{n}\right\}_{n=0}^{\infty}:=\left\{U_{n}(2,-1)\right\}_{n=0}^{\infty}$, which contains the first three rows of the Pascal's like triangle on its secondary diagonal and below as follows;

$$
R_{p}^{n}=\left(\begin{array}{lll}
0 & 0 & 1 \tag{8}\\
0 & 1 & 4 \\
1 & 2 & 4
\end{array}\right)^{n}=\left(\begin{array}{ccc}
P_{n-1}^{2} & P_{n-1} P_{n} & P_{n}^{2} \\
2 P_{n-1} P_{n} & P_{n}^{2}+P_{n-1} P_{n+1} & 2 P_{n} P_{n+1} \\
P_{n}^{2} & P_{n} P_{n+1} & P_{n+!}^{2}
\end{array}\right)
$$

In [7], F. Koken define two matrices P_{q} and $\left(P_{q}-8 I\right)$, and give representations of the Pell and Pell Lucas matrices; such that P_{q}^{n} matrix contain their square powers and multiplications of the Pell and Pell Lucas numbers with indices certain integer; rows or columns of $\left(P_{q}-8 I\right)^{n}$ matrix involve consecutive elements in the Pell Lucas sequence. And also, for nth powers of these matrices, the Pell and Pell Lucas polynomial expressions with matrix coefficients are given by

$$
P_{q}^{n}=\left\{\begin{array}{l}
2^{3 n-2}\left[\frac{1}{32} P_{n} q_{n-1} P_{q}^{2}-P_{n} P_{n-2} P_{q}+2 P_{n-2} q_{n-1} I\right], \text { if } n \text { is even } \tag{9}\\
2^{3 n-2}\left[\frac{1}{32} P_{n-1} q_{n} P_{q}^{2}-\frac{1}{2} q_{n} q_{n-2} P_{q}+2 P_{n-1} q_{n-2} I\right], \text { otherwise }
\end{array}\right.
$$

and

$$
\begin{align*}
\left(P_{q}-8 I\right)^{n} & =2^{4(n-2)}\left(P_{q}-8 I\right)\left[P_{n-1}\left(P_{q}-8 I\right)+2^{4} P_{n-2} I\right] \tag{10}\\
& =2^{4(n-2)}\left[P_{n-1} P_{q}^{2}-2^{4} q_{n-2} P_{q}+2^{6} P_{n-3} I\right] .
\end{align*}
$$

Our aims are to develop some new ideas for special Pell and Pell Lucas matrices, by taking advantage of the properties of the matrices $\left(P_{q}-8 I\right)$ and P_{q}, a positive integer nth powers of special Pell and Pell Lucas matrices are established by using methods in the matrix theory.

II. SPECIAL PELL AND PELL LUCAS MATRICES

Let us suppose that $A=\left[a_{i j}\right]_{3 \times 3}$ is any 3×3 matrix such that all eigenvalues of the matrix A are $\lambda_{1}=2^{4} \varphi, \lambda_{2}=0$ and $\lambda_{3}=2^{4} \phi$, where $\varphi=1+\sqrt{2}$ and $\phi=1-\sqrt{2}$, and all entries of the A are integers. And also, let us represent eigenvectors t_{i} corresponding the eigenvalues $\lambda_{i}, i=1,2,3$ of the matrix A as

$$
t_{1}=\left(\begin{array}{l}
t_{11} \tag{11}\\
t_{21} \\
t_{31}
\end{array}\right), t_{2}=\left(\begin{array}{l}
t_{12} \\
t_{22} \\
t_{32}
\end{array}\right), t_{3}=\left(\begin{array}{l}
t_{13} \\
t_{23} \\
t_{33}
\end{array}\right)
$$

Now, let a matrix T be transformation matrix of the $A, T=\left[t_{1}, t_{2}, t_{3}\right]$, with each column is an eigenvector given in (11) of the A associated with an eigenvalue of the A, and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is
the diagonal matrix located in the (i, i) position of eigenvalues of the matrix A. Thus, $A=T \Lambda T^{-1}$ can be written by using $T^{-1}=1 / \operatorname{det}(T) \operatorname{adj}(T)$, due to three distinct eigenvectors of the matrix A are chosen. That is, the matrix A is diagonalizable $A=T \Lambda T^{-1}$ for an invertible matrix T with having its columns as eigenvectors of the matrix A. Therefore, for all integers $n \geq 1$, we get $A^{n}=T \Lambda^{n} T^{-1}$;

$$
A^{n}=T\left(\begin{array}{ccc}
2^{4 n} \varphi^{n} & 0 & 0 \tag{12}\\
0 & 0 & 0 \\
0 & 0 & 2^{4 n} \phi^{n}
\end{array}\right) T^{-1}, \text { where } T^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{l}
t_{22} t_{33}-t_{23} t_{32} t_{13} t_{32}-t_{12} t_{33} t_{12} t_{23}-t_{13} t_{22} \\
t_{31} t_{23}-t_{21} t_{33} t_{11} t_{33}-t_{13} t_{31} t_{21} t_{13}-t_{11} t_{23} \\
t_{21} t_{32}-t_{22} t_{31} t_{12} t_{31}-t_{11} t_{32} t_{11} t_{22}-t_{12} t_{21}
\end{array}\right)
$$

By using the equations $\varphi^{n}=P_{n} \varphi+P_{n-1}$ and $\phi^{n}=P_{n} \phi+P_{n-1}$ given in (2), we have

$$
\begin{align*}
A^{n} & =2^{4 n} T\left(\begin{array}{ccc}
P_{n} \varphi+P_{n-1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & P_{n} \phi+P_{n-1}
\end{array}\right) T^{-1} \\
& =2^{4 n-4}\left(P_{n}\left(T \Lambda T^{-1}\right)+2^{4} P_{n-1} I-2^{4} P_{n-1}\left(\begin{array}{lll}
0 & t_{12} & 0 \\
0 & t_{22} & 0 \\
0 & t_{32} & 0
\end{array}\right) T^{-1}\right) \tag{13}
\end{align*}
$$

Thus, the matrix A^{n} is associated with the Pell numbers in the final equation as

$$
\begin{equation*}
A^{n}=2^{4(n-1)} P_{n} A+2^{4 n} P_{n-1}(I-F) \tag{14}
\end{equation*}
$$

where

$$
F=\left(\begin{array}{lll}
0 & t_{12} & 0 \tag{15}\\
0 & t_{22} & 0 \\
0 & t_{32} & 0
\end{array}\right) T^{-1}
$$

Now, we derive some special matrices $A=\left[a_{i j}\right]_{3 \times 3}$, which occur with solve of linear equation system $A t_{i}=\lambda_{i} t_{i}$ for the special cases of the eigenvectors t_{1}, t_{2} and t_{3} given in (11).

Firstly, if two eigenvectors t_{1} and t_{3} given in (11) are chosen such that

$$
t_{1}=\left(\begin{array}{c}
\phi^{2} \tag{16}\\
-2 \phi \\
1
\end{array}\right), t_{3}=\left(\begin{array}{c}
\varphi^{2} \\
-2 \varphi \\
1
\end{array}\right)
$$

then, it is necessary to hold the system $A t_{i}=\lambda_{i} t_{i}, i=1,2,3$. For $i=1,3$, by using $\varphi+\phi=2$, $\varphi-\phi=2 \sqrt{2}$ and $\varphi^{2}+\phi^{2}=6$, the following equations are achieved as

$$
\left\{\begin{array} { c }
{ a _ { 1 1 } \varphi ^ { 2 } - 2 a _ { 1 2 } \varphi + a _ { 1 3 } = - 1 6 \varphi } \tag{17}\\
{ a _ { 1 1 } \phi ^ { 2 } - 2 a _ { 1 2 } \phi + a _ { 1 3 } = - 1 6 \phi }
\end{array} \Rightarrow \left\{\begin{array}{c}
3 a_{11}-2 a_{12}+a_{13}=-16 \\
a_{11}-a_{12}=-8
\end{array},\right.\right.
$$

$$
\begin{align*}
& \left\{\begin{array} { l }
{ a _ { 2 1 } \varphi ^ { 2 } - 2 a _ { 2 2 } \varphi + a _ { 2 3 } = 3 2 } \\
{ a _ { 2 1 } \phi ^ { 2 } - 2 a _ { 2 2 } \phi + a _ { 2 3 } = 3 2 }
\end{array} \Rightarrow \left\{\begin{array}{c}
3 a_{21}-2 a_{22}+a_{23}=32 \\
a_{21}-a_{22}=0
\end{array},\right.\right. \tag{18}\\
& \left\{\begin{array} { l }
{ a _ { 3 1 } \varphi ^ { 2 } - 2 a _ { 3 2 } \varphi + a _ { 3 3 } = 1 6 \phi } \\
{ a _ { 3 1 } \phi ^ { 2 } - 2 a _ { 3 2 } \phi + a _ { 3 3 } = 1 6 \varphi }
\end{array} \Rightarrow \left\{\begin{array}{c}
3 a_{31}-2 a_{32}+a_{33}=16 \\
a_{31}-a_{32}=-8
\end{array}\right.\right. \tag{19}
\end{align*}
$$

Let us consider different choices of eigenvector t_{2} for t_{1} and t_{3} given in (16), if it is chosen as $t_{2}=(-k,-2 k, k)^{T}$, or $t_{2}=(k, 2 k,-k)^{T}$ where $k \in \mathrm{Z} \backslash\{0\}$ is arbitrary, then, for $k=1$, the matrices T_{1}, T_{1}^{-1} and F_{1} with are obtained from equations (12), (15) and (16), by using $\varphi \phi=-1, \varphi-\phi=2 \sqrt{2}$ and $\varphi^{2}-\phi^{2}=4 \sqrt{2}$ as

$$
T_{1}=\left(\begin{array}{ccc}
\phi^{2} & -1 & \varphi^{2} \tag{20}\\
-2 \phi & -2 & -2 \varphi \\
1 & 1 & 1
\end{array}\right), \quad F_{1}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & -2 & 0 \\
0 & 1 & 0
\end{array}\right) T_{1}^{-1}=\frac{1}{4}\left(\begin{array}{ccc}
1 & 1 & -1 \\
2 & 2 & -2 \\
-1 & -1 & 1
\end{array}\right),
$$

and also, $A t_{2}=0$ turns to the system

$$
\left(\begin{array}{l}
a_{13}-2 a_{12}-a_{11} \tag{21}\\
a_{23}-2 a_{22}-a_{21} \\
a_{33}-2 a_{32}-a_{31}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

From the solutions of the equation systems given in (17), (18), (19) and (21), we get

$$
A_{1}=\left(\begin{array}{ccc}
-4 & 4 & 4 \tag{22}\\
8 & 8 & 24 \\
4 & 12 & 28
\end{array}\right)
$$

If we use the equality (14) for the matrix A_{1} in (22), then we obtain

$$
\begin{align*}
A_{1}^{n} & =2^{4 n-2}\left(\begin{array}{ccc}
-P_{n}+3 P_{n-1} & P_{n}-P_{n-1} & P_{n}+P_{n-1} \\
2\left(P_{n}-P_{n-1}\right) & 2\left(P_{n}+P_{n-1}\right) & 2\left(3 P_{n}+P_{n-1}\right) \\
P_{n}+P_{n-1} & 3 P_{n}+P_{n-1} & 7 P_{n}+3 P_{n-1}
\end{array}\right), \tag{23}\\
& =2^{4 n-2}\left(\begin{array}{ccc}
q_{n-2} & q_{n-1} & q_{n} \\
2 q_{n-1} & 2 q_{n} & 2 q_{n+1} \\
q_{n} & q_{n+1} & q_{n+2}
\end{array}\right), \tag{24}
\end{align*}
$$

then, we rewrite as

$$
\begin{equation*}
A_{1}^{n}=2^{2(2 n-1)}\left[\binom{2}{i-1} q_{n+i+j-4}\right]_{3 \times 3} . \tag{25}
\end{equation*}
$$

It is seen that matrix A_{1}^{n} given in (25) equal the matrix $\left(P_{q}-8 I\right)^{n}$ given in [7].

Now, let us suppose that $t_{2}=(-k, 2 k,-k)^{T}$ or $t_{2}=(k,-2 k, k)^{T}, k \in Z \backslash\{0\}$, then for $k=1$, matrices T_{2}, T_{2}^{-1} and F_{2} are obtained from equations (12), (15) and (16) in the way that

$$
T_{2}=\left(\begin{array}{ccc}
\phi^{2} & -1 & \varphi^{2} \tag{26}\\
-2 \phi & 2 & -2 \varphi \\
1 & -1 & 1
\end{array}\right), \quad F_{2}=\frac{1}{2}\left(\begin{array}{ccc}
-1 & -1 & 1 \\
2 & 2 & -2 \\
-1 & -1 & 1
\end{array}\right)
$$

and also, $A t_{2}=0$ turns to the system

$$
\left(\begin{array}{l}
2 a_{12}-a_{11}-a_{13} \tag{27}\\
2 a_{22}-a_{21}-a_{23} \\
2 a_{32}-a_{31}-a_{33}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

From the solutions of the equations in (17), (18), (19) and (27), we get

$$
A_{2}=\left(\begin{array}{ccc}
-8 & 0 & 8 \tag{28}\\
16 & 16 & 16 \\
8 & 16 & 24
\end{array}\right)
$$

Theorem 1. Let A_{2} be a matrix given in (28), for all integers $n \geq 1$, then

$$
A_{2}^{n}=2^{4 n-2}\left(\begin{array}{ccc}
q_{n-2} & P_{n-1} & q_{n-1} \tag{29}\\
2 q_{n-1} & 2 P_{n} & 2 q_{n} \\
q_{n} & P_{n+1} & q_{n+1}
\end{array}\right) .
$$

Proof By using the equality (14) for the matrix A_{2} in (28), then we have

$$
A_{2}^{n}=2^{4 n-1}\left(\begin{array}{ccc}
3 P_{n-1}-P_{n} & P_{n-1} & P_{n}-P_{n-1} \tag{30}\\
2\left(P_{n}-P_{n-1}\right) & 2 P_{n} & 2\left(P_{n}+P_{n-1}\right) \\
P_{n}+P_{n-1} & 2 P_{n}+P_{n-1} & 3 P_{n}+P_{n-1}
\end{array}\right)
$$

by using the identities given in (3) and (4) such as, $P_{n}+P_{n-1}=q_{n}, P_{n}-P_{n-1}=q_{n-1}, 3 P_{n-1}-P_{n}=q_{n-2}$ and $3 P_{n}+P_{n-1}=q_{n+1}$, desired result is obtained.

If the eigenvalue $t_{2}=(k, 2 k, k)^{T}$ or $t_{2}=(-k,-2 k,-k)^{T}, k \in Z \backslash\{0\}$ is chosen, then for $k=1$ the matrices T_{3} and F_{3} are

$$
T_{3}=\left(\begin{array}{ccc}
\phi^{2} & 1 & \varphi^{2} \tag{31}\\
-2 \phi & 2 & -2 \varphi \\
1 & 1 & 1
\end{array}\right), \quad F_{3}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 1 & -1 \\
2 & 2 & -2 \\
1 & 1 & -1
\end{array}\right)
$$

and also, $A t_{2}=0$ turns to the system
$a_{11}+2 a_{12}+a_{13}=0, a_{21}+2 a_{22}+a_{23}=0, a_{31}+2 a_{32}+a_{33}=0$.
From the solutions of the equations in (17), (18), (19) and (32), we get

$$
A_{3}=\left(\begin{array}{ccc}
-8 & 0 & 8 \tag{33}\\
-16 & -16 & 48 \\
-24 & -16 & 56
\end{array}\right)
$$

Theorem 2. Let A_{3} be a matrix given in (33), for all integers $n \geq 1$, then

$$
A_{3}^{n}=2^{4 n-1}\left(\begin{array}{ll}
-q_{n-1}-P_{n-1} & q_{n} \tag{34}\\
-2 q_{n} & -2 P_{n}
\end{array} 2 q_{n+1}\right) .
$$

Proof From the equality (14) for the matrix A_{3} in (33), we have

$$
A_{3}^{n}=2^{4 n-1}\left(\begin{array}{ccc}
P_{n-1}-P_{n} & -P_{n-1} & P_{n}+P_{n-1} \tag{35}\\
-2\left(P_{n}+P_{n-1}\right) & -2 P_{n} & 2\left(3 P_{n}+P_{n-1}\right) \\
-\left(3 P_{n}+P_{n-1}\right) & -2 P_{n}-P_{n-1} & 7 P_{n}+3 P_{n-1}
\end{array}\right) .
$$

From $P_{n}+P_{n-1}=q_{n}, P_{n}-P_{n-1}=q_{n-1}, 3 P_{n-1}-P_{n}=q_{n-2}$ and $3 P_{n}+P_{n-1}=q_{n+1}$, we obtain desired result.

Secondly, if two eigenvectors t_{1} and t_{3} are chosen such that

$$
t_{1}=\left(\begin{array}{l}
\phi^{2} \tag{36}\\
2 \phi \\
-1
\end{array}\right), t_{3}=\left(\begin{array}{c}
\varphi^{2} \\
2 \varphi \\
-1
\end{array}\right)
$$

then, it is necessary to hold the system $A t_{i}=\lambda_{i} t_{i}, i=1,2,3$. By using $\varphi+\phi=2, \varphi-\phi=2 \sqrt{2}$ and $\varphi^{2}+\phi^{2}=6$, the following equations are achieved as

$$
\begin{align*}
& \left\{\begin{array} { l }
{ a _ { 1 1 } \varphi ^ { 2 } + 2 a _ { 1 2 } \varphi - a _ { 1 3 } = - 1 6 \varphi } \\
{ a _ { 1 1 } \phi ^ { 2 } + 2 a _ { 1 2 } \phi - a _ { 1 3 } = - 1 6 \phi }
\end{array} \Rightarrow \left\{\begin{array}{c}
3 a_{11}+2 a_{12}-a_{13}=-16 \\
a_{11}+a_{12}=-8
\end{array},\right.\right. \tag{37}\\
& \left\{\begin{array} { l }
{ a _ { 2 1 } \phi ^ { 2 } + 2 a _ { 2 2 } \phi - a _ { 2 3 } = - 3 2 } \\
{ a _ { 2 1 } \varphi ^ { 2 } + 2 a _ { 2 2 } \varphi - a _ { 2 3 } = - 3 2 }
\end{array} \Rightarrow \left\{\begin{array}{c}
3 a_{21}+2 a_{22}-a_{23}=-32 \\
a_{21}+a_{22}=0
\end{array},\right.\right. \tag{38}\\
& \left\{\begin{array} { l }
{ g \phi ^ { 2 } + 2 h \phi - i = - 1 6 \varphi } \\
{ g \varphi ^ { 2 } + 2 h \varphi - i = - 1 6 \phi }
\end{array} \Rightarrow \left\{\begin{array}{c}
3 a_{31}+2 a_{32}-a_{33}=-16 \\
a_{21}+a_{22}=8
\end{array}\right.\right. \tag{39}
\end{align*}
$$

Now, let us consider the above similar choices of vector t_{2} according to the eigenvectors t_{1} and t_{3} given in (36) For example, if it is chosen as $t_{2}=(-k,-2 k, k)^{T}$ or $t_{2}=(k, 2 k,-k)^{T}$ where $k \in \mathrm{Z} \backslash\{0\}$ is arbitrary, then for $k=1$, matrices T_{4}, T_{4}^{-1} and F_{4} are obtained from equations (12), (15) and (36) as
$T_{4}=\left(\begin{array}{ccc}\phi^{2} & -1 & \varphi^{2} \\ 2 \phi & -2 & 2 \varphi \\ -1 & 1 & -1\end{array}\right), \quad F_{4}=\frac{1}{2}\left(\begin{array}{ccc}-1 & 1 & 1 \\ -2 & 1 & -2 \\ 1 & -1 & 1\end{array}\right)$,
and also, $A t_{2}=0$ turns to the system
$a_{13}-2_{12}-a_{11}=0, a_{23}-2 a_{22}-a_{21}=0, a_{33}-2 a_{32}-a_{31}=0$.

From the solutions of the equations (37), (38), (39) and (41), we get

$$
A_{4}=\left(\begin{array}{ccc}
-8 & 0 & -8 \tag{42}\\
-16 & 16 & 16 \\
-8 & 16 & 24
\end{array}\right)
$$

Theorem 3. Let A_{4} be a matrix given in (42), for all integers $n \geq 1$, then

$$
A_{4}^{n}=2^{4 n-1}\left(\begin{array}{ccc}
q_{n-2} & -P_{n-1}-q_{n} \tag{43}\\
-2 q_{n-1} & P_{n+1} & 2 q_{n} \\
-q_{n} & P_{n+1} & q_{n+1}
\end{array}\right) .
$$

Proof By using the equality (14) for the matrix A_{4} in (42), we achieve

$$
A_{4}^{n}=2^{4 n-1}\left(\begin{array}{ccc}
3 P_{n-1}-P_{n} & -P_{n-1} & -P_{n}-P_{n-1} \tag{44}\\
2\left(P_{n-1}-P_{n}\right) & 2 P_{n}+P_{n-1} & 2\left(P_{n}+P_{n-1}\right) \\
-\left(P_{n}+P_{n-1}\right) & 2 P_{n}+P_{n-1} & 3 P_{n}+P_{n-1}
\end{array}\right) .
$$

The matrix A_{4}^{n} given in (43) can be obtained by using the well-known identities, $P_{n}+P_{n-1}=q_{n}$, $P_{n}-P_{n-1}=q_{n-1}, 3 P_{n-1}-P_{n}=q_{n-2}$ and $3 P_{n}+P_{n-1}=q_{n+1}$ given in (3) and (4).

The eigenvector $t_{2}=(-k, 2 k,-k)^{T}$ or $t_{2}=(k,-2 k, k)^{T}, k \in Z \backslash\{0\}$ is chosen, and matrices T_{5} and F_{5} are obtained as

$$
T_{5}=\left(\begin{array}{ccc}
\phi^{2} & -1 & \varphi^{2} \tag{45}\\
2 \phi & 2 & 2 \varphi \\
-1 & -1 & -1
\end{array}\right), \quad F_{5}=\frac{1}{4}\left(\begin{array}{ccc}
1 & -1 & -1 \\
-2 & 2 & -2 \\
1 & -1 & 1
\end{array}\right),
$$

and also, $A t_{2}=0$ turns to the system

$$
\begin{equation*}
2 a_{12}-a_{11}-a_{13}=0,2 a_{22}-a_{21}-a_{23}=0,2 a_{32}-a_{31}-a_{33}=0 . \tag{46}
\end{equation*}
$$

From the solutions of the equations (37), (38), (39) and (46), we get

$$
A_{5}=\left(\begin{array}{ccc}
-4 & -4 & -4 \tag{47}\\
-8 & 8 & 24 \\
-4 & 12 & 28
\end{array}\right) .
$$

Theorem 4. Let A_{5} be a matrix given in (47), for all integers $n \geq 1$, then

$$
A_{5}^{n}=2^{4 n-2}\left(\begin{array}{ccc}
q_{n-2} & -q_{n-1}-q_{n-1} \tag{48}\\
-2 q_{n-1} & 2 q_{n} & 2 q_{n+1} \\
-q_{n} & q_{n+1} & q_{n+2}
\end{array}\right) .
$$

Proof From the equality (14) for the matrix A in (47), we have

$$
A_{5}^{n}=2^{4 n-2}\left(\begin{array}{ccc}
3 P_{n-1}-P_{n} & P_{n-1}-P_{n} & P_{n-1}-P_{n} \tag{49}\\
2\left(P_{n-1}-P_{n}\right) & 2\left(P_{n}+P_{n-1}\right) & 2\left(3 P_{n}+P_{n-1}\right) \\
-\left(P_{n}+P_{n-1}\right) & 3 P_{n}+P_{n-1} & 7 P_{n}+3 P_{n-1}
\end{array}\right) .
$$

The matrix in (48) is derived by $P_{n}+P_{n-1}=q_{n}, P_{n}-P_{n-1}=q_{n-1}, 3 P_{n-1}-P_{n}=q_{n-2}$ and $3 P_{n}+P_{n-1}=q_{n+1}$.
If it is chosen as $t_{2}=(k,-2 k,-k)^{T}$ or $t_{2}=(-k, 2 k, k)^{T}$, then matrices T_{6} and F_{6} are
$T_{6}=\left(\begin{array}{ccc}\phi^{2} & 1 & \varphi^{2} \\ 2 \phi & -2 & 2 \varphi \\ -1 & -1 & -1\end{array}\right), \quad F_{6}=\frac{1}{2}\left(\begin{array}{ccc}1 & -1 & 1 \\ -2 & 2 & -2 \\ -1 & 1 & -1\end{array}\right)$,
and also, $A t_{2}=0$ turns to the system
$a_{11}-2 a_{12}-a_{13}=0, a_{21}-2 a_{22}-a_{23}=0, a_{31}-2 a_{32}-a_{33}=0$.
From the solutions of the equations (37), (38), (39) and (51), we get

$$
A_{6}=\left(\begin{array}{ccc}
-8 & 0 & -8 \tag{52}\\
16 & -16 & 48 \\
24 & -16 & 56
\end{array}\right) .
$$

Theorem 5. Let A_{6} be a matrix given in (52), for all integers $n \geq 1$, then

$$
A_{6}^{n}=2^{4 n-1}\left(\begin{array}{ccc}
-q_{n-1} & P_{n-1} & -q_{n} \tag{53}\\
2 q_{n} & -2 P_{n} & 2 q_{n+1} \\
q_{n+1} & -P_{n+1} & q_{n+2}
\end{array}\right) .
$$

Proof By using the equality (14) for the matrix A_{6} in (52), we obtain

$$
A_{6}^{n}=2^{4 n-1}\left(\begin{array}{ccc}
P_{n-1}-P_{n} & P_{n-1} & -P_{n}-P_{n-1} \tag{54}\\
2\left(P_{n}+P_{n-1}\right) & -2 P_{n} & 2\left(3 P_{n}+P_{n-1}\right) \\
3 P_{n}+P_{n-1} & -2 P_{n}-P_{n-1} & 7 P_{n}+3 P_{n-1}
\end{array}\right) .
$$

The matrix given in (53) is obtained by using $P_{n}+P_{n-1}=q_{n}, P_{n}-P_{n-1}=q_{n-1}$ and $3 P_{n}+P_{n-1}=q_{n+1}$.
Thirdly, if two eigenvectors t_{1} and t_{3} are chosen such that

$$
t_{1}=\left(\begin{array}{c}
-\phi^{2} \tag{55}\\
2 \phi \\
1
\end{array}\right), t_{3}=\left(\begin{array}{c}
-\varphi^{2} \\
2 \varphi \\
1
\end{array}\right)
$$

then, it is necessary to hold the system $A t_{i}=\lambda_{i} t_{i}$. By using $\varphi+\phi=2, \varphi-\phi=2 \sqrt{2}$ and $\varphi^{2}+\phi^{2}=6$, the following equations are established as

$$
\begin{align*}
& \left\{\begin{array} { l }
{ - a _ { 1 1 } \varphi ^ { 2 } + 2 a _ { 1 2 } \varphi + a _ { 1 3 } = 1 6 \varphi } \\
{ - a _ { 1 1 } \phi ^ { 2 } + 2 a _ { 1 2 } \phi + a _ { 1 3 } = 1 6 \phi }
\end{array} \Rightarrow \left\{\begin{array}{c}
-3 a_{11}+2 a_{12}+a_{13}=16 \\
-a_{11}+a_{12}=8
\end{array},\right.\right. \tag{56}\\
& \left\{\begin{array} { l }
{ - a _ { 2 1 } \varphi ^ { 2 } + 2 a _ { 2 2 } \varphi + a _ { 2 3 } = - 3 2 } \\
{ - a _ { 2 1 } \phi ^ { 2 } + 2 a _ { 2 2 } \phi + a _ { 2 3 } = - 3 2 }
\end{array} \Rightarrow \left\{\begin{array}{c}
-3 a_{21}+2 a_{22}+a_{23}=-32 \\
-a_{21}+a_{22}=0
\end{array},\right.\right. \tag{57}\\
& \left\{\begin{array} { l }
{ - a _ { 3 1 } \varphi ^ { 2 } + 2 a _ { 3 2 } \varphi + a _ { 3 3 } = 1 6 \phi } \\
{ - a _ { 3 1 } \phi ^ { 2 } + 2 a _ { 3 2 } \phi + a _ { 3 3 } = 1 6 \varphi }
\end{array} \Rightarrow \left\{\begin{array}{c}
-3 a_{31}+2 a_{32}+a_{33}=16 \\
-a_{31}+a_{32}=-8
\end{array}\right.\right. \tag{58}
\end{align*}
$$

The cases are omitted for sake of brevity, but they can be carried out by means of analogous arguments such that if $t_{2}=(-k,-2 k, k)^{T}$ or $t_{2}=(k, 2 k,-k)^{T}$ is chosen, where $k \in \mathrm{Z} \backslash\{0\}$ is arbitrary, then T_{7} and F_{7} matrices are obtained as

$$
T_{7}=\left(\begin{array}{ccc}
-\phi^{2} & -1 & -\varphi^{2} \tag{59}\\
2 \phi & -2 & 2 \varphi \\
1 & 1 & 1
\end{array}\right), \quad F_{7}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2 \\
-1 & -1 & -1
\end{array}\right) .
$$

From the solutions of the equations (56), (57), (58) and system $A t_{2}=0$, we get

$$
A_{7}=\left(\begin{array}{ccc}
-8 & 0 & -8 \tag{60}\\
-16 & -16 & -48 \\
24 & 16 & 56
\end{array}\right), \quad A_{7}^{n}=2^{4 n-1}\left(\begin{array}{ccc}
-q_{n-1}-P_{n-1} & -q_{n} \\
-2 q_{n} & -2 P_{n} & -2 q_{n+1} \\
q_{n+1} & P_{n+1} & q_{n+2}
\end{array}\right)
$$

If $t_{2}=(k,-2 k,-k)^{T}$ or $t_{2}=(-k, 2 k, k)^{T}$ is chosen, then T_{8} and F_{8} matrices are

$$
T_{8}=\left(\begin{array}{ccc}
-\phi^{2} & 1 & -\varphi^{2} \tag{61}\\
2 \phi & -2 & 2 \varphi \\
1 & -1 & 1
\end{array}\right), \quad F_{8}=\frac{1}{2}\left(\begin{array}{ccc}
-1 & -1 & -1 \\
2 & 2 & 2 \\
1 & 1 & 1
\end{array}\right)
$$

From the solutions of the equations (56), (57), (58) and system $A t_{2}=0$, we get
$A_{8}=\left(\begin{array}{ccc}-8 & 0 & -8 \\ 16 & 16 & -16 \\ -8 & -16 & 24\end{array}\right), \quad A_{8}^{n}=2^{4 n-1}\left(\begin{array}{ccc}q_{n-2} & P_{n-1} & -q_{n-1} \\ 2 q_{n-1} & 2 P_{n} & -2 q_{n} \\ -q_{n} & -P_{n+1} & q_{n+1}\end{array}\right)$.
If $t_{2}=(k, 2 k, k)^{T}$ or $t_{2}=(k, 2 k, k)^{T}$ is chosen, then T_{9} and F_{9} matrices are
$T_{9}=\left(\begin{array}{ccc}-\phi^{2} & 1 & -\varphi^{2} \\ 2 \phi & 2 & 2 \varphi \\ 1 & 1 & 1\end{array}\right), \quad F_{9}=\frac{1}{4}\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1\end{array}\right)$.
From the solutions of the equations (56), (57), (58) and system $A t_{2}=0$, we get
$A_{9}=\left(\begin{array}{ccc}-4 & 4 & -4 \\ 8 & 8 & -24 \\ -4 & -12 & 28\end{array}\right), \quad A_{9}^{n}=2^{4 n-2}\left(\begin{array}{ccc}q_{n-2} & q_{n-1} & -q_{n} \\ 2 q_{n-1} & 2 q_{n} & -2 q_{n+1} \\ -q_{n} & -q_{n+1} & q_{n+2}\end{array}\right)$.
Also, based on the other values given for the eigenvectors t_{2} except those used, similar and related results can be written by using this way. The other cases, except $k=1$ used, are omitted for sake of brevity, but they can be carried out by means of analogous arguments.

III. CONCLUSION

Special matrices of 3×3 dimensions, whose nth powers are related to the nth Pell and Pell Lucas numbers, are derived by using methods in the matrix theory, according to the properties of the matrices $\left(P_{q}-8 I\right)$ and P_{q} given in [7]. The matrix $A_{i}, i=1-9$, are Pell and Pell Lucas matrices, have been found via the equation

$$
\begin{equation*}
A_{i}^{n}=2^{4(n-1)} P_{n} A_{i}+2^{4 n} P_{n-1}\left(I-F_{i}\right) \tag{65}
\end{equation*}
$$

These matrices are important in terms of their role in the study related to the Pell and Pell Lucas numbers, since these subjects for the Fibonacci and Lucas numbers have been studied from polynomial sequences to quaternions in the literature [1,5].

IV. REFERENCES

[1] B. D. Bitim, "Some Identities of Fibonacci and Lucas Quaternions by Quaternion Matrices", Düzce University Journal of Science \& Technology, vol.7, no.1, pp.606-615, 2019.
[2] J. Ercolano, "Matrix generator of Pell sequence", The Fibonacci Quarterly, vol.17, no.1, pp. 71-77, 1979.
[3] R.S. Melham, "Lucas Sequences and Functions of a 3-by-3 Matrix", The Fibonacci Quarterly, 37.2, 111-116, 1999.
[4] A. F. Horadam, "Pell identities", The Fibonacci Quarterly, vol.9, no.3, pp. 245-252, 263, 1971.
[5] S. Karakaya, H. Özdemir, T. Petik, " 3×3 Dimensional Special Matrices Associated with Fibonacci and Lucas Numbers", Sakarya University Journal of Science, vol.22, no.6, 1917-1922, 2018.
[6] F. Koken ve S. Arslan, "Pell ve Pell Lucas sayılarının Özellikleri", XXIII. Ulusal Matematik Sempozyumu, Kayseri,Türkiye, ss:85, 2010.
[7] F. Koken, "The Representations of the Pell and Pell Lucas Matrices", International Marmara Science And Social Sciences Congress, Kocaeli, Türkiye, Proceedings Book I (Science), ss: 466-473, 2019.
[8] T. Koshy, Pell and Pell-Lucas numbers with application, Springer New York Heidelberg Dordrecht London, pp. 115-172, 2014.

