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Abstract: Deterministic methods are used for optimum solution of many engineering and scientific problems. 

Filled function method, which is a deterministic method, is not trapped to local minimums with its ability to 

bypass energy barriers. In order to achieve this, the basin regions of the filled function should be located, and the 

filled function should be constructed in that region. However, classical search strategies used for finding the 

basin regions don’t yield effective results. In this study, a new stochastic search approach is presented as a faster 

and more efficient alternative to classic filled function search strategy. An unconstrained global optimization 

method based on clustering and parabolic approximation (GOBC-PA) has been used as a stochastic method for 

accelerating the L type filled function as a deterministic method. The developed method has been tested against 

classical filled function using 11 benchmark functions. When the obtained results are examined, it is seen that 

the stochastic search approach has superiority over the mean error, standard deviation and elapsed time values 

according to the classical approach. These results show that the combination of deterministic and stochastic 

methods can be more successful in finding the global minimum against the classic deterministic method. 

 

Keywords: Stochastic search; GOBC-PA; L type filled function; global optimization. 

 
Filled Fonksiyonunda Yeni Bir Stokastik Arama Yöntemi 

 
Öz: Deterministik yöntemler birçok mühendislik ve bilimsel problemin optimum çözümü için kullanılmaktadır. 

Deterministik bir yöntem olan filled fonksiyon metodu ise, enerji bariyerlerini aşabilme kabiliyeti ile yerel 

minimuma takılmamaktadır. Bunu başarmak için filled fonksiyonuna ait havza bölgeleri bulunmalı ve filled 

fonksiyon o bölgede inşa edilmelidir. Bununla birlikte, havza bölgelerini bulmak için kullanılan klasik arama 

stratejileri etkili sonuçlar vermemektedir. Bu çalışmada, yeni bir stokastik arama yaklaşımı, klasik filled 

fonksiyon arama stratejisine daha hızlı ve daha verimli bir alternatif olarak sunulmuştur. Deterministik bir 

yöntem olan L tipi filled fonksiyonunu hızlandırmak için stokastik bir yöntem olan kümeleme ve parabolik 

yaklaşım tabanlı kısıtsız global optimizasyon yöntemi (GOBC-PA) kullanılmıştır. Geliştirilen yöntem, 11 

kıyaslama fonksiyonu kullanılarak klasik filled fonksiyonuna karşı test edilmiştir. Elde edilen sonuçlar 

incelendiğinde, stokastik arama yaklaşımının ortalama hata, standart sapma ve hesaplama süresi değerlerinde 

klasik yaklaşıma göre üstünlüğü görülmektedir. Bu sonuçlar, deterministik ve stokastik yöntemlerin 

kombinasyonunun, klasik deterministik yönteme karşı küresel minimumun bulunmasında daha başarılı 

olabileceğini göstermektedir. 
 

Anahtar kelimeler: Stokastik arama; GOBC-PA; L tipi filled fonksiyonu; global optimizasyon. 

 

1. Introduction 

 

Global optimization is used in many areas such as engineering, sciences and architecture. It can be 

observed in theoretical or real-world problems of these fields. The main purpose of the global 

optimization is to find the globally best solution of the function.  
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An optimization process holds two conditions. First, the solution must be obtained at time N. 

Second, the probability of finding the best solution at a specified time M < N must be higher than a 

lower probability bound [1]. The optimization process works as follows. Firstly, x0* as a local 

minimizer is searched starting from x0 as an initial point using a minimization algorithm. Then, 

deeper local minimizers are searched until x0* becomes the global minimum. 

 

In general, popular algorithms to solve the global optimization problems can be divided into two 

categories as deterministic and stochastic methods. Both of them have some advantages and 

disadvantages when they are compared. The typical examples of deterministic methods are the 

filled function method (FFM) [2], trajectory method [3], tunneling method [4] and covering method 

[5]. The best known algorithms of stochastic methods are the simulated annealing method [6], 

genetic algorithm (GA) [7], artificial bee colony algorithm (ABC) [8], particle swarm optimization 

(PSO) [9] and unconstrained global optimization method based on clustering and parabolic 

approximation (GOBC-PA) [10]. 

 

Global optimization problem that has multiple local minima may be hard to solve. Finding local 

minimums easier is among the features that make FFM superior to other methods [11]. FFM can 

make effective jumps from one basin to another over the energy barrier. But finding these basin 

regions are difficult with conventional methods, and if the step distance is not very small, the area 

can’t be detected by passing. On the other hand, the stochastic methods are usually faster than the 

deterministic methods. So, the stochastic methods can help deterministic algorithms to find these 

basin regions.  

 

Stochastic and deterministic methods are usually combined to make searching more efficient and 

not to trap to the local minimum. Stochastic methods use jumping over the energy barrier, which is 

the ability of deterministic methods for faster convergence and efficient search. Furthermore, 

deterministic methods can be avoided from local minimums by stochastic methods because each 

deterministic method ends at one local minimum [12]. 

 

There are studies in literature in which stochastic and deterministic methods are combined [13]. 

However, these studies reveal that either the stochastic and deterministic methods are fully 

combined, or combination is performed in a way that the other method steps in if one method fails 

in any iteration. On the other hand, searching for the basin regions in the methods such as FFM, 

which is used to jump through the energy barrier, is a gap in the literature.  

 

Deterministic and stochastic gradient-like algorithms' convergence for asynchronous distributed 

computation is calculated and a model is presented in one of the early studies [14]. Numerical 

simulation of the chemical reactions is studied using a method which adaptively selects stochastic 

or deterministic calculations. Reaction schemes are partitioned to stochastic and deterministic 

processes by this switching [15]. A hybrid stochastic-deterministic method based on the studies of 

Balsa-Canto et al. (1998) [16] and Carrasco and Banga (1998) [17] is presented. The efficient 

hybrid method uses combination of a sequential adaptive stochastic method [18]. The combination 

of the deterministic method with the stochastic models for speech enhancement is presented. A 

developed method is efficient due to the certain speech sounds having a more deterministic 

character according to the stochastic models [19]. A hybrid stochastic–deterministic algorithm for 

estimating the parameters of a synchronous generator is presented. The first process is performed by 

GA as a stochastic method then the final solution is determined by Gauss–Newton method which is 

a deterministic method [20]. In the same year, studies on the field of combination such as Cottereau 

et al. (2011) [21] that couples the deterministic model with a stochastic one and Alotto (2011) [22] 

which combines the techniques for higher performance of differential evolution (DE) method were 

also carried out. In the following years, hybridization studies on stochastic–deterministic algorithms 

continued with other studies. Hybrid algorithms are used to develop the input design method [23] 
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planar covering with ellipses [24] and optimal designing of chemical processes [25]. Especially in 

chemical process, hybrid approach integrates a feasible point strategy, chaotic dynamics, and the 

information theory. Collins and Carr (2014) presented a bayesian approach for simultaneous 

optimization over the space of detections and data associations. For this purpose, a hybrid method 

which uses reversible jump markov chain monte carlo sampling and deterministic polynomial-time 

algorithms is developed [26]. A hybrid optimization method based on deterministic algorithm 

combined with stochastic approaches is presented. A developed method uses direct multisearch 

method [27] features and has powered by PSO and DE. High accuracy rate has been taken for 

electromagnetic device optimization using hybrid method [28]. Later, Alb et al. (2016) uses hybrid 

deterministic-stochastic as pattern search-differential evolution [28] to improve the computational 

performance for magnetic-assisted medical procedure [29]. 

 

In recent years hybrid approaches have continued to develop. A combination of FFM and GA is 

presented for the video forensics as a nonconvex optimization problem [30]. The mixed integer 

linear programming is developed for solving the hybrid stochastic-deterministic unit commitment 

problem [31]. A hybrid approach for reasoning of a large semantic web data is proposed [32]. A 

hybrid method is proposed for improving the performance of the stochastic and deterministic 

optimal power flow problem [33]. A hybrid method combined DE with the Broyden–Fletcher–

Goldfarb–Shanno quasi-Newton is presented [34]. A semi-autonomous particle swarm optimizer as 

another mixed method is developed for optimizing multimodal functions. This method uses gradient 

and diversity control [35]. 

 

In this study, a new stochastic search method is proposed as a faster and more effective alternative 

for classical searching on FFM. GOBC-PA has used as a stochastic-heuristic method for 

accelerating the L type FFM as a deterministic method. In this process, the role of GOBC-PA is to 

search the basin regions of FFM. The methods, used in this study, are preferred because of their 

speed, robustness and popularity. Searching basin regions is still an unsolved issue and the 

developed method is thought to cover this gap in the literature.  

 

This paper is organized as follows: the first part of the paper is the introduction section and 

literature are discussed in it. The research methods are given in Section 2. In Section 3 the 

experimental studies and results are presented. Finally, we discuss the results in Conclusions 

Section.  

 

2. Research Methods 

 

2.1. Filled function method 

 

The conception of the filled function was first proposed by Geatthe Dundee Biennial Conference on 

Numerical Analysis in 1983 and finally published in 1987 [36,37]. The FFM that is chosen as a 

deterministic method aims to construct an auxiliary function, which is called as filled function via 

the current local minimizer of the global optimization problem [38]. The better points are located on 

the filled function’s basin location. To find the basin region is difficult with conventional methods, 

and if the step distance is not very small, the area can’t be detected by passing [39]. Also, this 

approach costs lots of time. FFM has used various kinds of problems that need global optimization 

[40]. L type FFM used in this study because of their advantage to others [41]. L type FFM is given 

in Eq.(1).  

 

                                       (1) 

 

In Eq.(1), m is preferred as 3, and a is set to 0.05 as the weight factor.  
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For better understanding of the iterations of FFM, some examples can be given. Example of 1-

dimensional optimization problem with the range of [-15 15] is given in Eq.(2). 

 

                                      (2) 

 

As seen in Eq.(2), optimization problem has a total of 3 local minimums, one of which is the global 

minimum. FFM iterations of this problem can be seen in Figure 1, Figure 2, and Figure 3.  

 

The first filled function has constructed at -7.995 point of the function in Figure 1. There are only 

two search directions because of 1-dimensional function. It is easy to search for basin regions using 

a gradient with an epsilon value very close to zero in 1-dimensional functions while it is more 

difficult in high degree functions.  

 

 
Figure 1. Example of FFM on 1-dimensional optimization problem at first iteration 

 

The second filled function has constructed at 1.003 point of the function in Figure 2. There are not 

any signals at the range of [-15 0] in Figure 2 because FFM is below the region’s local minimum 

which is located near at -7.995 point of the function. But it can be seen the basin region near the 8.0 

point of the function in Figure 2 because there is a local minimum value below the value at FFM 

construction point.  

 

There aren’t any signals on FFM in Figure 3, so it can be accepted as a global minimum at this 

point of the function and process is terminated. 

 

The level of difficulty of searching the basin regions can be shown by another example of 2-

dimensional optimization problem similar to the last one with the range of [-15 15] is given in 

Eq.(3). 

 

                  (3) 
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Figure 2. Example of FFM on 1-dimensional optimization problem at second iteration 

 

 
 

Figure 3. Example of FFM on 1-dimensional optimization problem at third iteration 

 

As seen in Eq.(3), 2-dimensional optimization problem has a total of 3 local minimums, one of 

which is the global minimum. FFM iterations of this problem can be seen in Figure 4, Figure 5, and 

Figure 7. 

 

The first filled function has constructed at [-7.998, -7.998] point of the function in Figure 4. There 

are unlimited search directions occurred because of 2-dimensional function. To search basin regions 

using epsilon valued gradient can be more difficult on these functions. Searching direction degrees 

and step sizes must be carefully determined. 
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Figure 4. Example of FFM on 2-dimensional optimization problem at first iteration 

 

 

 
 

Figure 5. Example of FFM on 2-dimensional optimization problem at second iteration 

 

The second filled function has constructed at [1, -1] point of the function in Figure 5. There is not 

any signal from the previous basin region because of FFM structure. Searching directions at this 

constructed point can be seen more easily in Figure 6. 

 

Searching this basin region in Figure 6 is difficult with conventional methods, and if the step 

distance is not very small, the area can’t be detected by passing. Also, this process costs lots of 

time.  

 



Pençe, İ. & Çeşmeli, M.Ş. ECJSE 2020 (1) 111-123   

 

117 

 

 
 

Figure 6. Searching directions of FFM’s basin regions on 2-dimensional optimization problem 

 

 

 
 

Figure 7. Example of FFM on 2-dimensional optimization problem at third iteration 

 

There aren’t any signals on FFM in Figure 7, so it can be accepted as the global minimum at this 

point and process is terminated.  

 

2.2. GOBC-PA 

 

GOBC-PA is a stochastic-heuristic method. The clustering technique and parabolic approximation 

are used in this method. In each step, the data are clustered and the cluster centers denote the local 

optimums. These centers are adapted with locally fitted parabolas [10].  

 

GOBC-PA is superior to other stochastic algorithms in terms of speed. Clustering of populations 

using their locations and objective function values can be seen in Figure 8.  
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Figure 8. Clustering process using function values on GOBC-PA [10] 

 

Curve fitting process to the clusters is performed using second order polynomials and can be seen in 

Figure 9. The vertex points of polynomials can stay on maxima or minima of the objective function 

[10]. 

 

 
Figure 9. Curve fitting process to the clusters on GOBC-PA [10] 

 

In this study, GOBC-PA method’s objective function is determined as epsilon value of the gradient 

that gives the location of basin region. So, only purpose of the stochastic method is to find basin 
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region, not to find global optimum. The role of finding the global minimum has been left to the 

deterministic method. Parameters of GOBC-PA are set to 1000 and 60 as iteration number and 

population size, respectively.  

 

3. Experimental Studies 
 

The developed search method has been tested against classical filled function method with 11 

benchmark functions that are given in Table 1. All functions have 2-dimension and process is 

repeated 10 times. Classic FFM searches the basin every 3.6 degrees with [Range/2000] foot step. 

FFM is terminated after 10 basin jumps. 

 

Table 1. Some 2-dimensional benchmark functions.  

Function Name Function Range Optimal 

Shekel's 

Foxholes 
 

[-65536, 

65536] 
1 

Sixhump 

Camelback 
 

[-5, 5] -1.031628 

Branin 
 

[-5, 10] 

[0, 15] 
0.398 

Goldstein-Price 
 

[-2, 2] 3 

Beale  [-4.5, 4.5] 0 

Easom's  [-100, 100] -1 

Matyas  [-10, 10] 0 

Schaffer 
 

[-10, 10] 0 

Rastrigin  [-1, 1] -2 

Bohachevsky  [-100, 100] 0 

Trefethen's 

Problem   
[-6.5, 6.5] -3.3068686 

  

The results of classic FFM and GOBC-PA FFM are given in Table 2. The main performance on 

functions is determined using the absolute error.  

 

In Table 2, mean error indicates the average of 10-times run, elapsed time indicates the total elapsed 

time until the algorithm terminated. When the obtained results are examined in Table 2, it is seen 

that the new searching approach has superiority over the mean error, elapsed time and standard 

deviation values according to the classic search on FFM. Also, it can be seen GOBC-PA helps FFM 

to be faster than the classic search algorithm according to the elapsed times.  
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Table 2. Results of classic FFM and GOBC-PA FFM on benchmark functions. 

Functions 

Classic Filled Function GOBC-PA Filled Function 

Mean 

Error 

Standard 

Deviation 

Elapsed Time 

(Second) 

Mean 

Error 

Standard 

Deviation 

Elapsed Time 

(Second) 

Shekel's 

Foxholes 
399.398 209.979 40.77 0 0 35.12 

Sixhump 

Camelback 
4.853e-08 1.067e-09 104.22 4.810e-08 5.222e-10 4.29 

Branin 3.528 4.106e-10 7.36 3.528 1.294e-10 4.03 

Goldstein-

Price 
4.347e-07 2.837e-07 26.58 6.471e-08 2.046e-07 2.61 

Beale 0.183 0.237 27.71 0.045 0.145 3.03 

Easom's 2.444e-09 7.979e-10 37.20 2.031e-09 1.065e-09 2.92 

Matyas 6.337e-11 5.095e-11 10.60 0 0 2.92 

Schaffer 1.324e-09 9.039e-10 44.94 1.382e-09 7.628e-10 3.46 

Rastrigin 0.641 0.867 18.05 2.883e-07 3.937e-07 3.41 

Bohachevsky 1.953e-08 1.453e-08 20.90 0 0 6.49 

Trefethen's 

Problem 
2.602 2.773 34.97 0.839 0.687 4.72 

 

 

4. Conclusions 

 

In this study, the results show that using stochastic method on searching the FFM can be more 

successful in finding the global minimum value according to classic deterministic method. 

 

FFM as a deterministic method has various limitations such as searching basin regions. GOBC-PA 

FFM that is developed in this study can close this gap in the literature. 

 

The superiority of GOBC-PA is to be really fast in training process. For this reason, GOBC-PA 

FFM will be a good option for the limited time problems. Today, Industry 4.0 is rising all over the 

world and companies are trying to get places in markets for themselves with technological products 

based on computer science. GOBC-PA FFM can be useful on any mathematical or industrial 

systems which are using deterministic or stochastic methods as an artificial intelligence. Therefore, 

the developed method has an important place in terms of speed and accuracy in today's Industry 4.0. 

 

In future studies, it can combine the deterministic and stochastic methods completely, not only 

searching the basin regions. Another study can compare the performance of hybrid methods against 

the heuristic algorithms.  
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