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Abstract 

In this study, inference for the power Lindley distribution under a step-stress partially accelerated 

life test based on progressive Type-II censoring scheme is studied. The maximum likelihood 
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1. INTRODUCTION 

 

In statistical reliability literature, accelerated life test (ALT) and partially accelerated life test (PALT) 

studies have been popular due to these tests let the experimenters control the higher stress levels to be used 

for components or units in the life tests. It is known that it is not easy to observe lifetimes of highly reliable 

components since very long lifetimes or few failures occur in limited testing time under normal operation 

conditions. In these cases, ALT or PALT is mostly used tests to provide early failures on components. In 

ALT, all test components are exposed to higher than usual stress level. On the other hand, only some of 

them are run under higher stress level in PALT (see [1] and [2] for details). The stress loadings in these 

tests can be observed in two cases as step-stress or constant stress.  

 

The step-stress allows the experiments to choose multiple stress factors such as temperature, pressure, 

voltage, wind power, shock, vibration etc. in a life testing. In the step-stress partially accelerated life test 

(SSPALT) defined by DeGroot and Goel, 1979 [2] a life test starts with normal using conditions, if it does 

not fail on a pre-specified time τ it is run under an acceleration factor ξ until the test terminates. By assuming 

X denote the random variable on standard conditions and Y denote the total lifetime of a test unit, this 

SSPALT model is defined as in the following relation [2] 

 

𝑌 = 𝑓(𝑥) = {

𝑋         , 𝑥 ≤ 𝜏

𝜏 +
𝑋 − 𝜏

𝜉
, 𝑥 > 𝜏

  

 

(1) 
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where 𝜏 is the stress change time, and 𝜉 is the acceleration factor, where 𝜉 >1. 

 

On the other hand, another important topic in reliability theory is data censoring schemes (CS). It is known 

that the lifetimes of components or units may not be always recorded exactly. In most cases, components 

or units are lost or removed from the experiments before they failed and censored datasets are observed. In 

literature, there are many different CSs such as Type-I censoring, Type-II censoring, hybrid censoring 

which is a mixture of Type-I and Type II and introduced by Epstein, 1954 [3], progressive CSs which let 

the experimenters to remove live units on failure times.  

Many reliability models are considered under different CSs. In specific of ALTs, there are various studies 

in the literature. For example; Meeker, 1984 [4] compared ALT plans for Weibull and lognormal models 

and Type-I CS, Bai et al., 1993 [5] studied lognormal distribution under Type-I censoring, Ismail, 2014 [6] 

studied Weibull distribution under adaptive Type-II progressively hybrid censoring, EL-Sagheer et al., 

2019 [7] studied the Weibull-exponential model under progressive type-II CS, Zhao et al., 2014 [8] studied 

Type-I progressively hybrid censored Burr-XII data, Balakrishnan and Xie, 2000 [9] studied Type-I hybrid 

censored exponential model.  

However, a SSPALT model under any CSs has not been considered for power Lindley (PL) distribution 

which is proposed by Ghitany et al., 2013 [10] as an extension of the Lindley distribution and its density 

and survival functions of are given by 

 

𝑓(𝑥;  𝛼, 𝛽) =
𝛼𝛽2

𝛽 + 1
 𝑥𝛼−1(1 + 𝑥𝛼)𝑒−𝛽𝑥

𝛼
,    𝑥 > 0, 𝛼, 𝛽 > 0 

 

(2) 

 

and  

 

𝑆(𝑥;  𝛼, 𝛽) = (1 +
𝛽

𝛽 + 1
𝑥𝛼  ) 𝑒−𝛽𝑥

𝛼
  

 

(3) 

 

where 𝛼 is the shape and 𝛽 is the scale parameter. Ghitany et al., 2013 [10] proved that the power Lindley 

distribution provides more flexibility than the Lindley distribution in terms of the shape of the density and 

hazard rate functions beside with its skewness and kurtosis. So, the power Lindley distribution has many 

advantages for modelling lifetime datasets in terms of this flexibility. Many authors focused on the power 

Lindley distribution in their studies. Following inference study of parameters of the PLD by Ghitany et al., 

2013 [10], Valiollahi et al., 2018 [11] considered the estimation and prediction of the PL 

under progressively type II right censoring scheme. The PLD is also subjected to reliability studies such as 

stress-strength reliability by Ghitany et al., 2015 [12], Joukar et al., 2020 [13]. In terms of ALT or PALT 

plans, the PLD has never been studied, before. In this study, we considered the power Lindley distribution 

under the step-stress partially accelerated life test which is proposed by DeGroot and Goel, 1979 [2] under 

progressive Type-II censoring scheme with given assumptions in the following  

• The experiment starts with  𝑛 independent and identical units which have the 𝑃𝐿(𝛼, 𝛽). 

• All 𝑛 units run under normal condition until a pre-specified 𝜏 time. If it does not fail before  𝜏 time, 

then it is run at accelerated condition with acceleration factor (𝜉), 

• The test is terminated with the prefixed  𝑚th failure (𝑚 ≤ 𝑛). 

• When the first failure occurs 𝑅1  live units are randomly removed from the experiment. At the 

second failure, 𝑅2 live units are randomly removed from the experiment. This test terminates with 

𝑚th failure and the remaining surviving units 𝑅𝑚 = 𝑛 −𝑚 −∑ 𝑅𝑖
𝑚−1
𝑖=1  are all removed from the 

experiment (Figure 1) 

where 𝑅 = (𝑅1, 𝑅2,⋯ , 𝑅𝑚), ∑ 𝑅𝑖
𝑚
𝑖=1 = 𝑛 −𝑚 and 𝑛𝑢 is the number of failed units at normal use condition. 
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Figure 1. Structure of a progressive type-II censoring scheme 

 

The aim of this study is making inferences for progressive Type-II censored data under SSPALT by 

considering the 𝑃𝐿(𝛼, 𝛽) distribution. Further, we aimed to investigate the effects of acceleration on the 

distribution. The maximum likelihood estimates (MLE) of the parameters and acceleration factor is 

investigated with their corresponding confidence intervals. All theoretical studies are exemplified with 

simulation studies and a real data example. In Section 2, we described the model and obtained the maximum 

likelihood estimates of the parameters. Then, approximate confidence intervals by using the asymptotic 

theory are given in subsection 2.1. To illustrate the theoretical outcomes, we considered some simulation 

studies and a real data example in Section 3.  

 

2. DESCRIPTION OF THE MODEL AND THE MAXIMUM LIKELIHOOD INFERENCE 

 

The probability density function (pdf) of the PL distribution under SSPALT, denoted by 𝑃𝐿(𝛼, 𝛽, 𝜉) can be 

obtained with the transformation-variable technique by using Equation (2) with (1) as follows 

 

𝑓𝑆𝑆𝑃𝐴𝐿𝑇(𝑥; 𝛼, 𝛽, 𝜉) =

{
 
 

 
 𝛼𝛽

2

𝛽 + 1
𝑥𝛼−1(1 + 𝑥𝛼)𝑒−𝛽𝑥

𝛼
, 𝑥 ≤ 𝜏

𝜉𝛼𝛽2

𝛽 + 1
𝛾𝛼−1(1 + 𝛾𝛼)𝑒−𝛽𝛾

𝛼
, 𝑥 > 𝜏

 

 

 

(4) 

 

where 𝛾 = 𝜉(𝑥 − 𝜏) + 𝜏. And survival function can be obtained similary as  

 

𝑆𝑆𝑆𝑃𝐴𝐿𝑇(𝑥; 𝛼, 𝛽, 𝜉) =

{
 

 (1 +
𝛽

𝛽 + 1
𝑥𝛼  ) 𝑒−𝛽𝑥

𝛼
  , 𝑥 ≤ 𝜏

(1 +
𝛽

𝛽 + 1
𝛾𝛼  ) 𝑒−𝛽𝛾

𝛼
  , 𝑥 > 𝜏.

 

 

 

(5) 

 

Here, each side of the pdf and survival function can be denoted by 𝑓1, 𝑓2, 𝑆1 and 𝑆2, respectively. Then, the 

MLEs of the unknown parameters and the acceleration factor,  𝜃 = (�̂�, �̂�, 𝜉), are investigated based on the 

proposed model above. 

 

Firstly, the likelihood function of the progressive Type-II censored data from the PL distribution under a 

SSPALT can be written as in the following (see [14]) 

 

𝐿(𝛼, 𝛽, 𝜉) = 𝑐∏[𝑓1(𝑥𝑖)(𝑆1(𝑥𝑖)
𝑅𝑖]

𝑛𝑢

𝑖=1

∏ [𝑓2(𝑥𝑖)(𝑆2(𝑥𝑖)
𝑅𝑖]

𝑚

𝑖=𝑛𝑢+1

       
 

 

(6) 

where 𝑐 = 𝑛(𝑛 − 1 − 𝑅1)(𝑛 − 1 − 𝑅1 − 𝑅2)⋯ (𝑛 −𝑚 + 1 − ∑ 𝑅𝑖
𝑚−1
𝑖=1 ) for  
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𝑥1:𝑚:𝑛
𝑅 < ⋯ < 𝑥𝑛𝑢:𝑚:𝑛

𝑅 < 𝜏 < 𝑥𝑛𝑢+1:𝑚:𝑛
𝑅 < ⋯ < 𝑥𝑚:𝑚:𝑛

𝑅 . 

 

Thus, the likelihood function can be obtained by using Equations (4) and (5) in Equation (6) as follows 

 

𝐿(𝛼, 𝛽, 𝜉) = 𝑐
𝛼𝑚𝛽2𝑚

(𝛽 + 1)𝑚
𝜉𝑚−𝑛𝑢∏𝑥𝑖

𝛼−1

𝑛𝑢

𝑖=1

(1 + 𝑥𝑖
𝛼)𝑒−𝛽(𝑅𝑖+1)𝑥𝑖

𝛼
(1 +

𝛽

𝛽 + 1
𝑥𝑖
𝛼  )

𝑅𝑖

 

× ∏ 𝛾𝑖
𝛼−1

𝑚

𝑖=𝑛𝑢+1

(1 + 𝛾𝑖
𝛼)𝑒−𝛽(𝑅𝑖+1)𝛾𝑖

𝛼
(1 +

𝛽

𝛽 + 1
𝛾𝑖
𝛼  )

𝑅𝑖

 

 

 

(7) 

 

and the log-likelihood function is obtained as  

 

𝑙(𝛼, 𝛽, 𝜉)  ∝ 𝑚(ln(α) + 2ln(β) − ln(β + 1)) + (𝑚 − 𝑛𝑢) ln(𝜉) +∑ln(1 + 𝑥𝑖
𝛼)

𝑛𝑢

𝑖=1

 

+ ∑ ln(1 + 𝛾𝑖
𝛼)

𝑚

𝑖=𝑛𝑢+1

+ (𝛼 − 1) [∑ln(𝑥𝑖)

𝑛𝑢

𝑖=1

+ ∑ ln(𝛾𝑖)

𝑚

𝑖=𝑛𝑢+1

]  +∑𝑅𝑖 ln (1 +
𝛽

𝛽 + 1
𝑥𝑖
𝛼  )

𝑛𝑢

𝑖=1

 

              + ∑ 𝑅𝑖 ln (1 +
𝛽

𝛽 + 1
𝛾𝑖
𝛼  )

𝑚

𝑖=𝑛𝑢+1

 − 𝛽 [∑(𝑅𝑖 + 1)𝑥𝑖
𝛼

𝑛𝑢

𝑖=1

+ ∑ (𝑅𝑖 + 1)𝛾𝑖
𝛼

𝑚

𝑖=𝑛𝑢+1

]. 

 

 

 

 

(8) 

 

To obtain the MLEs of the parameters, denoted by �̂�, �̂� and 𝜉, we should equate the partial derivates of 

𝑙(𝛼, 𝛽, 𝜉) to zero with respect to 𝛼, 𝛽 and 𝜉 respectively as given in the following 

 

𝜕𝑙

𝜕𝛼
=
𝑚

𝛼 
+∑ln(𝑥𝑖) (1 − 𝛽(1 + 𝑅𝑖)𝑥𝑖

𝛼 +
𝑥𝑖
𝛼

1 + 𝑥𝑖
𝛼) +

𝑛𝑢

𝑖=1

∑ ln(𝛾𝑖) (1 − 𝛽(1 + 𝑅𝑖)𝛾𝑖
𝛼 +

𝛾𝑖
𝛼

1 + 𝛾𝑖
𝛼)

𝑚

𝑖=𝑛𝑢+1

 

       +∑
𝑅𝑖𝑥𝑖

𝛼 ln(𝑥𝑖)

1 + 𝑥𝑖
𝛼 + 1/𝛽

+

𝑛𝑢

𝑖=1

∑
𝑅𝑖𝛾𝑖

𝛼 ln(𝛾𝑖)

1 + 𝛾𝑖
𝛼 + 1/𝛽

𝑛𝑢

𝑖=1

= 0 

 

 

𝜕𝑙

𝜕𝛽
=
𝑚(𝛽 + 2)

𝛽(𝛽 + 1)
−∑𝑥𝑖

𝛼(1 + 𝑅𝑖)

𝑛𝑢

𝑖=1

− ∑ 𝛾𝑖
𝛼(1 + 𝑅𝑖)

𝑚

𝑖=𝑛𝑢+1

+
1

(𝛽 + 1)
[∑

𝑅𝑖𝑥𝑖
𝛼

𝛽(1 + 𝑥𝑖
𝛼) + 1

𝑛𝑢

𝑖=1

+ ∑
𝑅𝑖𝛾𝑖

𝛼

𝛽(1 + 𝛾𝑖
𝛼) + 1

𝑚

𝑖=𝑛𝑢+1

] = 0 

 

 

𝜕𝑙

𝜕𝜉
=
𝑚 − 𝑛𝑢
𝜉

+ (𝛼 − 1)∑
𝑥𝑖 − 𝜏

𝛾𝑖

𝑛𝑢

𝑖=1

+ ∑ 𝛼(𝑥𝑖 − 𝜏)𝛾𝑖
𝛼−1

𝑚

𝑖=𝑛𝑢+1

[
1

1 + 𝛾𝑖
𝛼 − 𝛽(𝑅𝑖 + 1) +

𝑅𝑖

1 + 𝛾𝑖
𝛼 +

1

𝛽

] = 0. 

 

 

However, these non-linear equations cannot be solved analytically and iterative methods such as Newton-

Raphson method is needed. Thus, approximate solutions of the system of these non-linear equations be the 

MLEs of the parameters. 
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2.1. Approximate Confidence Intervals 

 

This section considers asymptotic confidence intervals for the MLEs of the parameters 𝛼, 𝛽 and 𝜉. In this 

purpose, we firstly need the inverse of the asymptotic Fisher information matrix 𝐼𝑖,𝑗(𝜃) =

𝐸[−𝜕2𝑙/𝜕𝜃𝑖𝜕𝜃𝑗 ]. However, exact expressions for these expectations are very difficult to obtain in our 

problem. Therefore, the observed Fisher information matrix is given by  𝐼𝑖,𝑗(𝜃) = −𝜕
2𝑙/𝜕𝜃𝑖𝜕𝜃𝑗  is used as 

given in the following 

𝐼−1 =

(

 
 
 
 
−
𝜕2𝑙

𝜕𝛼2
𝜕2𝑙

𝜕𝛼𝜕𝛽
−
𝜕2𝑙

𝜕𝛼𝜕𝜉

−
𝜕2𝑙

𝜕𝛽𝜕𝛼
−
𝜕2𝑙

𝜕𝛽2
−
𝜕2𝑙

𝜕𝛽𝜕𝜉

−
𝜕2𝑙

𝜕𝜉𝜕𝛼
−
𝜕2𝑙

𝜕𝜉𝜕𝛽
−
𝜕2𝑙

𝜕𝜉2 )

 
 
 
 

−1

= (

𝐼11 𝐼12 𝐼13
𝐼21 𝐼22 𝐼23
𝐼31 𝐼32 𝐼33

) 

 

and this inverse asymptotic Fisher information matrix is equal to  

 

𝐼−1 = (

𝑉𝑎𝑟(�̂�) 𝐶𝑜𝑣(�̂�, �̂�) 𝐶𝑜𝑣(�̂�, 𝜉)

𝐶𝑜𝑣(�̂�, �̂�) 𝑉𝑎𝑟(�̂�) 𝐶𝑜𝑣(�̂�, 𝜉)

𝐶𝑜𝑣(𝜉, �̂�) 𝐶𝑜𝑣(𝜉,̂ �̂�) 𝑉𝑎𝑟(𝜉)

). 

 

Thus, asymptotic variances of the parameters can be obtained as 

 

𝑉𝑎𝑟(�̂�) = (𝐼33𝐼22 − 𝐼23
2 )/det (𝐼) 

𝑉𝑎𝑟(�̂�) = (𝐼33𝐼11 − 𝐼13
2 )/det (𝐼) 

𝑉𝑎𝑟(𝜉) = (𝐼22𝐼11 − 𝐼12
2 )/det (𝐼) 

 

where det (𝐼) is the determinant of the Fisher information matrix and obtained as in the following 

 

det(𝐼) = 𝐼11(𝐼33𝐼22 − 𝐼23
2 ) − 𝐼12(𝐼33𝐼12 − 𝐼23𝐼13) + 𝐼13(𝐼23𝐼12 − 𝐼22𝐼13). 

 

Then, the 100(1 − 𝛿)% asymptotic confidence intervals of �̂�, �̂� and 𝜉 can be constructed by 

 

�̂� ∓ zδ 2⁄ √𝑉𝑎𝑟(�̂�) ;    �̂� ∓ zδ 2⁄ √𝑉𝑎𝑟(�̂�);   𝜉 ∓ zδ/2√𝑉𝑎𝑟(𝜉) 

 

where z𝛿 is 100 𝛿th percentile of standard normal distribution 𝑁(0,1).  
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Here, elements of the Fisher information matrix are the second partial derivatives of the log-likelihood 

function (8) with respect to 𝛼, 𝛽 and 𝜉 respectively and are obtained as follows 

 

𝜕2𝑙

𝜕𝛼2
= −

𝑚

𝛼2
+∑𝑥𝑖

𝛼  (ln 𝑥𝑖)
2 [

1

(1 + 𝑥𝑖
𝛼)

2 − (1 + 𝑅𝑖)𝛽 −
𝑅𝑖(1 + 1/𝛽)

(1 + 𝑥𝑖
𝛼 + 1 𝛽⁄ )

2]

𝑛𝑢

𝑖=1

 

 

+ ∑ 𝛾𝑖
𝛼  (ln 𝛾𝑖)

2 [
1

(1 + 𝛾𝑖
𝛼)

2 − (1 + 𝑅𝑖)𝛽 −
𝑅𝑖(1 + 1/𝛽)

(1 + 𝛾𝑖
𝛼 + 1 𝛽⁄ )

2]

𝑚

𝑖=𝑛𝑢+1

 

 

𝜕2𝑙

𝜕𝛼𝜕𝛽
=∑

𝑅𝑖𝑥𝑖
𝛼 ln(𝑥𝑖)

𝛽2(1 + 𝑥𝑖
𝛼 + 1 𝛽⁄ )

2

𝑛𝑢

𝑖=1

+∑
𝑅𝑖𝛾𝑖

𝛼 ln(𝛾𝑖)

𝛽2(1 + 𝛾𝑖
𝛼 + 1 𝛽⁄ )

2

𝑛𝑢

𝑖=1

−∑(1 + 𝑅𝑖)𝑥𝑖
𝛼

𝑛𝑢

𝑖=1

ln(𝑥𝑖)  

− ∑ (1 + 𝑅𝑖)𝛾𝑖
𝛼

𝑚

𝑖=𝑛𝑢+1

ln(𝛾𝑖) 

 

𝜕2𝑙

𝜕𝛼𝜕𝜉
= ∑ [

𝑥𝑖 − 𝜏

𝛾𝑖
(

𝛾𝑖
𝛼

1 + 𝛾𝑖
𝛼 + 1 − 𝛽𝛾𝑖

𝛼(1 + 𝑅𝑖)) + log(𝛾𝑖) (
𝛼(𝑥𝑖 − 𝜏)𝛾𝑖

𝛼−1

(1 + 𝛾𝑖
𝛼)

2 )

𝑚

𝑖=𝑛𝑢+1

− 𝛼𝛽(𝑥𝑖 − 𝜏)(1 + 𝑅𝑖)𝛾𝑖
𝛼−1 +

𝛼𝑅𝑖(𝑥𝑖 − 𝜏)𝛾𝑖
𝛼−1(1 + 1/𝛽)

(1 + 𝛾𝑖
𝛼 + 1 𝛽⁄ )

2 ] 

 

𝜕2𝑙

𝜕𝛽2
= −

𝑚(𝛽2 + 4𝛽 + 2)

𝛽2(𝛽 + 1)2

−
1

(1 + 𝛽)2
[∑

𝑅𝑖𝑥𝑖
𝛼[1 + (1 + 𝑥𝑖

𝛼)(1 + 2𝛽)]

(1 + 𝛽(1 + 𝑥𝑖
𝛼))

2 − ∑
𝑅𝑖𝛾𝑖

𝛼[1 + (1 + 𝛾𝑖
𝛼)(1 + 2𝛽)]

(1 + 𝛽(1 + 𝛾𝑖
𝛼))

2

𝑚

𝑖=𝑛𝑢+1

𝑛𝑢

𝑖=1

] 

 

𝜕2𝑙

𝜕𝛽𝜕𝜉
= ∑

𝛼𝑅𝑖(𝑥𝑖 − 𝜏)𝛾𝑖
𝛼−1

[1 + 𝛽(1 + 𝛾𝑖
𝛼)]

2 − ∑ 𝛼(𝑥𝑖 − 𝜏)(1 + 𝑅𝑖)𝛾𝑖
𝛼−1

𝑚

𝑖=𝑛𝑢+1

𝑚

𝑖=𝑛𝑢+1

 

 

𝜕2𝑙

𝜕𝜉2
= −

𝑚− 𝑛𝑢
𝜉2

+ (𝛼 − 1) ∑ (
𝑥𝑖 − 𝜏

𝛾𝑖
)
2

𝑚

𝑖=𝑛𝑢+1

− 𝛼(𝛼 − 1)𝛽 ∑ (1 + 𝑅𝑖)(𝑥𝑖 − 𝜏)
2𝛾𝑖

𝛼−2

𝑚

𝑖=𝑛𝑢+1

 

+ ∑ 𝛼(𝑥𝑖 − 𝜏)
2𝛾𝑖

𝛼−2 [
𝛼 − 1 − 𝛾𝑖

𝛼  

(1 + 𝛾𝑖
𝛼)

2 +
𝑅𝑖[(𝛼 − 1)(1 + 1/𝛽) − 𝛾𝑖

𝛼]

(1 + 𝛾𝑖
𝛼 + 1/𝛽)

2 ] .

𝑚

𝑖=𝑛𝑢+1

 

  

3. SIMULATION STUDIES  

 

In this section, performances of the estimation procedures are evaluated with some simulation studies. The 

ML estimates of the parameters are evaluated in terms of their biases and mean squared errors (MSE) for 

different choices of parameters and sample sizes based on four different censoring schemes (CS) which is 

given in the following. In addition, corresponding approximate confidence intervals are obtained and 

reported in terms of their average lengths (AL) and coverage probabilities (CP). 

CS-A: 𝑅1 = 𝑛 −𝑚 and 𝑅𝑖 = 0 for 𝑖 = 2,⋯ ,𝑚. 
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CS-B: 𝑅𝑚 = 𝑛 −𝑚 and 𝑅𝑖 = 0 for 𝑖 = 1,⋯ ,𝑚 − 1. 

CS-C: 𝑅𝑖 = 1 for 𝑖 = 1,⋯ , 𝑛 − 𝑚 and 𝑅𝑖 = 0 for 𝑖 = 𝑛 −𝑚 + 1,⋯ ,𝑚. 

CS-D: 𝑅𝑖 = 1 for 𝑖 = 2𝑚 − 𝑛 + 1,⋯ ,𝑚 and 𝑅𝑖 = 0 for 𝑖 = 1,⋯ ,2𝑚 − 𝑛. 

For this purpose, by using the algorithm which is defined by Balakrishnan and Sandhu, 1995 [15] and given 

in below, we firstly generate random samples from the PL distribution with parameters (𝛼 = 1.5, 𝛽 =

0.5, 𝜉 = 1.2) at stress change times 𝜏 = 1.5 and 𝜏 = 2, respectively. 

Step 1: Generate m independent 𝑊1,𝑊2, ⋯ ,𝑊𝑚 observations from 𝑈(0,1). 

Step 2: Set 𝑉𝑖 = 𝑊𝑖
1/(1+𝑅𝑚+𝑅𝑚−1+⋯+𝑅𝑚−𝑖+1)  for 𝑖 = 1,2,⋯ ,𝑚. 

Step 3: Set 𝑈𝑖 = 1 − 𝑉𝑚𝑉𝑚−1⋯𝑉𝑚−𝑖+1 for 𝑖 = 1,2,⋯ ,𝑚 as the required progressive Type-II censored 

sample from the 𝑈(0,1). 

Step 4: Set  𝑋𝑖 = 𝐹
−1(𝑈𝑖) for 𝑖 = 1,2,⋯ ,𝑚  where 𝐹−1(𝑈𝑖)  is the inverse cdf of the distribution which 

is given in Equation (9). 

Then, 𝑋1, 𝑋2,⋯ , 𝑋𝑚 is the required progressive Type-II censored sample from the power Lindley 

distribution under SSPALT. 

To obtain such a random sample, the quantile function of the power Lindley distribution under SSPALT is 

needed. Recently, Jodra, 2010 [16] obtained the quantile function of Lindley distribution and Ghitany et al, 

2013 [13] expanded this for power Lindley distribution. Following to these results, we obtained the quantile 

function of the power Lindley distribution under SSPALT by using equation (5) as 

 

𝐹𝐴𝐿𝑇
−1 (𝑥) = 𝑓(𝑥) =

{
 
 

 
 [−1 −

1

𝛽
−
1

𝛽
𝑊−1 (−

𝛽 + 1

𝑒𝛽+1
(1 − 𝑢))]

1/𝛼

                , 𝑥 ≤ 𝜏

1

𝜉
[−1 −

1

𝛽
−
1

𝛽
𝑊−1 (−

𝛽 + 1

𝑒𝛽+1
(1 − 𝑢))]

1/𝛼

−
𝜏

𝜉
+ 𝜏, 𝑥 > 𝜏

 

 

 

(9) 

 

where 𝑊−1(. ) denotes the negative branch of the Lambert 𝑊 function. 

 

Under the given progressive censoring schemes for various sample sizes (𝑛;  𝑚) such as (25; 20), (30; 25), 

(40; 30), (50; 40), we used 1000 simulated samples and the MLEs with 95% CIs for the parameters 𝛼, 𝛽 

and 𝜉 are obtained and reported in Table 1 for 𝜏 = 1.5 and in Table 2 for 𝜏 = 2. 

We observe that, for the shape parameter 𝛼, the bias and MSE values decrease as the sample size increases, 

in all cases, as expected.  On the other hand, biases and MSEs of the scale parameter and acceleration factor, 

𝛽 and 𝜉, have almost equal and close to zero values in all cases. Average lengths of the credible intervals 

are decreasing in parallel to increasing sample sizes in both cases. It is noticed that credible interval for 𝜉 

does not perform well. They have larger lengths and unexpected CPs. The main reason of this result is the 

values of 𝜉 which maximizing the log-likelihood function. In Section 2, we mentioned that iterative 

methods such as Newton-Raphson method is needed for MLEs. In these methods, restriction on  𝜉, that is 

𝜉 > 1, influence the optimizing values. Therefore, variances of 𝜉 give large values in all cases. This 

situation can explain the unexpected results on their credible intervals. According to the differences 

between censoring schemes, we observed that removing items at last of the experiments (CS-B and CS-D) 

cause increasing on biases and MSEs of the shape parameter 𝛼. On contrast, there are decreasing on 𝛽 and 

𝜉, in the same cases. These results are related to effects of the acceleration factor on values. In parallel to 

increasing in stress change time 𝜏, average confidence lengths in all cases. 
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On the other hand, we tried many different combinations of the values for the parameters but not reported 

here all of them. It is clear that, selection of stress change time 𝜏, acceleration factor 𝜉 and censoring 

schemes are very important to obtain consistent results. They must be selected to the structure of the dataset 

and expectations of the experimenters. In this study, we only used some combinations of parameters to 

illustrate our theoretical findings.  

Table 1. The biases and MSEs of the MLEs for the parameters at 𝛼 = 2, 𝛽 = 0.5 and 𝜉 = 1.2 at 𝜏 = 1.5 

with corresponding ACIs. First rows of each sample report the biases and the average lengths. Second 

rows of each sample report the MSEs and the CPs of the intervals 

 MLEs ACIs 

(𝑛,𝑚) 𝐶𝑆 𝛼 𝛽 𝜉 𝛼 𝛽 𝜉 

(25,20) I 0.15289 0.02857 0.08294 2.74975 0.55255 4.59497 

  0.02337 0.00082 0.00688 97.81 96.41 100 

 II 0.23760 0.01689 0.03902 2.71059 0.51893 3.89165 

  0.05645 0.00029 0.00152 98.28 96.68 100 

 III 0.16185 0.02649 0.05495 2.71823 0.53284 4.40790 

  0.02620 0.00070 0.00302 97.87 96.78 100 

 IV 0.22844 0.01859 0.03857 2.73339 0.52028 3.94210 

  0.05219 0.00035 0.00149 98.29 96.75 100 

(30,20) I 0.14606 0.03070 0.07676 2.58722 0.53748 4.38261 

  0.02133 0.00094 0.00589 97.83 96.62 100 

 II 0.27798 0.00644 0.09815 2.38715 0.46821 3.81606 

  0.07727 0.00004 0.00963 98.08 96.18 100 

 III 0.16709 0.02414 0.04377 2.59683 0.49271 4.16604 

  0.02792 0.00058 0.00192 98.56 96.94 100 

 IV 0.25406 0.01703 0.05593 2.49161 0.47800 3.72025 

  0.06455 0.00029 0.00313 98.25 96.31 100 

(40,30) I 0.13926 0.03062 -0.00954 2.32167 0.44764 3.49432 

  0.01939 0.00094 0.00009 98.39 96.08 100 

 II 0.23829 0.01810 -0.04156 2.01051 0.40431 2.67072 

  0.05678 0.00033 0.00173 98.77 95.86 100 

 III 0.14596 0.02674 -0.01191 2.21106 0.41907 3.32889 

  0.02130 0.00071 0.00014 98.75 96.14 100 

 IV 0.22235 0.02099 -0.04292 2.08883 0.40742 2.81148 

  0.04944 0.00044 0.00184 98.88 95.84 100 

(50,40) I 0.13545 0.03380 -0.06240 2.01099 0.39115 2.83617 

  0.01835 0.00114 0.00389 98.98 96.08 100 

 II 0.20436 0.02352 -0.08133 1.79959 0.36171 2.32518 

  0.04176 0.00055 0.00661 99.18 95.96 100 

 III 0.13554 0.03155 -0.05853 1.91283 0.37072 2.76655 

  0.01837 0.00100 0.00343 99.14 95.87 100 

 IV 0.19484 0.02551 -0.08076 1.82849 0.36210 2.39726 

  0.03796 0.00065 0.00652 99.20 95.89 100 
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Table 2. The biases and MSEs of the MLEs for the parameters at 𝛼 = 2, 𝛽 = 0.5 and 𝜉 = 1.2 at 𝜏 = 2 

with corresponding ACIs. First rows of each sample report the biases and the average lengths. Second 

rows of each sample report the MSEs and the CPs of the intervals 

 MLEs ACIs 

(𝑛,𝑚) 𝐶𝑆 𝛼 𝛽 𝜉 𝛼 𝛽 𝜉 

(25,20) I 0.19464 0.00594 0.07026 2.02403 0.56230 3.50154 

  0.03788 0.00004 0.00494 98.39 95.98 100 

 II 0.18308 -0.03926 0.33056 1.75556 0.49685 4.65225 

  0.03352 0.00154 0.10927 95.83 93.21 100 

 III 0.19305 0.00593 0.07867 1.95915 0.53811 3.50847 

  0.03727 0.00004 0.00619 98.30 95.85 100 

 IV 0.24300 -0.01612 0.85578 1.81269 0.50715 6.54750 

  0.05905 0.00026 0.73236 96.06 93.39 100 

(30,20) I 0.18372 0.00934 0.07707 1.94142 0.54564 3.46656 

  0.03375 0.00009 0.00594 98.21 95.88 100 

 II -0.39966 -0.21370 1.53358 1.54004 0.43493 

16.0436

5 

  0.15973 0.04567 2.35186 94.27     89.48 100 

 III 0.18462 0.00559 0.10725 1.86478 0.49085 3.57094 

  0.03409 0.00003 0.01150 97.73 95.17 100 

 IV 0.18565 -0.02797 0.67442 1.61391 0.45282 5.80913 

  0.03447 0.00078 0.45484 95.49 93.07 100 

(40,30) I 0.17958 0.00679 -0.01157 1.63667 0.45930 2.63884 

  0.03225 0.00005 0.00013 98.59 96.17 100 

 II 0.16054 -0.04534 0.27898 1.32828 0.38879 4.03072 

  0.02577 0.00206 0.07783 92.65 92.42 100 

 III 0.17721 0.00631 -0.00161 1.55899 0.42581 2.62870 

  0.03140 0.00004 0.00001 98.487 95.52 100 

 IV 0.24219 -0.00909 0.14254 1.37233 0.39713 3.02446 

  0.05865 0.00008 0.02032 94.44 93.46 100 

(50,40) I 0.17283 0.00814 -0.06199 1.39885 0.40243 2.17124 

  0.02987 0.00007 0.00384 98.63 96.22 100 

 II 0.23292 -0.00956 0.02889 1.17860 0.35189 2.39046 

  0.05425 0.00009 0.00083 93.76 94.16 100 

 III 0.16989 0.00861 -0.05689 1.33653 0.37811 2.13371 

  0.02886 0.00007 0.00324 98.55 95.81 100 

 IV 0.23422 -0.00343 -0.00073 1.20720 0.35621 2.23493 

  0.05486 0.00001 0.00001 94.84 94.51 100 

 

 

3.1. Illustrative Example 

 

In this subsection, we considered the data of the tensile strength, measured in GPa, of 69 carbon fibers 

tested under tension at gauge lengths of 20 mm (Bader and Priest, 1982 [17]), which is fitted by power 

Lindley distribution by Ghitany et al., 2013 [13], before. The data set is given as  
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1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 

2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 

2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 

2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 

3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585. 

Ghitany et al., 2013 [13] fit the power Lindley distribution as well as the well-known two-parameter 

Gompertz, gamma and Weibull distributions and showed that power Lindley distribution provides the best 

fit among all the considered models. 

 

We have generated a progressively censored sample using a random censoring scheme as 𝑅 =
(0, 1, 0, 1, 1, 2, 0, 0, 2, 2, 1, 1, 1, 2, 0, 0, 1, 2, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0) from the 

tensile strength data with 𝑛 = 69 and 𝑚 = 40. Then, the censoring scheme and the corresponding 

progressively censored sample are given in Table 3. 

 

Table 3. Progressively censored tensile strength data 

𝑖 𝑋𝑖 𝑅𝑖   𝑖 𝑋𝑖 𝑅𝑖   𝑖 𝑋𝑖 𝑅𝑖   𝑖 𝑋𝑖 𝑅𝑖  

1 1.312 0  11 2.179 1  21 2.554 0  31 2.773 1 

2 1.314 1  12 2.240 1  22 2.566 1  32 2.809 1 

3 1.552 0  13 2.270 1  23 2.586 1  33 2.821 0 

4 1.700 1  14 2.274 2  24 2.633 0  34 2.848 2 

5 1.861 1  15 2.359 0  25 2.642 0  35 3.012 0 

6 1.944 2  16 2.382 0  26 2.648 0  36 3.067 1 

7 1.997 0  17 2.382 1  27 2.648 0  37 3.090 1 

8 2.006 0  18 2.434 2  28 2.697 0  38 3.128 1 

9 2.021 2  19 2.490 2  29 2.726 0  39 3.433 1 

10 2.063 2   20 2.535 0   30 2.770 0   40 3.585 0 

 

We take stress change time 𝜏 as 𝜏 = 2.75 and 𝜏 = 3, respectively. For the first case, that is for 𝜏 = 2.75, 

we obtained  �̂� = 3.7848, �̂� = 0.0379 and 𝜉 = 1.0010 and their corresponding approximate confidence 

intervals are (2.7315, 4.8381) with length 2.1066, (0.0008, 0.0751) with length 0.0743 and 
(0.3606, 1.6414) with length 1.2808, respectively. For the other 𝜏 = 3 value, we obtained  �̂� = 3.7496, 

�̂� = 0.0390 and 𝜉 = 1.0655 and their corresponding approximate confidence intervals are 
(2.8388, 4.6603) with length 1.8215, (0.0044, 0.0737) with length 0.0693 and (0.2381, 1.8928) with 

length 1.6547, respectively. Since the range of the data is not so large and stress change times are close to 

each other, we obtained similar results in our data study. Various censoring schemes and stress change 

times can be considered for further findings. 

 

 

4. CONCLUSIONS 

 

In this study, we considered the power Lindley distribution in SSPALT due to its flexibility than the Lindley 

distribution in terms of the shape of the density and hazard rate functions beside with its skewness and 

kurtosis. We studied this problem under progressive Type-II censoring scheme. ML estimations and 

approximate confidence intervals of the parameters are obtained. The simulation studies showed that our 

theoretical results are consistent and applicable. To obtain an alternative estimation procedure, we studied 

on Bayes estimation method, also. However, based on the different prior distributions, posterior densities 

of the parameters cannot be obtained clearly. To overcome this adversity, we mostly focused on MCMC 

methods by using Metropolis-Hasting and importance sampling methods. Unfortunately, posterior densities 

and their corresponding credible intervals do not perform well and unexpected results from the theoretical 
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expectations. Therefore, we reported only MLE results in this study. On the other hand, the studies on PL 

distribution is still open problem for other ALT plans under various censoring schemes. 
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