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Abstract: In this study, we propound a salt-and-pepper noise (SPN) removal method, i.e. Adaptive Cesáro 

Mean Filter (ACmF), and provide some of its basic notions. We then apply ACmF to several test images whose 

noise densities range from 10% to 90%: 15 traditional test images (Baboon, Boat, Bridge, Cameraman, Elaine, 

Flintstones, Hill, House, Lake, Lena, Living Room, Parrot, Peppers, Pirate, and Plane) and 40 test images, 

provided in the TESTIMAGES Database. Afterwards, we compare ACmF with the state-of-art methods, such 

as Adaptive Weighted Mean Filter (AWMF), Different Applied Median Filter (DAMF), and Noise Adaptive 

Fuzzy Switching Median Filter (NAFSMF). The results by The Peak Signal to Noise Ratio (PSNR) and 

Structural Similarity (SSIM) show that ACmF performs better than the methods mentioned above. Moreover, 

we also compare the running time data of these algorithms. These results show that ACmF outperforms the 

methods except for DAMF. We finally discuss the need for further research. 

Keywords: Salt-and-pepper noise, noise removal, non-linear functions, image denoising, Cesáro mean 

Tuz ve Biber Gürültü Kaldırma için Uyarlamalı Cesáro Ortalama Filtresi 

Öz: Bu çalışmada, bir tuz ve biber gürültü (SPN) kaldırma yöntemi, yani Uyarlamalı Cesáro Ortalama Filtresi 

(ACmF) öneriyoruz ve bazı temel kavramları veriyoruz. Ardından, ACmF’yi gürültü yoğunluğu %10 ile %90 

arasında değişen çeşitli test görüntülerine uyguluyoruz: 15 geleneksel test görüntüsü (Baboon, Boat, Bridge, 

Cameraman, Elaine, Flintstones, Hill, House, Lake, Lena, Living Room, Parrot, Peppers, Pirate, and Plane) ve 

TESTIMAGES veri tabanında verilen 40 test görüntüsü. Daha sonra, ACmF'yi Uyarlamalı Ağırlıklı Ortalama 

Filtresi (AWMF), Farklı Uygulamalı Medyan Filtresi (DAMF) ve Gürültü Uyarlamalı Bulanık Anahtarlama 

Medyan Filtresi (NAFSMF) gibi gelişmiş yöntemlerle karşılaştırıyoruz. Pik Sinyal Gürültü Oranı (PSNR) ve 

Yapısal Benzerlik (SSIM) sonuçları, ACmF'nin yukarıda belirtilen yöntemlerden daha iyi performans 

sergilediğini göstermektedir. Ayrıca, bu algoritmaların çalışma zamanlarını da karşılaştırıyoruz. Bu çalışma 

süresi sonuçları ACmF'nin DAMF dışındaki yöntemleri geride bıraktığını gösteriyor. Sonunda daha fazla 

araştırmaya olan ihtiyacı tartışıyoruz. 

Anahtar Kelimeler: Tuz ve biber gürültüsü, gürültü kaldırma, lineer olmayan fonksiyonlar, Cesáro Ortalama 

1. Introduction 

Image denoising, namely noise removal, is one of the essential topics in image processing. Image 

denoising aims to obtain the nearest image quality to the real one by removing the noise in the images. 

Noise removal is a pre-processing step in image processing. Therefore, it affects the success of other 

operations in image processing positively [1–7].  
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The term of noise can be defined as “Everything undesired in an image”. There exist lots of types of 

noise, such as impulse noise, Gaussian noise, speckle noise, and Poisson noise due to different 

reasons, such as the sensitivity level of the camera sensors or data transfers. The impulse noise has 

two types, known as salt-and-pepper noise (SPN) and random valued noise. In this study, we take the 

SPN into account, which sets some pixel values to the maximum and minimum value. 

 

One of the methods to remove SPN is nonlinear filters, such as Standard Median Filter (SMF) [8, 9], 

Adaptive Median Filter (AMF) [10], Median Filter without Repetition (MFWR) [11],  Progressive 

Switching Median Filter (PSMF) [12], Decision Based Filtering Algorithm (DBA) [13], Modified 

Decision-Based Unsymmetric Trimmed Median Filter (MDBUTMF) [14], Noise Adaptive Fuzzy 

Switching Median Filter (NAFSMF) [15],  Elastic Median Filter 1 (EMF1), and Elastic Median Filter 

2 (EMF2) [16]. Some of them are successful at high noise density while some are successful at other 

noise densities. For this reason, the studies which compare the filters by using the quality metrics, 

such as Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) [17] are common in the 

literature. For example, Erkan and Gökrem [18] have proposed Based on Pixel Density Filter (BPDF) 

and compared this method with AMF, SMF, PSMF, DBA, MDBUTMF, and NAFSMF. The results 

show that BPDF performs better than the others at all densities in the mean percentages.  Erkan et al. 

have proposed Different Applied Median Filter (DAMF) [19] and compared it with PSMF, DBA, 

MDBUTMF, and NAFSMF. The results show that DAMF outperforms the others at all densities in 

the mean percentages. Also, Zhang and Li have introduced a successful method called Adaptive 

Weighted Mean Filter (AWMF) [20] for removing SPN.  

 

In this paper, in Section 2, we define a new method, i.e. Adaptive Cesáro Mean Filter (ACmF), an 

improved version of DAMF, for SPN removal. In Section 3, we compare ACmF with the state-of-art 

methods. Finally, we discuss the need for further research. 

2. Preliminaries and ACmF 

In this section, we first provide some basic notions. Throughout this paper, let 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 be an 

image matrix (IM) such that 𝑎𝑖𝑗 is an unsigned integer number and 0 ≤ 𝑎𝑖𝑗 ≤ 255. 

 

Definition 2.1 Let 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 be an IM, 𝑎𝑖𝑗 is called a noisy entry of 𝐴 if 𝑎𝑖𝑗 = 0 or 𝑎𝑖𝑗 = 255; 

otherwise, 𝑎𝑖𝑗 is called a regular entry of 𝐴. 

Definition 2.2 Let 𝐴 be an IM. Then, 𝐴 is called a noise image matrix (NIM), if for some 𝑖 and 𝑗, 
𝑎𝑖𝑗 is a noisy entry of 𝐴. 

Definition 2.3 Let 𝐴 be an NIM. Then, 𝐵 ≔ [𝑏𝑖𝑗]𝑚×𝑛
 is called binary matrix of 𝐴 where  

𝑏𝑖𝑗 = {
0,
1,

  𝑎𝑖𝑗 is a noisy entry of 𝐴

otherwise
 (1) 

Definition 2.4 Let 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 and 𝑡 ∈ {1,2, … ,min{𝑚, 𝑛}}. Then, [�̿�𝑟𝑠](𝑚+2𝑡)×(𝑛+2𝑡) called 𝑡-

symmetric pad matrix of 𝐴 is denoted by �̿�𝑡−𝑠𝑦𝑚 (or briefly �̿�𝑡) and is defined as follows: 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑎𝑡𝑡 ⋯ 𝑎𝑡1 𝑎𝑡1 𝑎𝑡2 ⋯ 𝑎𝑡𝑛 𝑎𝑡𝑛 ⋯ 𝑎𝑡(𝑛−𝑡+1)

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑎1𝑡 ⋯ 𝑎11 𝑎11 𝑎12 ⋯ 𝑎1𝑛 𝑎1𝑛 ⋯ 𝑎1(𝑛−𝑡+1)

𝑎1𝑡 ⋯ 𝑎11 𝒂𝟏𝟏 𝒂𝟏𝟐 ⋯ 𝒂𝟏𝒏 𝑎1𝑛 ⋯ 𝑎1(𝑛−𝑡+1)

𝑎2𝑡 ⋯ 𝑎21 𝒂𝟐𝟏 𝒂𝟐𝟐 ⋯ 𝒂𝟐𝒏 𝑎2𝑛 ⋯ 𝑎2(𝑛−𝑡+1)

𝑎3𝑡 ⋯ 𝑎31 𝒂𝟑𝟏 𝒂𝟑𝟐 ⋯ 𝒂𝟑𝒏 𝑎3𝑛 ⋯ 𝑎3(𝑛−𝑡+1)

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑎𝑚𝑡 ⋯ 𝑎𝑚1 𝒂𝒎𝟏 𝒂𝒎𝟐 ⋯ 𝒂𝒎𝒏 𝑎𝑚𝑛 ⋯ 𝑎𝑚(𝑛−𝑡+1)

𝑎𝑚𝑡 ⋯ 𝑎𝑚1 𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛 𝑎𝑚𝑛 ⋯ 𝑎𝑚(𝑛−𝑡+1)

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑎(𝑚−𝑡+1)𝑡 ⋯ 𝑎(𝑚−𝑡+1)1𝑎(𝑚−𝑡+1)1𝑎(𝑚−𝑡+1)2 ⋯ 𝑎(𝑚−𝑡+1)𝑛𝑎(𝑚−𝑡+1)𝑛 ⋯ 𝑎(𝑚−𝑡+1)(𝑛−𝑡+1)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2) 

Example 2.1 Let 𝐴 ≔ [

0 12 13

21 255 0

0 32 33

]. Then, �̿�2 =

[
 
 
 
 
 
 
 
 
 
 
 
255 21 21 255 0 0 255

12 0 0 12 13 13 12

12 0 𝟎 𝟏𝟐 𝟏𝟑 13 12

255 21 𝟐𝟏 𝟐𝟓𝟓 𝟎 0 255

32 0 𝟎 𝟑𝟐 𝟑𝟑 33 32

32 0 0 32 33 33 32

255 21 21 255 0 0 255]
 
 
 
 
 
 
 
 
 
 
 

. 

Definition 2.5 Let 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 and 𝑘 ∈ {1,2, … , t}. Then, 𝑘-approximate matrix of 𝑎𝑖𝑗 in �̿�𝑡 is 

denoted by 𝐴𝑖𝑗
𝑘  and is as follows: 

[
 
 
 
 
�̿�(𝑖+𝑡−𝑘)(𝑗+𝑡−𝑘) ⋯ �̿�(𝑖+𝑡−𝑘)(𝑗+𝑡+𝑘)

⋮ �̿�(𝑖+𝑡)(𝑗+𝑡) ⋮

�̿�(𝑖+𝑡+𝑘)(𝑗+𝑡−𝑘) ⋯ �̿�(𝑖+𝑡+𝑘)(𝑗+𝑡+𝑘)]
 
 
 
 

(2𝑘+1)×(2𝑘+1)

 (3) 

Example 2.2 Let us consider Example 2.1. Then, 𝐴21
1 = [

0 0 12

21 21 255

0 0 32

]. 

Definition 2.6 The matrix �̂�𝑖𝑗
𝑘 ≔ [�̂�1𝑣] consisting of all regular entries of  𝐴𝑖𝑗

𝑘  and non-decreasing is 

called regular row matrix or regular entry matrix (REM) of  𝐴𝑖𝑗
𝑘 . 

Example 2.3 Let us consider Example 2.2. Then, �̂�21
1 = [12 21 32]. 

Definition 2.7 Let �̂�𝑖𝑗
𝑘 ≔ [�̂�1𝑣]1×𝑤 be the REM of 𝐴𝑖𝑗

𝑘 . Then, Cesáro mean of 𝐴𝑖𝑗
𝑘  is defined as follows 

𝐶𝑚(�̂�𝑖𝑗
𝑘 )  ≔

1

𝑤
∑ �̂�1𝑣

𝑤

𝑣=1

    (4) 

Definition 2.8 A matrix with all its entries being zero is called zero matrix and is denoted [0]. 

Secondly, we give the algorithm of ACmF and its flowchart in Figure 1 as follows: 
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 ACmF’s Algorithm Steps 

Step 1. Read a NIM 𝐴 ≔ [𝑎𝑖𝑗]𝑚×𝑛
 such that min{𝑚, 𝑛} ≥ 5 

Step 2. Convert 𝐴 from uint8 form to double form 

Step 3. For 𝑡 from 5 to 1 

Obtain the binary matrix 𝐵 ≔ [𝑏𝑖𝑗]𝑚×𝑛
 of 𝐴 

Obtain �̿�𝑡 and �̿�𝑡 

                 For all 𝑖 and 𝑗 
                        If 𝑏𝑖𝑗 = 0 

                            For 𝑘 from 1 to 𝑡 

                                  If 𝐵𝑖𝑗
𝑘 ≠ [0] 

                                      Obtain 𝐴𝑖𝑗
𝑘  

                                      Obtain �̂�𝑖𝑗
𝑘  

                                      𝑎𝑖𝑗 ← 𝐶𝑚(�̂�𝑖𝑗
𝑘 ) 

                                      Break 

                                  End If 

                             End For 

                          End If 

                  End For 

             End For 

Step 4. Convert 𝐴 from double form to uint8 form 

 
Figure 1. The flowchart of ACmF 
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Finally, we discuss Adaptive Cesáro Mean Filter (ACmF), a novel filter. ACmF is recursive and uses 

the Cesàro mean instead of the standard median to assign a new value to the centre pixel of a window. 

Furthermore, if need be, it allows for the use of a bigger window size than those in DAMF. In other 

words, ACmF’s basic differences from DAMF are its recursive nature, its reliance on the Cesàro 

mean, and the use of window sizes up to 11 × 11. DAMF based on the standard median uses window 

sizes up to 7 × 7. ACmF produces new values closer to the original pixel values. However, although 

ACmF performs better than the state-of-art methods in terms of running time, it works a little slower 

due to the recursive procedure than DAMF does. 

3. Simulation Results 

In this section, we first present the quality metrics PSNR, SSIM, and MSSIM used to compare DBA, 

MDBUTMF, BPDF, NAFSMF, DAMF, AWMF, and ACmF. PSNR is defined as 

𝑃𝑆𝑁𝑅(𝐸, 𝐹) ≔ 10log (
2552

𝑀𝑆𝐸(𝐸, 𝐹)
) (5) 

where MSE stands for the Mean Square Error and is defined as 

𝑀𝑆𝐸(𝐸, 𝐹) ≔
1

𝑚𝑛
∑∑(𝑒𝑖𝑗 − 𝑓𝑖𝑗)

2
𝑛

𝑗=1

𝑚

𝑖=1

 (6) 

Here, 𝐸 ≔ [𝑒𝑖𝑗] is the earliest form/original image and 𝐹 ≔ [𝑓𝑖𝑗] is the final form/restored image.  

SSIM [17] is defined as 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) ≔
(2𝜇𝑥𝜇𝑦 + 𝐶1) + (2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1) + (𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
   (7) 

where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦, and 𝜎𝑥𝑦 are the average intensities, standard deviations, and cross-covariance 

for images 𝑥 and 𝑦, respectively. Also, 𝐶1 ≔ (𝐾1𝐿)2 and 𝐶2 ≔ (𝐾2𝐿)2 are two constants such that 

𝐾1 = 0.01, 𝐾2 = 0.03 and 𝐿 = 255 for 8-bit grayscale images.  

MSSIM is defined as, for 𝑥1, 𝑥2, … , 𝑥𝑛 and 𝑦1, 𝑦2, … , 𝑦𝑛 images, 

𝑀𝑆𝑆𝐼𝑀 ≔
1

𝑛
∑ 𝑆𝑆𝐼𝑀(𝑥𝑘 , 𝑦𝑘) 

𝑛

𝑘=1

 
(8) 

 

Secondly, we give mean PSNR and MSSIM results of the methods mentioned above for 15 traditional 

test images with 512×512 pixels (Baboon, Boat, Bridge, Cameraman, Elaine, Flintstones, Hill, House, 

Lake, Lena, Living Room, Parrot, Peppers, Pirate, and Plane) and 40 test images with 600×600 pixels 

in the TESTIMAGES Database [17] ranging in noise densities from 10% to 90%, in Table 1, 2, 3, 

and 4, respectively. 

Table 1. Mean PSNR results for the 15 traditional images with different SPN ratios 

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% Mean 

DBA 35.07 30.96 27.94 25.29 22.80 20.53 18.21 15.77 12.98 23.28 

MDBUTMF 33.31 28.48 28.67 27.89 25.95 21.46 14.97 9.62 6.46 21.87 

BPDF 37.12 33.42 30.74 28.68 26.47 24.27 21.59 17.42 10.47 25.58 

NAFSMF 36.09 33.08 31.27 29.90 28.74 27.62 26.52 25.13 22.14 28.94 

DAMF 40.10 36.53 34.23 32.44 30.89 29.49 28.07 26.47 24.06 31.37 

AWMF 36.43 35.03 33.86 32.68 31.42 30.03 28.50 26.79 24.37 31.01 

ACmF 40.20 36.87 34.87 33.22 31.69 30.15 28.55 26.80 24.37 31.84 
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Table 2. MSSIM results for the 15 traditional images with different SPN ratios 

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% Mean 

DBA 0.9655 0.9211 0.8613 0.7839 0.6910 0.5895 0.4846 0.3868 0.3154 0.6666 

MDBUTMF 0.9425 0.7951 0.8387 0.8399 0.7835 0.6332 0.3254 0.0973 0.0213 0.5863 

BPDF 0.9794 0.9552 0.9246 0.8857 0.8323 0.7628 0.6627 0.5008 0.2518 0.7506 

NAFSMF 0.9753 0.9505 0.9246 0.8969 0.8662 0.8310 0.7891 0.7315 0.6087 0.8415 

DAMF 0.9865 0.9714 0.9539 0.9332 0.9084 0.8789 0.8407 0.7887 0.6973 0.8843 

AWMF 0.9737 0.9638 0.9507 0.9344 0.9134 0.8858 0.8477 0.7948 0.7039 0.8854 

ACmF 0.9869 0.9732 0.9577 0.9395 0.9168 0.8881 0.8490 0.7954 0.7041 0.8901 

Table 3. Mean PSNR results for the 40 images for TESTIMAGES Gallery with different SPN ratios 

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% Mean 

DBA 36.68 31.97 28.40 25.32 22.53 19.72 17.03 14.21 11.27 23.01 

MDBUTMF 30.19 26.49 26.88 26.33 24.48 20.35 14.48 9.44 6.33 20.55 

BPDF 38.46 34.37 31.38 28.80 26.35 23.71 20.58 15.87 8.79 25.37 

NAFSMF 37.20 34.14 32.14 30.55 29.22 27.91 26.50 24.83 21.34 29.31 

DAMF 41.09 37.25 34.70 32.76 31.22 29.72 28.19 26.42 23.60 31.66 

AWMF 37.56 36.53 35.45 34.26 32.90 31.38 29.66 27.67 24.85 32.25 

ACmF 41.99 38.85 36.71 34.92 33.22 31.51 29.70 27.68 24.86 33.27 

Table 4. MSSIM results for the 40 images for TESTIMAGES Gallery with different SPN ratios 

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% Mean 

DBA 0.9783 0.9451 0.8942 0.8221 0.7298 0.6179 0.4988 0.3793 0.2981 0.6849 

MDBUTMF 0.9421 0.7728 0.8513 0.8792 0.8326 0.6850 0.3738 0.1326 0.0362 0.6117 

BPDF 0.9853 0.9667 0.9411 0.9055 0.8562 0.7848 0.6782 0.4938 0.2065 0.7576 

NAFSMF 0.9791 0.9601 0.9411 0.9207 0.8981 0.8716 0.8375 0.7869 0.6622 0.8730 

DAMF 0.9910 0.9814 0.9697 0.9553 0.9379 0.9160 0.8869 0.8428 0.7567 0.9153 

AWMF 0.9807 0.9748 0.9670 0.9568 0.9430 0.9234 0.8949 0.8510 0.7671 0.9176 

ACmF 0.9914 0.9831 0.9734 0.9615 0.9462 0.9254 0.8960 0.8515 0.7672 0.9218 

Thirdly, we give the PSNR and SSIM results of the methods for the images Cameraman, Lena, 

Peppers, and Baboon ranging in noise densities from 10% to 90%, in Table 5 and 6, respectively. 

Table 5. PSNR results of the methods for some traditional images with different SPN ratios 

Image Filters 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Cameraman 

DBA 38.02 32.79 29.12 26.03 23.03 20.57 18.30 15.88 12.31 

MDBUTMF 35.51 29.40 30.18 29.40 27.40 22.34 15.25 9.87 6.72 

BPDF 39.62 35.30 32.19 29.81 27.37 24.73 22.28 18.32 11.50 

NAFSMF 36.97 33.92 32.04 30.63 29.50 28.16 27.22 25.69 22.59 

DAMF 43.90 39.49 36.75 34.50 32.92 31.10 29.56 27.71 24.89 

AWMF 38.17 37.28 36.20 34.98 33.67 31.87 30.14 28.08 25.15 

ACmF 43.87 40.38 37.95 35.91 34.16 32.03 30.20 28.09 25.15 

Lena 

DBA 38.03 33.43 30.11 26.95 24.24 21.95 19.43 16.33 13.55 

MDBUTMF 36.04 30.50 31.18 30.33 28.06 22.67 15.49 9.95 6.77 

BPDF 39.88 35.82 32.86 30.51 28.37 25.89 23.01 18.01 10.84 

NAFSMF 38.79 35.51 33.78 32.26 31.12 29.80 28.62 27.15 23.72 

DAMF 43.12 39.07 36.66 34.90 33.24 31.77 30.18 28.56 25.88 

AWMF 39.01 37.36 36.15 34.83 33.59 32.16 30.53 28.79 26.13 

ACmF 42.52 39.11 37.09 35.40 33.85 32.28 30.57 28.80 26.13 
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Peppers 

DBA 36.62 32.84 29.55 26.82 23.91 21.25 18.38 15.56 12.13 

MDBUTMF 35.88 30.09 30.90 30.35 28.07 23.04 15.76 10.16 7.03 

BPDF 38.28 35.13 32.59 30.62 28.37 26.07 22.82 18.54 9.21 

NAFSMF 39.50 36.37 34.33 32.94 31.55 30.41 28.98 27.37 23.50 

DAMF 41.34 37.91 35.72 33.97 32.41 31.18 29.76 28.30 25.65 

AWMF 37.75 36.77 35.72 34.40 32.99 31.68 30.16 28.58 26.07 

ACmF 41.51 38.30 36.38 34.73 33.14 31.77 30.19 28.59 26.07 

Baboon 

DBA 33.14 28.78 25.82 23.51 21.50 19.79 18.21 16.52 14.36 

MDBUTMF 30.91 27.20 26.24 25.10 23.62 20.47 14.88 9.67 6.57 

BPDF 35.44 31.46 28.86 26.56 24.66 22.79 20.73 16.99 8.88 

NAFSMF 32.36 29.36 27.61 26.34 25.28 24.34 23.46 22.49 20.53 

DAMF 37.85 34.44 32.26 30.45 28.89 27.49 25.93 24.21 21.82 

AWMF 34.00 32.54 31.57 30.48 29.27 27.94 26.27 24.43 21.98 

ACmF 38.33 35.08 33.10 31.32 29.71 28.13 26.35 24.45 21.98 

 

 

Table 6. SSIM results of the methods for some traditional images with different SPN ratios 

Image Filters 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Cameraman 

DBA 0.9882 0.9656 0.9296 0.8774 0.8096 0.7321 0.6588 0.5883 0.4935 

MDBUTMF 0.9548 0.7727 0.8755 0.9170 0.8821 0.7356 0.4051 0.1640 0.0555 

BPDF 0.9914 0.9789 0.9601 0.9340 0.8936 0.8399 0.7698 0.6643 0.4885 

NAFSMF 0.9804 0.9643 0.9493 0.9347 0.9184 0.8976 0.8732 0.8334 0.7176 

DAMF 0.9962 0.9909 0.9842 0.9754 0.9650 0.9508 0.9313 0.9008 0.8370 

AWMF 0.9879 0.9849 0.9810 0.9756 0.9682 0.9558 0.9367 0.9054 0.8421 

ACmF 0.9964 0.9921 0.9870 0.9802 0.9713 0.9577 0.9378 0.9059 0.8422 

Lena 

DBA 0.9761 0.9422 0.8963 0.8326 0.7528 0.6635 0.5656 0.4454 0.3587 

MDBUTMF 0.9537 0.8154 0.8741 0.8840 0.8386 0.6830 0.3328 0.0866 0.0169 

BPDF 0.9847 0.9656 0.9423 0.9105 0.8690 0.8117 0.7235 0.5391 0.2823 

NAFSMF 0.9839 0.9665 0.9493 0.9293 0.9081 0.8813 0.8509 0.8038 0.6883 

DAMF 0.9904 0.9787 0.9656 0.9497 0.9312 0.9081 0.8786 0.8384 0.7670 

AWMF 0.9820 0.9737 0.9637 0.9504 0.9346 0.9129 0.8839 0.8433 0.7729 

ACmF 0.9904 0.9795 0.9680 0.9536 0.9367 0.9143 0.8846 0.8436 0.7730 

Peppers 

DBA 0.9537 0.9066 0.8477 0.7794 0.7018 0.6047 0.5031 0.3888 0.2789 

MDBUTMF 0.9412 0.7865 0.8349 0.8429 0.7879 0.6538 0.3490 0.1140 0.0304 

BPDF 0.9741 0.9472 0.9158 0.8814 0.8376 0.7792 0.6966 0.5583 0.1939 

NAFSMF 0.9778 0.9555 0.9323 0.9080 0.8810 0.8517 0.8157 0.7663 0.6474 

DAMF 0.9809 0.9601 0.9373 0.9121 0.8834 0.8514 0.8136 0.7679 0.6971 

AWMF 0.9610 0.9557 0.9415 0.9212 0.8950 0.8633 0.8243 0.7759 0.7053 

ACmF 0.9833 0.9652 0.9454 0.9230 0.8960 0.8637 0.8244 0.7758 0.7053 

Baboon 

DBA 0.9660 0.9105 0.8294 0.7230 0.6002 0.4709 0.3519 0.2500 0.1955 

MDBUTMF 0.9390 0.8307 0.8113 0.7689 0.6908 0.5451 0.2895 0.0790 0.0119 

BPDF 0.9796 0.9508 0.9119 0.8564 0.7833 0.6855 0.5550 0.3814 0.1059 

NAFSMF 0.9613 0.9202 0.8779 0.8318 0.7802 0.7212 0.6533 0.5731 0.4433 

DAMF 0.9885 0.9743 0.9575 0.9359 0.9084 0.8744 0.8228 0.7475 0.5973 

AWMF 0.9721 0.9602 0.9494 0.9346 0.9133 0.8832 0.8323 0.7555 0.6037 

ACmF 0.9898 0.9778 0.9643 0.9463 0.9218 0.8888 0.8355 0.7570 0.6043 
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Fourthly, we give PSNR and SSIM results of DBA, MDBUTMF, BPDF, NAFSMF, DAMF, AWMF, 

and ACmF for the image Cameraman with a noise density of 30%, in Figure 2. 

 

Figure 2. PSNR and SSIM results for “Cameraman” of size 512 ×  512 with SPN ratio of 30%.  (a) 

Noisy image (10.31, 0.0550), (b) DBA (29.12, 0.9296), (c) MDBUTMF (30.18, 0.8755), (d) BPDF 

(32.19, 0.9601), (e) NAFSMF (32.04, 0.9493), (f) DAMF (36.75, 0.9842), (g) AWMF (36.20, 

0.9810), (h) ACmF (37.95, 0.9870) 

 

Fifthly, we then give PSNR and SSIM results of ACmF for the image Lena ranging in noise densities 

from 10% to 90%, in Figure 3. 

 

Figure 3. PSNR and SSIM results of ACmF for “Lena” of size 512 ×  512 with different SPN ratios. 

(a) 10% (15.40, 0.1704) (b) 30%  (10.67, 0.0529) (c) 50% (8.47, 0.0264) (d) 70% (6.98, 0.0126) (e) 

90% (5.90, 0.0064) (f) Removed 10% (42.52, 0.9904) (g) Removed 30% (37.09, 0.9680) (h) 

Removed 50% (33.85, 0.9367) (i) Removed 70% (30.57, 0.8846) (j) Removed 90% (26.13, 0.7730) 
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Sixthly, we give the PSNR graph for the images: Almonds, Bananas, Billiard Balls A, Guitar Bridge, 

Building, and Cushions, which is in TESTIMAGES Database, ranging in noise densities from 10% 

to 90%, in Fig. 4. According to these results, ACmF is a more successful method than the others in 

any noise densities. 

 
Figure 4.  PSNR Graphs, (a) Almonds (b) Bananas (c) Billiard Balls A (d) Guitar Bridge (e) Building 

(f) Cushions. 

Finally, we give the running time data of the algorithms in Table 7 and 8 for 15 traditional images 

and TESTIMAGES database with different SPN ratios, respectively. Here, we use MATLAB R2019a 

and a workstation with I(R) Xeon(R) CPU E5-1620 v4 @ 3.5 GHz and 64 GB RAM for these 

comparisons. The results show that ACmF outperforms the methods mentioned above except for 

DAMF in terms of running time. Moreover, ACmF is much more successful NAFSMF and AWMF, 

which are known as successful in high noise densities. 

 

Table 7. Mean running time for the 15 traditional images with different SPN ratios (in Seconds) 
Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% 

DBA 3.49 3.50 3.50 3.49 3.49 3.52 3.51 3.50 3.50 

MDBUTMF 2.72 4.22 5.88 6.93 7.67 7.94 8.18 8.29 8.29 

BPDF 1.00 1.94 2.91 3.89 4.84 5.81 6.75 7.67 8.41 

NAFSM 1.17 2.29 3.42 4.54 5.75 6.82 7.89 8.94 10.03 

DAMF 0.16 0.31 0.45 0.60 0.75 0.90 1.05 1.25 1.53 

AWMF 3.90 3.22 2.91 2.71 2.63 2.53 2.55 2.66 3.06 

ACmF 0.17 0.33 0.48 0.63 0.79 0.94 1.13 1.34 1.66 

 

Table 8. Mean running time for the 40 images with different SPN ratios (in Seconds) 
Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% 

DBA 4.78 4.79 4.80 4.81 4.81 4.80 4.80 4.78 4.78 

MDBUTMF 3.77 5.83 8.12 9.52 10.35 10.85 11.17 11.33 11.31 

BPDF 1.44 2.73 4.02 5.33 6.61 7.88 9.16 10.46 11.58 

NAFSM 1.70 3.23 4.75 6.29 7.80 9.30 10.80 12.24 13.67 

DAMF 0.23 0.43 0.63 0.83 1.04 1.23 1.44 1.70 2.10 

AWMF 5.36 4.35 3.91 3.65 3.59 3.44 3.47 3.68 4.33 

ACmF 0.25 0.46 0.67 0.87 1.11 1.30 1.55 1.83 2.30 
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5. Conclusion 

In the present paper, we proposed ACmF, an efficient filter for SPN removal, and showed that ACmF 

performs better than the known methods for all noise densities. ACmF uses the Cesáro mean of 

regular pixels as opposed to DAMF using the median. Moreover, ACmF is recursive and, if needed, 

allows for the use of a bigger window size than those in DAMF. We compared ACmF with the state-

of-art methods whose algorithms were accessible. We, in this paper, did not consider the filters whose 

algorithms were not accessible either on private or on global platforms, such as MathWorks. Further, 

ACmF can be developed by exploiting a weighted mean or by employing a noise detection mask. 

This concept has first been presented in [21] as an abstract. Since ACmF produces the best results in 

any noise density, it can be clearly observed that ACmF outperforms the others. On the other hand, 

determining the ranking order of the other filters is not easy. Therefore, obtaining their ranking order 

is another crucial topic. For more details, see [22-26]. 
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