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Abstract

This work is concerned with a class of fourth-order elliptic Kirchhoff type problems involving the critical
term. By means of the truncation and the concentration compact argument, for each positive integer k, the
existence of k pairs nontrivial solutions is established.
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1. Introduction and main result

Let Q be a smooth bounded domain of RY, with N > 5. Consider the problem

A%u— M ([o|Vul?dz) Au= Af(z,u) + [u[* 2u in Q 1)
u=Au=20 on 0f),
where A > 0, 2** := % and M, f are continuous functions satisfying some hypothesis which will be given
later.

The presence of the nonlocal term M ( / |Vu\2dx> in 1) causes some mathematical difficulties and so
Q

the study of such a class of problems is of much interest. This type of problems are closely related to the
following hyperbolic equation
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which was proposed by Kirchhoff [9] as a model to describe the transversal vibrations of a stretched string
by considering the subsequent change in string length during the vibrations. Recently, the Kirchhoff type
problems with or without critical growth have been investigated by many researchers, we cite here [1}, 2, 5,
6, [7, 8, 10, 13, 14l 16]. In [17], Wand and An have used the mountain pass theorem to prove the existence
of solutions for the problem

A%u— M ([o|Vul?dz) Au= Af(z,u) in Q
u=Au=0 on ON.

A more general problem

A(|AP2Au) — M ([ [VulPdz) Apu = Af(z,u) in €
u = Au = 0 on 89,

was considered in [4, 12]. Particularly, the critical case is studied in our previous paper [§]. By the concentra-
tion compactness principle of Lions [I1] and the ideas of Brezis and Nirenberg [3], sufficient conditions were
obtained to the existence of a least one nontrivial solution of the perturbed problem for X large enough.
To our knowledge, the existence of multiple solutions for problem has not studied until now. Motivated
by the above results, in this note we are interested in finding multiple solutions by using the variational
method, the truncation technique and the concentration compact argument.

Throughout the paper, we assume the following conditions on the Kirchhoff function and the nonlinearity:

(my) M :1]0,400) — (0,400) is continuous and increasing;
(f1) f(z,t) € C(Q x R,R) is odd in ¢

(f2) f(z,t) =o(|t]) as t — 0, uniformly in €;

t
(f3) There exists g € (2,2*) such that lim f(@,?)

= 0, uniformly in €;
|t|—>+oo |E]772¢ ’ Y ’

(f1) There exists 0 € (2,2**) such that

t
0<0F(x,t) = 0/ f(z,s)ds < tf(x,t) for all x € Q and t € R\{0}.
0

The main result is the following theorem.

Theorem 1.1. Suppose that (m1) and (f1) — (fa) hold. Then for each positive integer k, there exists A\, > 0
such that problem admits a least k pairs nontrivial solutions provided that X > X}

2. Auxiliary Results

We look for solutions in the Hilbert space H := HZ(Q) N H?(Q) with the inner product

(u, vy = /(AUAU + VuVo)dz
Q

1
and the norm ||ul|3, = [(|Au* 4+ [Vu|?)dx. Denote |ul, = ([q |ulPdz)? for u € LP(Q).
Let a € (M(0),4M(0)) . Then by (m1), there is to > 0 such that M(ty) = a, so let us define

M(t) if 0<t<tg
a if Ifzto.

(0 = {
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Replacing M with M,, problem turns into

A%u— M, (o |Vul?dz) Au= Af(z,u) +|u* 2u in Q 3)
u=Au=0 on 0.

The energy functional associated to is given by

]. 1/\ *x
I o(u) = 2/Q|Au]2dx+ §Ma (/Q |Vu]2dx> — )\/Q F(z,u)dx — 2**/ lu|?” de,

where M\a(t) = f(f M,(s)ds. By the above assumptions, Iy, € C'(H) and for all u,v € H

(I} o(u),v) /AuAvd:r—i—M </ |Vul da:)/Vqudx
—)\/ fz,u vd:n—/ lul?" ~2uvdz.

Lemma 2.1. Suppose that (m1), (f1) and (f3) — (fa)) hold. Then I, o satisfies the (PS). condition at every

level ¢ < ¢*, where
* . 1 1 N /M0 a
C :mln{<€—2**>s*4,(2()—0)t0};

2
where S, := inf HUDH
ueH\{0} |u|3ux

Proof. Let {u,} C H be a sequence such that I o(un) — ¢ < ¢* and I} ,(un) — 0. By definition of M,, we
have M, (t) < a and M(0)t < Ma(t) for all t > 0. Therefore by (f1)

c+on(1) +on(Dlfunllg = Iy a(un) - 1<I/\ o(Un); un)

> <—>/|A W[2de +<MQ(O—>/|vun| da
> min{ (3-3) (Y22 - 8) H it

This shows that {u,} is bounded in H. Then up to subsequence, for some u € H,
Uy — uin H,
Uy — U a.e. in
up — uwin L™(Q) for all r € [1,2"), (4)
|Au,|> — 1 weakly in the sense of measures,
lun|>”" — v weakly in the sense of measures,

where 11 and v are nonnegative bounded measures on 2. Applying concentration compact result due to Lions
[11], we can find at most countable index set J and elements {x;};cs of Q such that

U= ‘u|2** + Zyjéxj’ vj > 0,
Jje€J

> |Aul + ) s, i >0 (5)
Jje€J

S*I/?/Q** < pj for all j € J.
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N
We claim that v; > S,* for all j € J. Let j € J be fixed and for an arbitrary e > 0, choose ¢. of C§°(RY)
such that 0 < ¢, < 1,
. 1 if xGB(xj,e)
9=(®) = { 0 if z¢ B(xj,2)

and |Voe|oo < 2 and [A¢e|o < 5. Clearly (I} o (un), peun) = 0, (1), that is

/ | Auy|?podx + / Aup, (2Vup Ve + upAd.) da
Q Q

+M, </ |Vun|2daj> </ unVuanigdx—i—/ ¢E|Vun|2da:>
Q Q Q

= )\/Qf(x,un)unqbedx + /Q \un\?*@dx + on(1). (6)

Observe that

|V (uy, — u)]2d:1: = — / (up, — w)A(uy, — u)de < |u, — ulo||un — ul|m,

Q Q

thus yields
Vu, — Vu in L*(Q). (7)

Set
A= / U VunVoedr, A2 = / AupVupVodz, AD . = / U Atp Adoda.
Q Q Q

By the Hélder inequality, we have
1 1
3 3
lim sup ‘A}w‘ < limsup </ |Vun|2> </ |un\2|V¢€]2dx>
n—oo n—oo Q (9}
1
3
o ([ 1uPiwo.pa)
Q
2 1
N N *% 2
C (/ \V¢E|2dx> (/ |u|? dm)
B(acj,a) B(Ij,{;‘)

1

l ** 2*7*
C’|V¢E|oowﬁ52 (/ |u|? da:> —0ase—0
xjvs)

A

IN

IN

IN

where wy is the volume of B(0,1). In the same way

; ;
ol < limsup </ ]Aun]2> </ \Vun\2]V¢g’2dx>
n—00 n—00 Q Q

lim sup ‘A?LE
2
C (/ \Vu|2\V¢€\2dx>
Q

A

<
1 N-2
N aN 2N
< C </ |V¢8|Ndx> </ \Vu|N—2dx>
B(zj,) B(zj,€)
N_2
2N
<

1
ClVoeleowye (/ |Vu]131—v2da:> —0ase—0
l‘j,s)
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and

A

1 1

2 2
limsup‘Ai’e‘ < limsup </ |Aun|2) </ |un\2|A¢5]2d$>
n—o00 n—00 Q Q

C </Q |u|2|Ang|2d:U>2

IN

[ro
-

N oxx
< C </ |A¢a|]2vd:c> (/ u|2**dx>
B(mjvs) B($j7€)
2 * % 2*%
< COlAd:|sow] 2 (/ |ul? da:) —0ase—0.
B(J?j 6)
(10)
By (), (6) -(7), continuity of f and (f2) — (f3), we have
/ bedp + lim sup <2A,§75 + A3+ M, ( / |Vun|2d:p> A}w) + M (0) / ¢ |Vu|*dzx
Q n—oo Q Q
< )\/ flx,u)ups +/ Pedv. (11)
Q Q
From —, we see that
lim lim sup <2A$16 + A3+ M, </ |Vun|2d:1;> Al 6> =0.
=0 n—yoo ’ ’ Q ’
N
Letting ¢ — 0 in , we obtain p; < v;. Therefore implies S, < ;.
Now we prove that J is empty. Assume by contradiction that there is some j € J. Then
1 1 1 ok
cton(l) = Da(un) — =I5 o(un)sun) > [ 7 — = / lu,|* da
’ 0 ’ 0 2% Q
1 1 ek
> (9 - 2**> /Q¢s|un| de,
therefore let n — 400
> l_i S > l_i S%>*
C=\g o) = g T ) =
which is impossible and hence J = . It follows that u, — u in L2 (), thus
lim / un ) 2 (un — u)dz = 0. (12)
n—oo QO
On the other hand, it not difficult to see that
lim [ f(x,up)(un, —u)dz =0. (13)

n—oo [¢)

Since (I'(up), un, — u) = 0n(1), by continuity of M, and (12)-(13) we deduce that

lim [ AupA(u, —u)dz =0.

n—oo 0
Similarly, we also obtain
lim [ AulA(u, —u)dx = 0.

n—oo Q

So that Au, — Au in L?(Q). From this and (7)) we conclude that ||u,||g — ||u||g. Finally u, — win H. O
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3. Proof of Theorem

To this end, we need to ensure that I, , satisfies the conditions of the following version of Symmetric
Mountain Pass theorem [15].

Theorem 3.1. Let H =V @ W be a real Banach space with dimV < co. Assume that I € C*(H,R) is an
even functional verifying 1(0) =0 and

(i) there exist o, p > 0 such that
inf I(u) > o
uedB,(0)NW
(73) there exists a subspace E C H such that dimV < dimFE and

max I(u) < 8 for some 3 > 0;
uel

(7it) the functional I satisfies (PS). for every c € (0, ).
Then I admits at least dimE — dimV pairs nontrivial critical points.

Lemma 3.1. Assume that (f1) — (f3) hold. Then for each A > 0, there exist ay, px > 0 such that

inf [ > ).
uéallglp)\(()) (u) 2 ax

Proof. By (f2) — (f3) and the continuity of f, for any e > 0 there is C; > 0 such that
F(x,t) < elt|® + Cc|t|? for all (z,t) € Q x R,

It follows from Sobolev’s embeddings that

1 M 1 ok
Iyo(u) > / |Aul?dz + (m/ \Vu|?dz — \e|u|3 — ACe|uld — —|ul3.-
) 2 Jo 2 Jg xx
min(1, M(0)) x
> (OO e ) s~ AdaClaly — sl
Since 2 < ¢ < 2**, the desired result follows by choosing ¢ small enough. O

Lemma 3.2. Assume that (f1) — (f1) hold. Then, for each positive integer k and B > 0, there exists Ay > 0
such that for any A\ > A, there is a k-dimensional subspace Ej x C H satisfying

I(u) < B.
g <P

Proof. Letx; € Q, i=1,...,kand 0 < ¢ < 1such that B(xz;,e) C Qforalli =1, ...,k and B(z;,e)NB(zj,¢€) =
0 for all i # j. Let ¢ € C3°(B(0,1)) and put ¢ (z) = ¢ (£=%) . Then

. = < ] =
|6L17 X102 612

I3 _ N AGE+ N2 VOR | y-amny llol

s e (14)

Denote V. = span{®!, ..., ¢F}. Since all norms in R¥ are equivalent, there is C. > 0 such that for any

k
u= %l € Vi,
i=1

0
lp = [
i=1 B(z;,¢)

k

0 k k g
b= 3 il €. (z mcble) |
=1 1=1

Vidl
1

1=
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Combining this last inequality with , we get

9 1 g m el 0 Naog_No || 0
uly > Ce [ =D Mlidtll | = = llullfy = Cee™ 20772 0| u |4
Cs i—1 C2 H(bHH

£

_NO
=: oV |y (15)
By (fa), for some C1,Cy > 0 we have
F(x,t) > Cy|t|% — Cy for all (x,t) € Q x R.

Then from we entail

k
max(1,a max(1,a
Dat) < 22D o [ Fede = 220D a3 [ P

Q i—1 7 B(zi€)

max(1,a _No

< Xé)HuH%{ — AChoeN T2 e [u||% + ACokwne™ . (16)
Let n € (N+20 — NTQ,N) and set
1
gk,a(t) = Inaxéja)ﬁ — C]U{:‘(N+20_NTG)_77759 + CQkU)NENin.

The function gy . attains the maximal value at t. := (mz)é(llc}a) e (N+29_%)) 7 Therefore for all ¢ >0,

Gke(t) < gre(t:) > 0ase — 07,
thus for given 8 > 0, we can find e € (0, 1) such that

gre(t) < pforall t > 0and e € (0,e4]. (17)

Let now A > A\; := 5,:” and consider the k-subspace Ej \ := V. with ¢ = )\_%. Since ¢ < g, by —,
for all u € Ej, » we have
max(1,a)

N+420— N0 N
+ 6

Iya(u) < lullf; — e™"C1oe = Jullfy + e Cokwne™ = gre(llullm) <

O

Proof of Theorem Let V = {0} and W = H. Obviously I, 4 is an even functional and I} ,(0) = 0. In
view of Lemma I, , satisfies condition Theorem (7). Let k € N* and 0 < § < ¢* with ¢* is given in
Lemma [2.1] According to Lemma for any A > A, Iy, verifies the (PS). for all ¢ € (0, 3), so condition
Theorem (7i7) follows. Moreover, the condition Theorem (7) holds true for the k-subspace Ej ».
Applying Theorem , I, , has k pairs nontrivial critical points. Let u a critical point of I ,. Then

(%52 - 5) 0= e > 02 D) - it = (V50 - 5) [ [wufan

Therefore [, [Vul*dz < to and hence M, ([, |Vul|?*dz) = M ([, |Vu|*dz) . Tt follows that u is a solution of
. The proof of Theorem is complete.
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